




Chapter 1

We begin life with a seemingly
blank slate - and, though the
writing that gradually appears on
that slate is not our own, our
judgment of the things written
thereon determines what we are
and what we will become.

(From the introduction to
The Codex of the Adept Riveda)
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Chapter 1

The simple singularity of type A1

In the present Chapter we define the concept of a hypersurface singularity and fix various notations
which are used throughout the text. We give moreover - by means of a special example - an introduction
to some of the themes that are treated in this book.

1.1 Complex hyperplanes

A hyperplane H in the complex n–dimensional affine space An - which can be identified with the
complex vector space

Cn = {x = t(x1, . . . , xn) : x1, . . . , xn ∈ C }
of column vectors after the choice of a coordinate system - is described by the vanishing of a nontrivial
complex affine function

ℓ (x) = a1x1 + · · ·+ anxn + α , a = (a1, . . . , an) ∈ (Cn)∗ \ { 0 } , α ∈ C ,

where we identify the space of row vectors with the dual vector space (Cn)∗ of Cn (for which we
sometimes write by abuse of language Cn as well). If we introduce new affine coordinates on An by

y = Φ(x) := Cx + γ ,

where C ∈ GL (n, C) is an invertible complex n × n matrix and γ is a column vector in Cn , we
immediately check that ℓ (x) is equal to the function ℓ̃ (Φ (x)) , where the affine function

ℓ̃ (y) = b1y1 + · · ·+ bnyn + β

is given by
b = (b1, . . . , bn) = a · C−1 , β = α − b · γ .

Choosing C and γ appropriately, we can easily achieve that

b = (0, . . . , 0, 1) and β = 0

such that H is always of the form { y = t(y1, . . . , yn) ∈ Cn : yn = 0 } with respect to some affine
coordinate system.

1.2 Holomorphic functions

Local complex analytic geometry deals with (local) properties of zero sets of holomorphic functions
instead of affine functions. More precisely, it deals with properties which are invariant under local
biholomorphic coordinate transformations.

We collect here a few basic facts about holomorphic functions (for more details see Appendix A to
this Chapter). To start with, we formulate
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Lemma 1.1 (Abel’s Lemma) If a formal power series

p (x) =

∞∑
|ν|=0

aνx
ν

(where ν = (ν1, . . . , νn) ∈ Nn , N = { ν ∈ Z : ν ≥ 0 } , aν = aν1...νn ∈ C , |ν| = ν1 + · · ·+ νn , x
ν =

xν1
1 · . . . · xνn

n ) satisfies the condition

| aν(x(0))ν | ≤ M < ∞

at a fixed point

x(0) = (x
(0)
1 , . . . , x(0)n ) ∈ (C∗)n , C∗ = C \ { 0 } ,

in particular if it converges (absolutely) - with respect to any order of summation - at a point x(0) as
above, then it converges absolutely and uniformly on each compact polydisk

P r = {x ∈ Cn : |xj | ≤ rj , j = 1, . . . , n } , 0 < rj < |x(0)j | .

Proof . By assumption, | aνρν | ≤ M for all ν ∈ Nn with a certain positive constant M , where

ρj := |x(0)j | > 0 . Take now 0 < rj < ρj and h = (h1, . . . , hn) with |hj | ≤ rj . Then,

| aνhν | ≤ | aν | rν = | aν ρν | ·
∣∣∣∣ rνρν

∣∣∣∣ ≤ M ϑν ,

where ϑ = (ϑ1, . . . , ϑn) , ϑj = rj/ ρj < 1 . Now, the multiple geometric series

∞∑
|ν|=0

ϑν

is absolutely convergent with limit

1

(1 − ϑ1) · . . . · (1 − ϑn)

such that the series
∑
aνh

ν is normally (in particular absolutely and uniformly) convergent in the
polydisk with polyradius r = (r1, . . . , rn) . □

A complex–valued function f defined on an open set U ⊂ An is called holomorphic, if for each
point x ∈ U there exists a nonempty open polydisk

Pr =
o

P r = {h ∈ Cn : |hj | < rj , j = 1, . . . , n }

and a power series p (h) converging absolutely on Pr such that

x + Pr := { y ∈ An : y = x + h , h ∈ Pr } ⊂ U

and

f (x + h) = p (h) for all h ∈ Pr .

