




Chapter 2

Es ist nützlich, wenn wir lernen, uns über
die richtigen Dinge zu wundern. Oft wundern
wir uns über das Erstaunlichste nicht, weil es
uns seit langem bekannt ist und darum selbst-
verständlich scheint .

(Carl Friedrich von Weizsäcker,
Aufbau der Physik)



G4
4
4
ˇ ˇ ˇ < ˇ ˇ ˇ ˘ ˇ ˇ ˇ fi ˇ ˘` ˝

-
ˇ ?



Chapter 2

Local rings and finitely determined germs

In the present Chapter we develop the local algebra needed for understanding the local theory of
differentiable and analytic manifolds and spaces.

2.1 Algebras of germs of functions

Let M be a manifold, or, more generally, a topological space, and let x(0) ∈ M a fixed point. We
introduce an equivalence relation between functions with values in a field K 1 which are defined in a
neighborhood U of x(0) . This is the appropriate language for encoding local properties of functions.

Definition. Let f1, f2 be functions that are defined in a neighborhood of U1 and U2 , resp. of x
(0) ∈M .

We say that f1 and f2 define the same germ in x(0) (and write f1 ∼x(0) f2 ) if there exists a
neighborhood U ⊂ U1 ∩ U2 of x(0) such that f1|U = f2|U .

It is a trivial exercise to show that ∼x(0) defines indeed an equivalence relation. For the equivalence
class of a function f at the point x(0) we write fx(0) , deleting quite often the point of reference
x(0) if this can not cause any confusion (such that we identify without saying the germ fx(0) with its
representative f , allowing to shrink the domain of definition U = U (x(0)) of f , if necessary).

Regarding exclusively C∞–functions on the differentiable manifold M , we denote by

C∞M,x(0) or EM,x(0)

the set of the equivalence classes which obviously carries in a natural way the structure of a commutative
K–algebra with unit . In the case M = Kn we write simply En,x(0) or Ex(0) etc. In the (real or complex)
analytic case we use correspondingly the symbols OM,x(0) or On,x(0) or Ox(0) . In order to distinguish
the real and the complex case, we add to these notions, if necessary, upper indices R and C , resp. In
particular, if K = R , C , the symbol

On,0 = OK
n,0 =: K ⟨x1, . . . , xn ⟩ ,

in the literature usually written as K {x1, . . . , xn } , denotes the ring of convergent power series in n
variables with coefficients in the field K . Plainly, we have OM,x(0)

∼= On,0 if dimKM = n .
Very often it is necessary to investigate formal power series: one is, e.g., first trying to solve an

analytic problem formally and proves, a posteriori, that these solutions, or at least one of them, are
convergent. These formal power series build a commutative K–algebra with unit 1 which we denote by

Õn,0 or K {x1, . . . , xn }

(in the literature mostly denoted by K {{x1, . . . , xn }} ). The “tilde” stands here for the operation of
“completing” in a suitable sense (namely with respect to the so called m–adic topology where m denotes
the maximal ideal - see the next Section). Some authors use for this completion a “roof”–symbol which
we, however, reserve à la Grauert–Remmert for the “normalization”.

1We write K instead of K or just k in order to indicate that in most of our applications we are dealing with the field
C of complex numbers and for a while also with the field R of real numbers.
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2.2 Maximal ideals and local rings

Let now Rn be one of these K–algebras C∞n, 0 , On,0 resp. Õn,0 . It is obvious that one can associate
to each element f ∈ Rn a “value” f (0) ∈ K (this is the value at 0 of any representative of f

resp., in the cases On,0 and Õn,0 , the constant term c0,...,0 in the formal power series expansion
f =

∑
ν∈Nn cν x

ν , xν := xν1
1 · . . . · xνn

n , ν = (ν1, . . . , νn) ). It is clear that the map

ε : Rn −→ K , f 7−→ f (0) ,

is a K–algebra–homomorphism. Since the field of constants K can be embedded into Rn via

K ∋ c 7−→ c · 1 ∈ Rn

and the composition K ↪→ Rn → K is is the identity map, ε is surjective.
In particular the set of elements f ∈ Rn with value f (0) = 0 is equal to the kernel ε−1(0) of the

homomorphism ε , hence an ideal which we write as

m = mn = m (Rn) ;

it satisfies the congruence Rn/mn
∼= K . Clearly, the symbol m stands for maximal ideal.

Definition. An ideal m in a commutative ring A with unit 1 is called maximal if the following holds
true:

i) m ⫋ A ,

ii) if a ⊂ A is an ideal with m ⫋ a then a = A .

Indeed, we have the following

Theorem 2.1 For the “geometric” rings Rn considered above, the ideal mn is maximal.

This immediately follows from the (elementary) property of any field K to possess only the two
(trivial) ideals 0 and K , the surjectivity of the homomorphism ε and the following

Lemma 2.2 Let ε : A → B be a surjective homomorphism of rings and a0 = ε−1(0) . Then, there
is a canonical bijection

{ a ⊂ A ideal with a ⊃ a0 } ←→ { b ⊂ B ideal }

where a0 corresponds to the null ideal in B .

Proof . For any ideal a ⊂ A satisfying a0 ⊂ a the image ε (a) ⊂ B is an ideal. If b ⊂ B is an ideal
then also ε−1(b) ⊂ A , and we have a0 ⊂ ε−1(b) . Since ε is surjective it immediately follows that
ε (ε−1(b)) = b . If conversely a0 ⊂ a we get ε−1(ε(a)) = a + ker ε = a + a0 = a . □

In all cases considered up to now, A = K ⊕ m as K–vector spaces, and an element f ∈ A has a
(multiplicative) inverse in A if and only if f (0) = ε (f) ̸= 0 , i.e. if f ̸∈ m . Then, one says that f is
invertible or a (multiplicative) unit in A . This is equivalent to saying that the principal ideal

fA := {h ∈ A : there exists g ∈ A with h = fg }

generated by f coincides with A . (Otherwise, the element f is called a nonunit). – It is easy to draw
from this the following consequence:

Corollary 2.3 For the rings Rn as above, mn is the unique maximal ideal.
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Indeed, each ideal different from mn is either contained in mn , or it contains a unit, hence coincides
with Rn . □

This phenomenon occurs so often that it deserves a special notion.

Definition. A commutative ring A with 1 is called a local ring if it has precisely one maximal ideal
mA . We then also say that the pair (A, mA) is a local ring.

Remark . C [x1, . . . , xn ] is not a local ring for n ≥ 1 . The polynomial ring possesses in fact exactly as
many maximal ideals as we have points in Cn , i.e. the ideals

ma = (x1 − a1, . . . , xn − an)C [x1, . . . , xn ] , a = (a1, . . . , an) ∈ Cn .

Remark . Whenever an ideal a in a ring A is generated by the elements f1, . . . , fk , i.e. whenever

a = { f ∈ A : there exists g1, . . . , gk ∈ A with f =

k∑
j=1

fjgj } ,

we write

a = (f1, . . . , fk)A or a =

k∑
j=1

fjA =

k∑
j=1

Afj .

If there is no risk of confusion, we sometimes write also (f1, . . . , fk) as shorthand instead of
(f1, . . . , fk)A . Similar notations are used by us for finitely generated (sub–) modules on A .

Definition. Let A be a local commutative K–algebra with 1 and m ⊂ A its unique maximal ideal. A
is then called a local K–algebra if the canonical homomorphism K → A/m of fields is an isomorphism.

Remark . The K–algebras C∞n,0 , On,0 , Õn,0 have this property as well as their quotients by proper
ideals. Of special interest to us are the analytic K–algebras

A := On,0/ a , a ⊂ m = m (On,0) an ideal ,

since they represent analytic singularities in an algebraic way.

In the geometric rings Rn we can characterize the maximal ideal and its powers in still another
way. Observe that one can associate to each element f ∈ Rn not only a value f (0) ∈ K (even in the
formal case) but also the partial deratives

Dν :


Rn −→ Rn

f 7−→ Dνf :
∂|ν|f

∂xν1
1 · . . . · ∂x

νn
n

and also there values at 0 . In particular, we have

mn = { f ∈ Rn : f (0) = 0 } = { f ∈ Rn : D0f (0) = 0 } .

More generally, one can prove the Theorem stated below. One should have in mind here that for two
ideals a , b in a commutative ring R the product a b will be generated, by definition, by all products
f g , f ∈ a , g ∈ b . The ideal power ar is nothing else but the r–fold product of a with itself.

Theorem 2.4 The ideals mr
n , r ≥ 1 , are generated by the monomials

xν = xν1
1 · . . . · xνn

n , | ν | := ν1 + · · ·+ νn = r .

One has
mr

n = { f ∈ Rn : Dνf (0) = 0 for all | ν | < r } .
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Proof . In the case r = 1 we have only to show that mn is generated by the coordinate functions
x1, . . . , xn . But this has been already proven in Chapter 1 (Hadamard’s Lemma 1.9). From this, the
first claim follows by induction on r . The second is an easy consequence of the Leibniz rule

Dµ(fg) =
∑
λ≤µ

(
µ

λ

)
Dλf ·Dµ−λg =

(
µ

λ

)
=

µ!

λ! · (µ − λ)!
, µ! := µ1! · . . . · µn! ,

which implies
Dµxν ̸∈ mn ⇐⇒ µ = ν .

Therefore, mr
n ⊂ { f ∈ Rn : Dµf (0) = 0 , |µ | < r } . For the opposite inclusion, we proceed by

induction on r , the case r = 1 being already done. So, suppose that Dµf (0) = 0 for all µ with
|µ | ≤ r . By induction hypothesis, we know that f ∈ mr

n such that we can write

f =
∑
|µ|=r

xµ gµ .

It suffices to show that all functions gµ vanish at the origin. Therefore, choose an arbitrary multiindex
ν with | ν | = r . Due to our assumption, Dνf (0) = 0 . On the other hand,

Dν
( ∑

|µ|=r

xµ gµ

)
=

∑
|µ|=r

Dν(xµ gµ) =
∑
|µ|=r

∑
λ≤ν

(
ν

λ

)
Dλxµ ·Dν−λgµ ,

and each term Dλxµ on the right hand side vanishes at the origin unless λ = µ = ν . Consequently,
gν(0) = 0 . □

The property of an arbitrary ring to be local is in fact equivalent to the assumption that the invertible
elements form the complement of an ideal . To prove this we need the validity of Zorn’s Lemma from
which one can deduce the following result.

*Theorem 2.5 Every proper ideal a in a (commutative) ring A with unit is contained in a maximal
ideal m of A .

Without proof .

Before we formulate and prove the above mentioned equivalence we show another useful general
result.

Theorem 2.6 Let A be a commutative ring with 1 , and let I be the set of nonunits of A , i.e.
f ∈ I , g ∈ A =⇒ f g ̸= 1 . Then, we have

I =
⋃
a̸=A

a ,

where a runs through the set of all (proper) ideals in A .

Proof . If f ∈ I , then the principal ideal a = fA ̸= A and hence I is contained in the right hand
side. If, conversely, f ̸∈ I , thus fg = 1 for some g , so we have fA = A and consequently a = A
for each ideal a which contains f . □

Theorem 2.7 Let A be a commutative ring with 1 , I the set of its nonunits. Then, the following
statements are equivalent :

i) I is an ideal ;

ii) the set of proper ideals a ⊂ A has a greatest element (with respect to inclusion) ;

iii) A possesses exactly one maximal ideal.
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In the cases ii) and iii), the distinguished ideal is equal to I .

Proof . i) =⇒ ii) Due to the preceding Theorem.

ii) =⇒ iii) Let a0 be such a greatest element. Then,

a0 =
⋃
a̸=A

a

is the unique maximal ideal and, because of Theorem 6, a0 = I .

iii) =⇒ i) Let m be the maximal ideal. Then we have, according to the preceding Theorem, m ⊂ I . If
f ∈ I , then a = fA ̸= A and a must be contained in a maximal ideal, hence in m ; therefore f ∈ m .
□

With the help of this Theorem we are able to characterize maximal ideals in general.

Corollary 2.8 The ideal m ⊂ A is maximal if and only if the residue class ring A/m is a field.

Proof . Because of the preceding Theorems the equivalence of the following statements is guaranteed:

a) m is maximal;

b) A = A/m possesses only the ideals (0) and A ;

c) A is a local ring with (0) as maximal ideal;

d) each element in A \ { 0 } is a unit;

e) A is a field. □

2.3 The Nakayama Lemma

The following Theorem is rather trivial and, therefore, only deserves to be named a “Lemma”. Never-
theless, we label it as a “Theorem” since, as we will see soon, it has extremely deep consequences.

Theorem 2.9 (Nakayama Lemma) Let (A, m) be a local ring, M a finitely generated A–module
and N ⊂M a submodule satisfying

(∗) M ⊂ N + mM .

Then, N = M . In particular, it follows that M = 0 if M = mM .

Proof . Together with M the quotient M/N is finitely generated. Since from (∗) it follows that M/N ⊂
m (M/N) we can restrict ourselves to the case N = 0 . Choose then a minimal system m1, . . . ,mr of
generators of M on A , r ≥ 1 ; because of (∗) we have

mr =

r∑
j=1

aj mj , aj ∈ m ,

hence

(1 − ar)mr =

r−1∑
j=1

aj mj .

Now, 1 − ar ̸∈ m since otherwise 1 ∈ m and m = A . Therefore,

mr =

r−1∑
j=1

bj mj , bj = (1 − ar)
−1aj ,

and, consequently, the chosen system of representatives is not minimal if r ≥ 2 . For r = 1 , we
conclude by the same argument that m1 = 0 and M = 0 . □

The Nakayama Lemma has a sharper formulation which is quite useful.
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Theorem 2.10 Let A be a local ring with maximal ideal m , N , N ′ submodules of a fixed A–module
M , N ′ finitely generated. If then N ′ ⊂ N + mN ′ it follows that N ′ ⊂ N .

Proof . N ′′ := N ′ ∩ N implies N ′ = N ′′ + mN ′ and therefore, due to the Nakayama Lemma,
N ′ = N ′′ ⊂ N . □

In applications, the following result is used quite frequently.

Corollary 2.11 Let M be a finitely generated A–module on the local ring A , and let ω : M →
M/mM be the canonical residue class map. Then the following are equivalent :

a) m1, . . . ,mr generate (minimally) the module M ;

b) the residue classes ω (mj) = mj , j = 1, . . . , r , form a system of generators (a basis) of the
A/mA–vector space M/mM .

In particular, from each system of generators of a finitely generated A–module M one can extract a
minimal one of uniquely determined length

cgAM := dimA/mA M/mM .

Proof . a) =⇒ b) is correct by trivial reasons. Conversely, let the elements m1, . . . ,mr be given as in
b) and N = A (m1, . . . ,mr) ⊂ M the A–submodule of M generated by m1, . . . ,mr . For m ∈ M ,
one has ω (m) =

∑
cj ω (mj) with cj ∈ A/m . Now, choose representatives aj ∈ A of the elements

cj ; then m −
∑

aj mj ∈ ker ω = mM , hence M ⊂ N + mM and therefore M ⊂ N ⊂ M , i.e.
M = N . □

Similarly, one can see the following

Theorem 2.12 Any homomorphism M → M ′′ of finitely generated modules on a local ring A is
surjective if and only if the associated A/mA–vector space homomorphism M/mM → M ′′/mM ′′

does.

2.4 Ideals of finite codimension

We deduce now from the version of the Nakayama Lemma stated above the following Theorem which
will be applied several times in these notes.

Theorem 2.13 Let A be a local K–algebra with finitely generated maximal ideal m = (x1, . . . , xn)A .
Then, the following two statements for an ideal a ⊂ A are equivalent :

i) a is of finite codimension in A , i.e. dimKA/ a < ∞ ;

ii) there exists a power mℓ ⊂ a .

If i) is satisfied, one can choose ℓ = dimKA/ a in ii).

Proof . The ideal mℓ can be generated by the monomials xν1
1 · . . . · xνn

n , | ν | = ν1 + · · ·+ νn = ℓ . It
is easy to see that each element f ∈ A modulo mℓ may be represented as a polynomial on K in the
variables x1, . . . , xn of total degree < ℓ (c.f. the next Lemma). Thus, A/mℓ is a finitely generated
K–vector space for all ℓ . If now ii) is satisfied, there exists an epimorphism A/mℓ → A/ a of K–vector
spaces such that the ideal a is of finite codimension. If, on the other hand, i) is satisfied, consider the
infinite sequence of inclusions

a + m ⊃ a + m2 ⊃ a + m3 ⊃ · · · ⊃ a ,

which has the epimorphisms

A/ a −→ A/ (a + mj+1) −→ A/ (a + mj) −→ · · · −→ A/ (a + m)

as a consequence. Thus, we have for all j :
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(+) dimKA/ (a + mj) ≤ dimKA/ (a + mj+1) ≤ dimKA/ a < ∞ ,

and for at least one (in fact for almost all) j the inequality on the left hand side in (+) must become
an equality. Therefore, there exists a number ℓ satisfying

mℓ ⊂ a + mℓ = a + mℓ+1 = a + m ·mℓ .

The Nakayama Lemma in the guise of Theorem 10 implies immediately the claim ii). The last assertion
follows by the same reasoning from (+). □

We have used a Lemma in the proof of the preceding Theorem which we now wish to state expressis
verbis. It is a generalization of Taylor’s formula which holds in the geometric rings On,0 , C∞n,0 , Õn,0 .

Lemma 2.14 Let A a be a local K–algebra with finitely generated maximal ideal m = (x1, . . . , xn)A .
Then there exists, to each f ∈ A and every ℓ ∈ N , a polynomial Pf,ℓ in the variables x1, . . . , xn with
coefficients in K of degree ≤ ℓ such that

f − Pf,ℓ ∈ mℓ+1 .

Proof . We proceed by induction with respect to ℓ , the case ℓ = 0 being trivial. Suppose

f − Pf,ℓ =
∑

|ν|=ℓ+1

fν x
ν .

Decompose fν into cν + gν , cν ∈ K , gν ∈ m , and set

Pf,ℓ+1 = Pf,ℓ +
∑

|ν|=ℓ+1

cν x
ν . □

Remark . In the complex analytic context, an ideal a ⊂ Rn is of finite codimension precisely if the zero
set of a is zero–dimensional (see Section 8 below).

2.5 Noetherian rings and modules

Local noetherian rings and algebras have particularly pleasant properties. We collect here some general
facts on such rings and modules for the convenience of the reader.

Definition. A commutative ring A is called noetherian if each ideal a ⊂ A is finitely generated.

Remark . We will prove later (Theorem 3.17) that the rings K ⟨x1, . . . , xn ⟩ and K {x1, . . . , xn } are
noetherian. The rings C∞n,0 , however, are not noetherian (c.f. the Corollary 18).

Theorem 2.15 A commutative ring A is noetherian if and only if each increasing chain of ideals

a0 ⊂ a1 ⊂ a2 ⊂ · · · ⊂ A

is stable : there exists k ∈ N with aj = ak for all j ≥ k .

Proof . i) If A is not noetherian, i.e. if there exists an ideal a in A which is not finitely generated, there
is an infinite sequence fj ∈ a such that the sequence of ideals aj := (f0, . . . , fj)A increases properly
and, therefore, can not become stable.

ii) Let, conversely, A be noetherian and a0 ⊂ a1 ⊂ · · · an increasing chain of ideals. Then,

a :=
⋃
j∈N

aj
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is an ideal, too. If one chooses finitely many generators fρ ∈ a then there is a number k ∈ N with
fρ ∈ ak for all ρ . Hence, a = ak , and consequently aj = ak for all j ≥ k . □

Definition. An A–module M is said to be noetherian if every submodule N ⊂M is finitely generated
on A .

If the base ring itself is noetherian, we have a simple criterion for a module to be noetherian.

Theorem 2.16 (Hilbert) Let A be a noetherian ring and M an A–module. Then M is noetherian
if and only if M is finitely generated.

Proof . If the module M is noetherian then it is finitely generated by definition. Let, conversely, M
be finitely generated, say by the elements m1, . . . ,mt , and let N be a submodule of M . We shall
show by induction on t that N is finitely generated. For t = 1 , the map A → M sending 1 to
m1 is surjective. The preimage of N is an ideal in A which is finitely generated by assumption on
A . The images of its generators generate N . If t > 1 the image Ñ of N in M/Am1 is finitely
generated since the module M/Am1 is generated by the residue classes of the elements m2, . . . ,mt .

Let n1, . . . , ns be elements of N whose images generate Ñ . Since Am1 ⊂ M is generated by one
element, its submodule N ∩ Am1 is finitely generated, say by p1, . . . , pr . Then it is easy to see that
the elements n1, . . . , ns and p1, . . . , pr together generate N . □

In application of our considerations made before we now regard in our geometric algebras Rn the
ideal

m∞
n =

⋂
r≥1

mr
n .

Using a representation f =
∑

xj gj ∈ m∞
A and applying the Leibniz rule one can immediately perceive

that all gj must be contained in m∞
n , too. Necessarily,

m∞
n = mn ·m∞

n .

If m∞
n is finitely generated it follows that m∞

n = 0 . - We summarize:

Theorem 2.17 For the rings K ⟨x1, . . . , xn ⟩ and K {x1, . . . , xn } we have

m∞
n :=

⋂
r≥1

mr
n = 0 .

Remark . Of course, this result follows easily without recourse to the Noether property of the rings we
are considering. Just expand any germ f into a power series

∑
ν cνx

ν and deduce from f ∈ m∞
n that

cν = 0 for all ν ∈ Nn . In fact, we use the Theorem implicitly in the proof of Theorem 3.17.

Concerning C∞–functions, the circumstances are completely different. If one associates to a germ
f ∈ C∞n,0 its Taylor series

j∞0 f ∈ K {x1, . . . , xn }

one obtains a K–algebra homomorphism

C∞n,0 −→ K {x1, . . . , xn }

which, in fact, is surjective (Theorem of E. Borel). The kernel of this homomorphism is equal to m∞
n ,

the ideal of flat functions which is, as is well known, not trivial. - Therefore, we may conclude the

Corollary 2.18 The local ring C∞n,0 is not noetherian.
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2.6 Krull’s Intersection Theorem

For finitely generated modules on noetherian rings A , the preceding Theorem generalizes to Krull’s
Intersection Theorem.

Theorem 2.19 Let A be a noetherian local ring, M a finitely generated A–module, and N ⊂ M a
submodule. Then,

N =

∞⋂
j=1

(N + mjM) .

We will postpone the proof to Chapter 6 where it will be deduced from the Artin–Rees Lemma. For
a direct proof c.f. Grauert - Remmert [1 - 02], Anhang pp. 211, 212.

Corollary 2.20 Let N , N ′ be submodules of a finitely generated A–module M , A a noetherian local
ring, and let

N ′ ⊂ N + mjM , j ≥ 1 .

Then, N ′ ⊂ N .

For: N ′ ⊂
∞⋂
j=1

(N + mjM) = N . □

We demonstrate on two examples how useful this Corollary is.

Theorem 2.21 Let a ⊂ On,0 be an ideal, f1, . . . , fk ∈ a fixed elements, and suppose that for all f ∈ a
we have a relation

f = g1 f1 + · · ·+ gk fk in Õn,0 , i.e. g1, . . . , gk ∈ Õn,0 .

Then, the elements f1, . . . , fk form a system of generators for a in On,0 .

Proof . The polynomial ring K [x1, . . . , xn ] lies densely in On,0 with respect to the m–adic topology,

m = m(On,0) , and correspondingly in Õn,0 for m̃ = m (Õn,0 ); i.e.: for every h ∈ On,0 (resp. Õn,0 )
and each number j ∈ N there exists a polynomial P = Ph,j satisfying

h ≡ P modmj resp. mod m̃j .

(C.f. Lemma 14). Therefore, there exist to each j ∈ N polynomials g
(j)
i , i = 1, . . . , k , with

(∗) f −
(
g
(j)
1 f1 + · · ·+ g

(j)
k fk

)
∈ m̃j ∩ On,0 .

But, as one can easily deduce from Theorem 4, m̃j ∩ On,0 = mj . Set now b := (f1, . . . , fk)On,0 ⊂ a .
Due to (∗), it follows that

a ⊂ b + mj , j ≥ 1 ,

i.e. a ⊂
∞⋂
j=1

(b + mj) = b and hence a = b = (f1, . . . , fk)On,0 . □

Remark . We have used the full power of Krull’s Intersection Theorem in the last proof, in particular
the fact that the ring On,0 is noetherian. If we denote by B the analytic algebra On,0/ b and by π
the canonical epimorphism On,0 → B then the proof above implies that the ideal π (a) is contained

in all powers mj
B . Therefore, we need the Intersection Theorem only in the form

⋂
mj

B = 0 for all

analytic algebras B .
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2.7 Local homomorphisms

Quite important for the theory to be developed later are (special) ring homomorphisms. If M, N are
differentiable (real analytic, complex analytic) manifolds, and if f : N → M denotes a differentiable
(resp. analytic) map then, to each x(0) = f (y0) , y0 ∈ N and the corresponding germs of sets
(M, x(0)) and (N, y0) , there exists an associated map germ fy0

: (N, y0) −→ (M, x(0)) and a ring
homomorphism

φ = f∗y0
: C∞M,x(0) −→ C∞N,y0

etc.

defined by substitution C∞
M,x(0) ∋ g 7→ g ◦ f . In local charts this amounts to a map{

C∞m,0 −→ C∞n,0
g 7−→ g ◦ f

with f = (f1, . . . , fm) , fj ∈ mn = m (C∞n,0) . In particular, if g (0) = 0 then (g ◦ f) (0) = g (f (0)) =
g (0) = 0 .

Definition. A ring homomorphism φ : A → B of local rings is termed local if φ (mA) ⊂ mB .

Theorem 2.22 Each algebra homomorphism φ : A → B of local K–algebras is local.

Proof . Automatically, as K–vector spaces, A = K ⊕ mA and B = K ⊕ mB . Let f ∈ mA and
φ (f) = c + g , c ∈ K , g ∈ mB . If c ̸= 0 , then h = f − c would be a unit, hence hh0 = 1 , and,
since φ is a K–algebra homomorphism:

g φ (h0) = (c + g − c)φ (h0) = (φ (f)− φ (c))φ (h0) = φ ((f − c)h0) = φ (hh0) = φ (1) = 1 ,

whence g ̸∈ mB . Contradiction! □

A beautiful Corollary from Krulls Intersection Theorem is a uniqueness result for local homomor-
phisms which, in particular, applies to local noetherian algebras.

Theorem 2.23 Let φ1, φ2 : A → B be (local) algebra homomorphisms of local K–algebras with

(∗) φ1(xj) = φ2(xj) , j = 1, . . . , n ,

x1, . . . , xn a finite system of generators for m = mA , B satisfying
⋂
j

mj
B = 0 . Then, φ1 = φ2 .

Proof . Using Lemma 14, we find to each element f ∈ A and each integer ℓ ∈ N a polynomial P = Pf,ℓ

in x1, . . . , xn with coefficients in K satisfying

f − P ∈ mℓ
A .

Moreover, φ1(m
ℓ
A) ⊂ mℓ

B and similarly φ2(m
ℓ
A) ⊂ mℓ

B for all ℓ ∈ N . Due to (∗), φ1(P ) = φ2(P ) ;
hence by subtraction

φ2(f) − φ1(f) = φ2(f − P ) − φ1(f − P ) ∈ mℓ
B for all ℓ ,

and thus

φ2(f) − φ1(f) ∈
∞⋂
ℓ=1

mℓ
B = 0 . □

Corollary 2.24 The K–algebra homomorphisms

φ : Om,0 = K ⟨ y1, . . . , ym ⟩ −→ K ⟨x1, . . . , xn ⟩ = On,0

are exactly the substitution homomorphisms

g 7−→ g (f1(x), . . . , fm(x)) , f1, . . . , fm ∈ m (On,0) .
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Proof . Substitution homomorphisms are K–algebra homomorphisms. Let, conversely, φ : Om,0 →
On,0 be given and fj := φ (yj) ∈ m (On,0) , φ̃ the substitution homomorphism g 7→ g (f1, . . . , fm) .
Then, φ̃ (yj) = φ (yj) , j = 1, . . . ,m , and hence, because of Theorem 23, φ̃ = φ . □

Remark . It is obvious that the proof of the Corollary also works in the formal case. In the C∞–category,
it is false; counterexamples are, however, not easy to construct. C.f. K. Reichard, Nichtdifferenzierbare
Morphismen differenzierbarer Räume. Manuscripta Math. 15, 243–250 (1975).

2.8 Rückert’s Nullstellensatz

Given finitely many holomorphic functions f1, . . . , fm ∈ O(U) on some open subset U of a complex
affine space An , we denote by N (f1, . . . , fm) the simultaneous zero set of the functions f1, . . . , fm :

N (f1, . . . , fm) = {x ∈ U : f1(x) = · · · = fm(x) = 0 } .

Definition. An analytic subset A of an open set U is by definition locally (with respect to any point
x(0) ∈ U ) the simultaneous zero set of finitely many holomorphic functions. This is the same as to say
that A is closed in U and that for all x(0) ∈ A there exists a neighborhood V ⊂ U of x(0) and
functions g1, . . . , gr ∈ O(V ) such that

A ∩ V = N (g1, . . . , gr) .

In particular, algebraic sets are analytic subsets of number space Cn itself.

If f1, . . . , fm are just germs of holomorphic functions at the origin, i.e. elements of OCn,0 = Rn ,
they define at least a germ of an analytic set at 0 which we denote by the same symbol N (f1, . . . , fm)
as above if there is no risk of misunderstanding. (Germs of sets at a point of a topological space are
defined precisely in the same manner as we introduced germs of functions and maps). If g ∈ Rn is an
element such that a power gt is contained in the ideal generated by f1, . . . , fm , then

N (f1, . . . , fm) ⊂ N (gt) = N (g) .

This remark implies the following statements:

a) N (f1, . . . , fm) depends only on the ideal a ⊂ Rn generated by the elements f1, . . . , fm such
that we write N (a) instead in the following;

b) If b ⊂ a , then N (a) ⊂ N (b) ;

c) N (a) = N (rad a) , where rad a denotes the ideal

rad a = { g ∈ Rn : ∃ t with gt ∈ a }

which contains a .

It is also easily checked that

d) N (a + b) = N (a) ∩N (b) ;

e) N (a ∩ b) = N (a · b) = N (a) ∪N (b) .

Only part e) needs some hints. It is clear that N (a) ∪ N (b) ⊂ N (a ∩ b) ⊂ N (a · b) , where the last
inclusion is a consequence of the inclusion of ideals a · b ⊂ a ∩ b . If a point x does not belong to
N (a)∪N (b) , then there exist germs f ∈ a , g ∈ b which do not vanish at x . Thus, (f · g) (x) ̸= 0 . □

If, on the other hand, A is a germ of any subset of Cn at 0 , we define

i (A) = { f ∈ Rn : a representative of f vanishes on a representative of A } .

Plainly, i (A) is an ideal in Rn having the following properties:
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f) A ⊂ B =⇒ i (B) ⊂ i (A) ;

g) i (A ∪B) = i (A) ∩ i (B) ;

h) a ⊂ i (N (a)) .

By the preceding properties the inclusions

a ⊂ rad a ⊂ i (N(rad a)) = i (N(a))

are obvious. In fact, we have

*Theorem 2.25 (Rückert’s Nullstellensatz) For any ideal a ⊂ OCn,0 we have equality

i (N (a)) = rad a .

Remark . This Theorem is sometimes called the Nullstellensatz of Hilbert - Rückert. The reason for
this misuse of historical truth is the fact that Hilbert proved (earlier) the corresponding result for ideals
a in the polynomial ring C [x1, . . . , xn ] .

Important Note. Our main concern in this manuscript is to study certain analytic sets X =
N (g1, . . . , gr) ⊂ U locally at a fixed point x ∈ X , i.e. to study the germ (X, x) := Xx =
(N (g1, . . . , gr))x which is obviously the same as N (ax) with the ideal ax generated by the germs
g1,x, . . . , gr,x . However, if f1, . . . , fm is another set of analytic functions in a neighbourhood of x
whose germs at x generate the ideal ax , then also (X, x) = (N (f1, . . . , fm))x = N (f1,x, . . . , fm,x) .
Hence, there exists a neighborhood V ⊂ U of x such that

X ∩ V = {x ∈ V : f1(x) = · · · = fm(x) = 0 } .

In other words: With regard to the analytic sets, one may replace the functions g1, . . . , gr locally around
x by the functions f1, . . . , fm . But much more is true: Even the two ideal sheaves generated by these
systems of functions are identical locally around the point x . This is a special instance of what we call
the permanence principle for finitely generated sheaves of modules (see the Supplement).

2.9 Germs of maps

Any (substitution) homomorphism ψ : Rm → Rn is uniquely determined by m germs f1, . . . , fm ∈ mn

which define a map germ

f = (f1, . . . , fm) : (Kn)0 −→ (Km)0 .

If we have a commutative diagram

= B A =-
φ

Rm Rn
-ψ

? ?
Rm/ b Rn/ a

Rm Rn

then we have the following result.

Lemma 2.26 The map germ f : (Kn)0 → (Km)0 associated to ψ induces a map from N (a) to
N (b) which only depends on φ . If φ is an isomorphism, then the induced map is a homeomorphism
with respect to the relative topology on N (a) and N (b) .
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Proof . Take a point x in (a representative of) N (a) (for the sake of brevity we do not distinguish
between the representative and its germ). By definition, g (x) = 0 for all g ∈ a . Commutativity of the
diagram above is the same as to say that ψ (b) ⊂ a , or, in other terms, if h ∈ b , then

g := h ◦ f ∈ a .

Hence, h (f (x)) = g (x) = 0 , i.e. f (x) ∈ N (b) . If ψ̃ is another extension inducing a map germ

f̃ = (f̃1, . . . , f̃m) , then ψ̃ (h) − ψ (h) ∈ a for all h ∈ Rm . In particular, fj − f̃j ∈ a which implies

f (x) = f̃ (x) for x ∈ N (a) .

If φ is an isomorphism, the inverse homomorphism induces a map germ F : (Km)0 → (Kn)0 such
that, according to what we have just seen,

(F ◦ f)|N(a) = idN(a) and (f ◦ F )|N(b) = idN(b) . □

2.10 Several notions of singular points

We want to address now once more the problematic nature of the notion of a singularity . In fact, we
consider in this manuscript at least two different kinds of singular objects.

1) At the one hand we regard (differentiable, analytic) germs of maps

f0 : (Kn, 0) −→ (Km, 0)

and call these singular if
r := rankDf0 (0) < min (n, m) .

In the regular , i.e. the nonsingular, case all fibers f−1(y) , y ∈ V , are for a suitable representative

f := (f1, . . . , fm) : U = U (0) −→ V = V (0) , U ⊂ Kn , V ⊂ Km

submanifolds of U ⊂ Kn of the (with regard to the known situation for linear maps in Linear Algebra)
expected (fixed) dimension, i.e.

a) of dimension 0 if r = n ≤ m ,

b) of dimension n − m if r = m ≤ n , resp..

More precisely, one finds after differentiable resp. analytic coordinate change (local) normal forms in
these cases, as in Linear Algebra, namely

a) (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0) if r = n ≤ m ,

b) (x1, . . . , xn) 7→ (x1, . . . , xm) if r = m ≤ n .

Type a) is called an immersion, type b) a submersion.

In particular we can state: If f = (f1, . . . , fm) is the germ of a regular map then the algebra

Rn/ (f1, . . . , fm)Rn
∼= Rℓ , ℓ = max (n − m, 0) .

Here, the symbol Rn etc. stands, according to the situation, for On,0 or C∞n,0 .

Remark . If the map f is singular in 0 then the fiber f−1(0) may, nevertheless, be smooth. This is,
due to the so called Rank Theorem, the case e.g. if the rank of f is in a fixed neighborhood of the point
0 constant and smaller than min (m, n) (see Chapter 3).

In general, a singularity in this context means, more exactly, an equivalence class of germs of maps
with respect to a suitable equivalence relation. Such are e.g. the notions of R–equivalence (see below
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for functions) and RL–equivalence (as above), hence equality of germs of maps up to composition with
germs of automorphisms from right or from right and left.

On the other hand, m germs of functions f = (f1, . . . , fm) ∈ mnR
⊕m
n also determine:

2) an ideal If =

m∑
j=1

Rnfj ⊂ mn ⊂ Rn ;

3) a local K–algebra Rn/ If ;

4) a zero locus germ N = N (If ) ⊂ (Kn, 0) .

A singularity is in all these cases again an equivalence class of such (singular) germs with respect to a
certain equivalence relation. In the last cases these are more or less “geometrically” self–evident:

Definition.

i) The ideals If , Ig ⊂ mn are called embedded isomorphic if it exists a germ φ ∈ Aut Rn with
φ (If ) = Ig .

ii) The rings Rn/ If and Rℓ/ Ig are called abstract isomorphic if there exist substitution homomor-
phisms

φ : Rn −→ Rℓ , ψ : Rℓ −→ Rn

which induce local K–algebra homomorphisms

φ : Rn/ If −→ Rℓ/ Ig , ψ : Rℓ/ Ig −→ Rn/ If .

that are inverse to each other.

iii) The germs of sets N , M ⊂ (Kn, 0) are called geometrically embedded isomorphic if it exists a
germ of an automorphism Φ ∈ Aut (Kn, 0) with Φ (N) = M .

Remarks. 1. If If , Ig ⊂ mn are embedded isomorphic then the automorphism φ : Rn → Rn with
φ (If ) = Ig induces an abstract isomorphism

φ : Rn/ If
∼−→ Rn/ Ig .

2. If Rn/ If and Rn/ Ig (notice that n = ℓ !) are abstract isomorphic and If and Ig ⊂ m2
n then

If and Ig are embedded isomorphic. For, let φ : Rn → Rn be a lifting of the isomorphism φ :
Rn/ If −→ Rn/ Ig then the induced map

mn/m
2
n mn/m

2
n

-

mn/ If mn/ Ig-

? ?

in the lower row is surjective, hence an isomorphism. Then, due to the Inverse Mapping Theorem, φ is
an isomorphism, too. Since φ−1 = φ−1 , one concludes with φ (If ) ⊂ Ig , φ−1(Ig) ⊂ If immediately
that φ (If ) = Ig .

3. If If , Ig ⊂ mn are embedded isomorphic then the zero sets N = N (If ) and M = N (Ig) are
geometrically embedded isomorphic since every automorphism of Rn induces an automorphism of the
germ (Kn, 0) .

4. The converse to 3. is, of course, not valid: for f = f (x) = x2 and g = g (x) = x3 in R1 the zero
sets N (If ) = N (Ig) = { 0 } but If and Ig are not embedded isomorphic since φ (mℓ

n) = mℓ
n for
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all ℓ ∈ N , φ ∈ Aut Rn . In the complex analytic case it follows however by the Hilbert - Rückert
Nullstellensatz that at least the radicals of the ideals

rad If and rad Ig

are embedded isomorphic. In particular, if N (a) is a point, then N (a) = N (m) and therefore mℓ
n ⊂ a ,

i.e. a is of finite codimension (Theorem 13). This is the background for the truth of Corollary 34.

We introduce still another equivalence relation.

Definition. Two m–tuples f, g ∈ mnR
⊕m
n are called V–equivalent if there exists an invertible m×m–

matrix M with entries in Rn such that
g = M f ,

where f and g have to be regarded as column vectors.

Theorem 2.27 Let f, g ∈ mnR
⊕m
n be given with the corresponding ideals If , Ig ⊂ mn . Then the

following are equivalent :

i) f and g are V –equivalent as map germs (Kn, 0) → (Km, 0) ;

ii) If and Ig are embedded isomorphic as ideals in Rn .

Remark . Hence, f and g determine the same variety up to isomorphism. This is the reason why the
corresponding equivalence relation is termed “V–equivalence” in [1 - 16].

Proof . i) =⇒ ii) is easy to see.

ii) =⇒ i). After the application of an automorphism from the right we may assume that If = Ig .
Then we find m×m–matrices A and B with entries in Rn such that ( f and g considered as column
vectors)

g = Af , f = B g .

We have to modify A in such a way that A0 := A (0) is invertible. First, look at an arbitrary matrix
M of the form

M = C (Em − BA) + A , C ∈M (m×m, K) ;

then we have
M f = Af = g and M0 = C (Em − B0A0) + A0 .

Hence, it suffices to establish the following Lemma from Linear Algebra.

Lemma 2.28 Let A, B ∈ M (m×m, K) be arbitrary matrices. Then, there exists an m×m–matrix
C such that

M := C (Em − BA) + A

is invertible.

Proof . Decompose V = Km into

V = V0 ⊕ ker A = V1 ⊕ im A .

Then, there exists an endomorphism C of V with C|V0
= 0 such that C : ker A → V1 is an

isomorphism. Choose such a C in the formula above; if then M v = 0 we have

Av = −C (Em − BA) v ∈ im A ∩ im C = { 0 } ,

hence Av = C v = 0 , i.e. v ∈ ker A ∩ ker C = { 0 } . □

In the literature one uses instead of “V–equivalence” also the notion of contact–equivalence. We
want to expound the reason for this notion at this place a little further. Let two pairs of (germs of)
submanifolds

(X1, Y1) and (X2, Y2) in (KN , 0)
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be given. The pairs are called contact–equivalent if there exists an automorphism φ of (KN , 0) sat-
isfying φ (X1) = X2 , φ (Y1) = Y2 . Let now h1 : (Kn1 , 0) → (KN , 0) be a parametrization of X1 ,
in particular n1 := dim X1 , and g1 : (KN , 0) → (Km1 , 0) a submersion with g−1

1 (0) = Y1 , in
particular m1 = codimKNY1 . We further put f1 = g1 ◦ h1 and construct f2 correspondingly for the
pair (X2, Y2) . Clearly, the map germs fj are not uniquely determined by the pairs (Xj , Yj) , but the
integers nj and mj are. - Then, the following holds true:

Theorem 2.29 The pairs (X1, Y1) and (X2, Y2) are contact–equivalent if and only if n1 = n2 =:
n , m1 = m2 =: m and the map germs

f1, f2 : (Kn, 0) −→ (Km, 0)

are V –equivalent.

For the Proof see J. A. Montaldi: On contact between submanifolds. Michigan Math. J. 33 (1986),
pp. 195–199.

2.11 Right equivalent germs

We denote in the following by Rn either of the local rings C∞n,0 or On,0 with the maximal ideal
m = mn . Correspondingly, Aut Rn stands for the group of germs of invertible differentiable resp.
analytic maps φ : (Kn, 0) → (Kn, 0) (with respect to the composition of (germs of) maps as
group multiplication). An element φ ∈ Aut Rn determines in a unique fashion n germs of functions
h1, . . . , hn ∈ mn satisfying Dh (0) = det ∂(h1, . . . , hn)/ ∂(x1, . . . , xn) (0) ̸= 0 where

φ (f) = f ◦ φ = f (h1, . . . , hn) .

Thus, the group Aut Rn operates also on Rn by composition from the right:{
Rn × Aut Rn −→ Rn

(f , φ) 7−→ f ◦ φ .

We are interested, as we already stated in Chapter 1.7 for the complex analytic category, in the orbits
in Rn under this operation.

Definition. Two germs f, g ∈ Rn are called right equivalent or R–equivalent for short if they lie in
the same orbit with respect to this Aut Rn–action, i.e. if there exists an automorphism germ φ with
f ◦ φ = g . We write under these circumstances f ∼r g .

Remarks. 1. If f ◦ φ = g , f (x) = 0 and x = φ (y) then g (y) = (f ◦ φ) (y) = f (x) = 0 and vice
versa. Therefore,

φ ({ y : g (y) = 0 }) = {x : f (x) = 0 }

near x = 0 , y = 0 ; in other words: the germs of the zero sets of R–equivalent function germs f and
g coincide near 0 after coordinate change.

2. Rn is not a finite dimensional manifold and Aut Rn is not a Lie group. Nevertheless, it is possible
by reducing the considerations to finite dimensional subspaces that classical results on operations of Lie
groups on manifolds are applicable.

2.12 Jets of functions and finitely determined germs

We have previously seen that certain germs of holomorphic functions are equivalent to a finite part of
their Taylor series expansion. We would like to study this phenomenon here in more detail, also for
differentiable functions.
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Definition. A germ f ∈ Rn is called k–(right) determined if it is right equivalent to each germ g which
has the same k–jet as f . In symbols: jkg = jkf =⇒ g ∼r f . Here, of course,

jkf = jk0 f :=
∑
|ν|≤k

Dνf (0)

ν!
xν .

In particular, f is then equivalent to its k–jet jkf ; moreover – in the holomorphic case – the complex
analytic hypersurface N (f) is (after holomorphic base change) equal to the algebraic set N (jkf) . We
say that f is finitely determined if it is k–determined for some k ∈ N .

Remark . Since jk(jkf) = jkf , k–determinacy of f is rather a property of the polynomial jkf than
of the germ f itself.

Examples. The Implicit Function Theorem in the form of Theorem 1.4 asserts that every regular germ
f ∈ mn is 1–determined. The Morse Lemma is equivalent to the statement that every nondegenerate
critical germ f ∈ m2

n is in fact 2–determined. Both results follow from a general criterion which we
formulate in the next Section.

Warning . The example

f (x, y) =

(
x +

y

1 − y

)2

shows that the jets jkf may be finitely determined for k ≥ k0 without f being finitely determined.

2.13 The Mather - Tougeron criterion

We shall see that the property of k–determinacy is closely related to the following inclusion which, after
all, only concerns finite dimensional vector spaces:

( ∗ )k mk
n ⊂ mnJf + mk+1

n .

Here, Jf denotes the Jacobi ideal of f which, by definition, is generated by the (germs of) partial
derivatives of f :

Jf =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
Rn =

{ n∑
j=1

gj
∂f

∂xj
: gj ∈ Rn , j = 1, . . . , n

}
.

To be precise, the following Theorem of Mather holds true which we shall deduce in the course of the
present and the next Section.

Theorem 2.30 (Mather)

a) If ( ∗ )k holds then f is k–determined.

b) If conversely f is k–determined then ( ∗ )k+1 holds.

Let us first test the potential of part a) by elaborating some examples; after that we shall give
different versions for the condition ( ∗ )k before we prove a). Part b) will be proven in the Appendix.

As a Corollary , we get another proof for Theorem 1.4 : If 0 is a regular point of f ∈ Rn then at
least one of the germs ∂f/ ∂xj is a unit in Rn . Hence, Jf = Rn and mn ·Rn = mn · Jf . Therefore,
f is 1–determined.

To prove the Morse Lemma by means of the criterion above, take a nondegenerate critical point
x(0) = 0 of f and choose local coordinates such that

j2f =

n∑
j=1

±x2j
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(see Chapter 1.6). Then ∂f/ ∂xj = ±2xj + gj with gj ∈ m2
n , and therefore

m2
n ⊂ mnJf + m3

n .

Hence, f is 2–determined.

We give two more

Examples. 1. f (x1, x2) = x21 + xk+1
2 , k ≥ 1 . Here, Jf is generated by x1 and xk2 , and we have

mk+1
2 ⊂ m2Jf ; thus f is (k + 1)–determined. This is more generally true for the Ak–singularities

f (x1, . . . , xn) = x21 ± · · · ± x2n−1 ± xk+1
n , k ≥ 1 .

2. In the case of the Dk–singularity with equation f(x1, x2) = x21x2 + xk−1
2 , k ≥ 4 , we find

Jf = (x1x2, x
2
1 + (k − 1)xk−2

2 )R2 .

Because of
(k − 1)xk−1

2 = x2 (x
2
1 + (k − 1)xk−2

2 ) − x1 (x1x2)

and
xk−1
1 = xk−3

1 (x21 + (k − 1)xk−2
2 ) − (k − 1)xk−4

1 xk−3
2 (x1x2) ,

we see that
mk−1

2 ⊂ m2 · Jf .

3. The germ x3 + xy4 + y6 is 6–determined.

More examples will be discussed later. - We are next going to formulate another version of the
Theorem of Mather which partly goes back to Tougeron.

Theorem 2.31 Given f ∈ Rn then the following statements are equivalent :

i) f is finitely determined, i.e. ℓ–determined for a certain number ℓ ∈ N ;

ii) there exists a number k with mk
n ⊂ mnJf ;

iii) the ideal mnJf is of finite codimension in Rn ;

iv) the ideal Jf is of finite codimension in Rn .

f is in the case ii) k–determined and in the case iii) ℓ–determined if ℓ denotes the K–dimension of
Rn/mnJf .

Proof . mn is a finitely generated ideal. Henceforth, because of the Nakayama Lemma, the assumption
ii) is equivalent to ( ∗ )k . The equivalence of i), ii) and iii) then follows from Mather’s Theorem and
Theorem 13. Since mnJf ⊂ Jf , iii) implies the statement iv). Let, on the other hand, iv) be satisfied.
Then there exist elements f1, . . . , fr ∈ Rn such that each function germ h ∈ Rn has a decomposition:

h =

r∑
ρ=1

cρfρ +

n∑
j=1

hj
∂f

∂xj

with cρ ∈ K and hj ∈ Rn . If one decomposes the hj into their constant part and their part in the
maximal ideal, one deduces at once that the quotient Rn/mnJf is at most of K–dimension r + n . □

Remark . It is possible to formalize the last argument in the proof above a little further: From Rn =
K⊕mn it follows that

n∑
j=1

K
∂f

∂xj
+ mnJf = Jf .

Hence, Rn/mnJf is finite dimensional on K if and only if Rn/ Jf is finite dimensional. - The same
reasoning yields a supplement to Theorem 13.
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Corollary 2.32 If, under the assumptions of Theorem 13, the ideal a is finitely generated then either
of the conditions i) and ii) is equivalent to the following property :

iii) The ideal mna is of finite codimension.

The property iv) in Theorem 31 can be interpreted either algebraically or geometrically. Regard the
substitution homomorphism φ : Rn → Rn given by the partial derivatives ∂f/ ∂x1, . . . , ∂f/ ∂xn . The
assumption that Jf is of finite codimension in Rn means exactly that the homomorphism φ is quasi–
finite (cf. Chapter 3). The Preparation Theorem is now equivalent to the assertion that quasi–finite
homomorphisms are automatically finite (see loc. cit.). - Therefore, we may conclude:

Theorem 2.33 (Tougeron) f ∈ mn is finitely determined if and only if the map germ (Df)0 :
(Kn, 0) → (Kn, 0) of its differential is finite.

In the complex analytic case this condition has the concrete meaning that the holomorphic map
from Cn to Cn given by the partial derivatives of f (locally around 0 ) is a finite branched covering .
In this context, also the Theorem of Mather has a consequence which we at least want to formulate.

Corollary 2.34 If 0 is an isolated critical point of the complex analytic function germ f ∈ On,0 then
f is finitely determined.

Proof . By assumption, 0 is an isolated point in{
x ∈ Cn :

∂f

∂x1
= · · · = ∂f

∂xn
= 0

}
.

Then, by Rückert’s Nullstellensatz and Theorem xx, On,0/ Jf is a finite dimensional C–vector space.
□

Remark . The last statement and Corollary 32 are false in the real–analytic case.

Examples. 1. For f (x, y) = x2 + y2 we have over the reals N (f) := { (x, y) ∈ R2 : f (x, y) =
0 } = { 0 } . But R ⟨x, y ⟩/ f R ⟨x, y ⟩ is not a finite dimensional R–vector space since otherwise we
would have a certain power mℓ

2 ⊂ f RR
2 , and this then would also hold over the complex numbers C

( f regarded as a polynomial in C [x, y ] ). Hence, also in the complex case we would have

N (f) ⊂ N (mℓ
2) = { 0 } ,

which is nonsense because of N (f) = { (x, y) ∈ C2 : y = ±i x } !

2. Example 1 can be expanded to a counterexample to the Corollary over the real number field. This
time, we put

f (x, y) = (x2 + y2)2 .

Here, Jf is generated by x (x2 + y2) and y (x2 + y2) , and N (Jf ) consists of the origin only. Thus,
f has an isolated singular point at 0 ; f , however, is not finitely determined. Otherwise,m2Jf would
be of finite codimension, i.e. OR

2,0/m2Jf would be of finite dimension. But now m2Jf ⊂ (x2 + y2)OR
2,0

such that there exists an epimorphism

OR
2,0/m2Jf −→ OR

2,0/ (x
2 + y2)OR

2,0

of R–algebras. Consequently, dimROR
2,0/ (x

2 + y2)OR
2,0 < ∞ in contradiction to Example 1.

That both claims above are also false in the differentiable case is even much easier to see. Look
at the germ at the origin of f (x) = e−1/x2

, x ̸= 0 , continued by 0 at 0 . Then, N (f) = 0 , but
j∞0 f = 0 and f is not finitely determined.
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2.14 Proof of part a) in Mather’s Theorem

Let us now start with the proof of direction a) in the Theorem of Mather. What do we really want
to prove? Obviously, the condition of k–determinacy of f can be stated as follows (if jkg = jkf then
α = g − f ∈ mk+1

n ):

(+) For all α ∈ mk+1 , we have f + α ∼r f .

We attempt to prove this by a homotopy argument yielding the equivalence

f ∼r f + t α

for all t ∈ [ 0, 1 ] . - To obtain this result, we need the following assertion which, for t = 1 , immediately
yields our claim (+).

(++) If ( ∗ )k is satisfied for f , then there exists to each element α ∈ mk+1 a continuous family gt
of automorphisms of Rn , t ∈ [ 0, 1 ] , with g0 = id , such that

(f + t α) (gt) = f .

The last condition may also be formulated in an infinitesimal version which we actually prove first.

Lemma 2.35 For f and α as above, there exist (differentiable, analytic, holomorphic) functions
w1, . . . , wn in a neighborhood of { 0 } × [ 0, 1 ] ⊂ Kn ×K such that

(×) α (x) +

n∑
j=1

wj(x, t)
∂(f + t α)

∂xj
(x) = 0 ,

where the functions wj vanish for fixed t ∈ [ 0, 1 ] to at least second order at x = 0 .

Proof . Let α1, . . . , αN denote the monomials of degree k in the generators x1, . . . , xn of the maximal
ideal mn . Because of (∗)k , we find germs hνj ∈ mn satisfying

αν =

n∑
j=1

hνj
∂f

∂xj
, ν = 1, . . . , N .

Hence, we have

αν =

n∑
j=1

hνj
∂(f + t α)

∂xj
− t

n∑
j=1

hνj
∂α

∂xj
.

Since α ∈ mk+1
n , the last sum also belongs to mk+1

n , and consequently, we get for some aνµ ∈ mn :

(+) αν =

n∑
j=1

hνj
∂(f + t α)

∂xj
− t

N∑
µ=1

aνµ αµ , ν = 1, . . . , N .

The matrix A = (δνµ + t aνµ) has determinant equal to 1 for x = 0 and all t . Therefore, it
exists an N ×N–matrix B of functions of the given category in a neighborhood of { 0 } × [ 0, 1 ] such
that BA is the unit matrix. Setting B = (bνµ) , we derive from (+) that

αν =

N∑
µ=1

bνµ

n∑
j=1

hµj
∂(f + t α)

∂xj
, ν = 1, . . . , N ,

and by writing

α =

N∑
ν=1

αν αν , αν ∈ mn ,

we can define the sought–off functions wj as
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wj(x, t) = −
N∑

ν,µ=1

αν(x) bνµ(x, t)hµj(x) . □

The proof of part a) in the Theorem of Mather will be completed by means of the following
theorem.

Theorem 2.36 Suppose, that for the function germs f , α ∈ Rn the relation (×) holds. Then there
exists a differentiable family gt = gt(x) ∈ Aut Rn , t ∈ [ 0, 1 ] , g0(x) = x such that

(f + t α) (gt(x)) = f (x) .

In particular, f + α ∼r f .

Proof . We look at the following system of ordinary differential equations, depending on the parameters
x1, . . . , xn :

dgj(x, t)

dt
= wj(g1(x, t), . . . , gn(x, t), t) , j = 1, . . . , n .

Obviously, gj(0, t) ≡ 0 , j = 1, . . . , n , is a (unique) solution of this system with gj(0, 0) = 0 for
all j . Therefore, for all x sufficiently close to 0 , there exists a unique solution (gj(x, t))j=1,...,n with
gj(x, 0) = xj . Moreover, the total solution (gj(x, t)) is differentiable (analytic, holomorphic) in x
for all t ∈ [ 0, 1 ] , and therefore, it defines a (germ of a) differentiable (analytic, holomorphic) map gt
of Kn into itself at the origin for all t ∈ [ 0, 1 ] . In order to prove that the gt are local differentiable
(analytic, holomorphic) automorphisms, it suffices to compute the Jacobi determinants

J (t) := det
∂g (x, t)

∂x

∣∣∣∣
x=0

, t ∈ [ 0, 1 ] .

Now, due to the vanishing properties of the functions wj in Lemma 35,

d

dt

(
∂gj(x, t)

∂xk

∣∣∣∣
x=0

)
=

∂

∂xk
wj(g1(x, t), . . . , gn(x, t), t)

∣∣∣∣
x=0

=

n∑
l=1

∂wj

∂xl
(g1(x, t), . . . , gn(x, t), t)

∂gl(x, t)

∂xk

∣∣∣∣
x=0

= 0 ,

and we finally arrive at

J (t) ≡ J (0) = 1 .

The proof of Mather’s Theorem will be finished by checking that

(f + t φ)(gt(x)) = f (x)

for all x near the origin and all t ∈ [ 0, 1 ] . We do this for fixed x by differentiating with respect to t
(and by observing that the equation is correct for t = 0 ):

d

dt
(f + t φ) (gt(x)) =

n∑
j=1

∂(f + t φ)

∂xj
(gt(x))

dgj(x, t)

dt
+ φ (gt(x))

=

n∑
j=1

∂(f + t φ)

∂xj
(gt(x))wj(gt(x), t) + φ (gt(x))

= −φ (gt(x)) + φ (gt(x)) = 0 .
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2.15 Mather’s Theorem and Nakayama’s Lemma

The main purpose of the present Section is to demonstrate that the Nakayama Lemma may be used
directly to prove the Mather–Tougeron criterion and even more general equivalence criteria. It is readily
checked that - by the compactness of the interval [ 0, 1 ] ⊂ K - we need the functions wj(x, t) in
Lemma 35 only locally with respect to t in order to insure the equivalence of f + α and f . Thus, we
get the following result in which mn denotes, as always, the maximal ideal of Rn , and Rn+1,t0 the
ring of differentiable (analytic, holomorphic) functions germs at (0, t0) ∈ Kn × [ 0, 1 ] ⊂ Kn+1 . The
ring Rn will be regarded as subring of Rn+1,t0 ; in particular, mn ⊂ mn+1,t0 = m (Rn+1,t0) .

Theorem 2.37 Let f and α be elements of mn . Then f + α ∼r f if, for all t0 ∈ [ 0, 1 ] ,

α ∈ m2
n ·

(
∂(f + t α)

∂x1
, . . . ,

∂(f + t α)

∂xn

)
Rn+1,t0 .

Let us show that this criterion is fulfilled for a germ f satisfying the Mather criterion (∗)k and all
elements α ∈ mk+1

n . By assumption on f , we have

mk
n ⊂ mnJf .

This implies
mk

nRn+1,t0 ⊂ mnJf ·Rn+1,t0 .

Since ∂α/ ∂xj ∈ mk
n for all α ∈ mk+1

n , j = 1, . . . , n , we see that t · ∂α/ ∂xj is an element of
mk

n ·Rn+1,t0 . From this, we deduce that

mk
nRn+1,t0 ⊂ mn

(
∂(f + t α)

∂x1
, . . . ,

∂(f + t α)

∂xn

)
Rn+1,t0 + mn+1

(
mk

nRn+1,t0

)
.

Since mk
nRn+1,t0 is a finitely generated Rn+1,t0 –module, the Nakayama Lemma implies

mk
nRn+1,t0 ⊂ mn

(
∂(f + t α)

∂x1
, . . . ,

∂(f + t α)

∂xn

)
Rn+1,t0 . □

2.A Appendix: Proof of part b) of Mather’s Theorem

For the proof of the opposite direction in the Theorem of Mather we need some further notations. In
order to avoid superfluous paperwork we think of n ∈ N being fixed and set

Ak = K [x1, . . . , xn ]/ (x1, . . . , xn)
k+1 K [x1, . . . , xn ] ∼= Rn/m

k+1
n .

We interpret the K–vector space Ak as the space of k–jets in Rn and at the same time as the vector
space of polynomials of degree ≤ k . In particular,

dimKAk =

(
n + k

k

)
.

There are canonical projections Rn → Ak which we denote by πk : πk(f) = jk0 f modulo
(x1, . . . , xn)

k+1K [x1, . . . , xn ] . Further, let Bk be the space of n–tuples in Ak , a vector space of K–
dimension n

(
n+ k
k

)
. For any elements F = (f1, . . . , fn) , G = (g1, . . . , gn) ∈ Bk , one has a canonical

composition:
F ◦G = (f1 ◦G, . . . , fn ·G) mod (x1, . . . , xn)

k+1 ∈ Bk .

Notice that the composition is well defined because of the chain rule: Derivatives of F ◦G up to a fixed
order k depend in an algebraic way only on such derivatives of F and G . By the same reason, this
composition is associative with the neutral element E = (x1, . . . , xn) . We now regard in Bk the open
dense subset

Gk = {F = (f1, . . . , fn) : det DF (0) ̸= 0 } ∋ E .
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To each such F there exists an inverse G̃ , and if one puts G := G̃ mod (x1, . . . , xn)
k+1 , one has

F ◦G ≡ E mod (x1, . . . , xn)
k+1 . Hence, Gk is a group which moreover carries a structure of a manifold,

and the compositions {
Gk × Gk −→ Gk
(F , G) 7−→ F ◦G

{
Gk −→ Gk
F 7−→ F−1

are differentiable (holomorphic, etc.) since the coefficients of F ◦ G resp. F−1 emerge from those of
F and G algebraically (for the inverse this is a consequence of Cramer’s rule). In other words: Gk is
a Lie group that acts differentiably resp. analytically on the manifold Ak by insertion from the right.
Moreover, it is plain that there is a commutative diagram:

Ak × Gk Ak ,

Rn ×Aut Rn Rn
-

?

πk × πk
?

πk

-

where we have denoted the projections for the automorphism groups again by πk .

Let now f̂ ∈ Ak be arbitrary and f̂ Gk the orbit of f̂ under the action of Gk on Ak . This is a
(locally closed) submanifold of the vector space Ak whose tangent space at the place f̂ we want to
determine. (In general, orbits are not locally closed submanifolds. However, here we are in a very good
situation since we are dealing with an algebraic operation of an algebraic group on an affine space; for
more details, cf. [1 - 16]). In particular, the orbit is a homogeneous manifold and therefore the tangent
space of an orbit is the epimorphic image of the tangent space of the group Gk at its neutral element,
i.e. of the Lie algebra of Gk . To compute this, we have to describe all curves in Aut Rn resp. in Gk
which start in E = id . These are germs δ : (Rn+1, 0) → (Rn, 0) with δ (x, 0) = x and δ (0, t) = 0 ,
hence

δ (x, t) = x + ε (x, t) , ε (x, 0) = 0 , ε (0, t) = 0 .

The tangent vectors of the orbit are then determined modulo mk+1
n by

∂f̂

∂t
(x + ε (x, t))

∣∣∣∣∣
t=0

=

n∑
j=1

∂f̂

∂xj
· ∂εj
∂t

∣∣∣∣∣∣
t=0

.

It is obvious that ∂εj/ ∂t at t = 0 can be an arbitrary element of mn , from which it follows that

(∗∗) Tf̂ f̂ Gk = mnJf̂ mod mk+1
n ⊂ Ak .

If f̂ = jkf is the k–jet of f ∈ Rn then one can replace the right hand side of (∗∗) by
mnJf mod mk+1

n . From this consideration we shall conclude the following theorem which implies asser-
tion b) in the Theorem of Mather.

Theorem 2.38 Given f ∈ Rn with a k–determined (k + 1)–jet jk+1f , then the following holds:

( ∗ )k+1 mk+1
n ⊂ mnJf .

Corollary 2.39 If f is k–determined, then condition ( ∗ )k+1 is necessarily satisfied.

Proof (of Corollary). If f is k–determined, we have f ∼r j
k+1f ; hence jk+1f is k–determined, too.

Thus ( ∗ )k+1 holds due to the preceding theorem. □

We state another
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Corollary 2.40 With jk+1f also f is k–determined.

Proof . Because of the theorem above and part a) of the Theorem of Mather f is (k + 1)–determined.
If now jkg = jkf = jk(jk+1f) , we conclude that g ∼r j

k+1f ∼r f . □

Proof of Theorem 38. We look at

X = { g ∈ Ak+1 : πkg = jkf } ∋ jk+1f =: f̂ .

This is an affine subspace of Ak+1 , in particular a submanifold. Its tangent space is (at each place g )
equal to the vector space of the homogeneous polynomials of degree k + 1 , hence

TgX ∼= mk+1
n /mk+2

n .

Now, f̂ is k–determined, i.e. g ∈ X implies g ∼r f̂ such that X ⊂ f̂ · Gk+1 . Therefore, we have

Tf̂X ⊂ Tf̂ f̂ Gk+1 and thus, because of (∗∗):

mk+1
n ⊂ mnJf + mk+2

n . □
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The first part of the Chapter is an adaptation from the book [01 - 02]. As a main source for Commutative
Algebra we recommend the wonderful book of

[02 - 01] D. Eisenbud: Commutative Algebra with a View Toward Algebraic Geometry. Corrected
third printing. New York: Springer–Verlag 1999.

Other standard books are:

[02 - 02] M.F. Atiyah, I.G. Macdonald: Introduction to Commutative Algebra. Reading, M.A. :
Addison–Wesley 1969.

[02 - 03] N. Bourbaki: Commutative Algebra. Chapters 1–7. New York: Springer–Verlag 1985.

[02 - 04] M. Nagata: Local Rings. New York: Wiley 1962.

[02 - 05] O. Zariski, P. Samuel: Commutative Algebra, Vol.I and II. Van Nostrand: Princeton 1958
and 1960. Reprint in: Graduate Texts in Mathematics 28 and 29, New York–Heidelberg–Berlin:
Springer–Verlag 1975 and 1976.

A booklet which promises (correctly) to “cover the basic algebraic tools and results behind the
scenes in the foundations of Real and Complex Analytic Geometry” is

[02 - 06] J. M. Ruiz: The Basic Theory of Power Series. Advanced Lectures in Mathematics. Braun-
schweig/Wiesbaden: Friedr. Vieweg & Sohn 1993.

The Sections on finite determined germs follow closely Chapter 6.4 of [01 - 20]. On p. 122 of this
book, the reader will find a discussion of Whitney’s Example

f (x, y, z) = x y (x + y) (x − z y) (x − ezy)

for which the whole z–axis consists of critical points. f is at 0 not finitely determined.
The use of Nakayama’s Lemma for proving the sufficiency of Mather’s criterion is taken from [01 -

15].

(Last modified: March 14, 2019)