By Abel’s Lemma, p (h) converges absolutely and uniformly on every compact polydisk contained in
Pr . It follows as in multidimensional calculus that all complex partial derivatives of first order

∂f

∂xj
(x) = lim

h→0
h̸=0

f (x + hej) − f (x)

h
, x ∈ U , j = 1, . . . , n
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exist (where ej = (δ1j , . . . , δnj) , δij denoting the Kronecker symbol) and that the functions ∂ f/ ∂ xj
are holomorphic on U . Hence, f has complex derivatives of all orders, and a straightforward general-
ization of the Cauchy Integral Formula in one variable implies that the Taylor series expansion

Tf,x(h) =

∞∑
|ν|=0

1

ν!

∂|ν|f

∂xν
(x)hν ,

where

ν! = ν1! · . . . · νn! ,
∂|ν|f

∂xν
=

∂ν1+···+νnf

∂xν1
1 · . . . · xνn

n
,

converges to f (x + h) for all x ∈ U and all h contained in the union of the polydisks Pr satisfying
x + Pr ⊂ U . (For more details consult Appendix A to this Chapter).

The set of all holomorphic functions on a (nonempty) open set U in An forms a (commutative and
associative) C–algebra under the natural addition and multiplication of functions. We denote it by the
symbol

OCn(U) or O (U) .

Since the coordinate functions xj are holomorphic, we have an inclusion of the polynomial ring in n
variables into any ring O (U) by restriction:

C [x1, . . . , xn ] ↪−→ O (U) , P 7−→ P|U .

It is clear from the definition that holomorphy of a function is preserved under affine coordinate trans-
formations.

1.3 Complex hypersurfaces

A (complex analytic) hypersurface X in an open set U ⊂ An is locally the set of zeros of a nontrivial
holomorphic function: to each point x(0) ∈ U there exists a connected open neighborhood V of x(0)

in U and a holomorphic function fV ∈ O (V ) , fV not identically zero, such that

X ∩ V = {x ∈ V : fV (x) = 0 } .

Such a hypersurface is necessarily closed in U ; moreover, it does not contain interior points: otherwise
there would exist a connected open set V ⊂ U and a defining function fV ∈ O (V ) for X ∩ V which
would vanish on a nonempty open subset of V and hence, by the Identity Theorem for holomorphic
functions (see Appendix A), on all of V , contradicting our assumption.

In particular, if U is connected and if f ∈ O (U) is not the zero element, then the zero set (or null
set)

N (f) := {x ∈ U : f (x) = 0 }

is a hypersurface in U . It is empty, if and only if f is a unit in O (U) , i.e. if there exists a holomorphic
function g on U with fg ≡ 1 . We always denote the set of units in O (U) by O∗(U) .

In contrast to the real situation, where such zero sets may consist of isolated points (take e.g. the
function f (x) = x21 + · · ·+ x2n whose zero set

NR(f) = {x = (x1, . . . , xn) ∈ Rn : f (x) = 0 }

contains the origin in Rn only), hypersurfaces in complex analytic geometry are complex (n − 1)–
dimensional objects. This is a consequence of the Weierstraß Preparation Theorem which constitutes
the fundamental result in the function theory of several complex variables. The proof will be given in
Chapter 3.
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Theorem 1.2 (Weierstraß Preparation Theorem) Let f be a holomorphic function defined in a
neighborhood of the origin 0 ∈ Cn such that

f (0) = 0 , but f (0, . . . , 0, xn) ̸≡ 0 .

Then there exists a polydisk P1 with 0 ∈ P1 ⊂ Cn−1 , a disk P2 about the origin in C , holomorphic
functions a1, . . . , ab ∈ O (P1) vanishing at 0 and a unit e ∈ O∗(P1 × P2) such that

f (x′, xn) = e (x′, xn) (x
b
n + a1(x

′)xb−1
n + · · ·+ ab(x

′))

for all x′ = (x1, . . . , xn−1) ∈ P1 and all xn ∈ P2 .

In fact, under the assumptions of Theorem 2, the projection

N (f) = { (x′, xn) ∈ P1 × P2 : f (x′, xn) = 0 } −→ P1

is surjective and has finite fibers, if P1 is chosen small enough, and locally around a point of a hyper-
surface X ⊂ U we can find an affine coordinate system and a defining function for X which satisfies
the conditions of Theorem 2.

One might visualize the (much more “complex”) situation by a “real” picture when restricting the
projection to a real line in P1 .

P1 × P2

N (f)

P1

Figure 1.1

Let us remark here, that our notion of hypersurfaces is not interesting in the case of differentiable
functions. The reason for this claim is the following Theorem of Whitney.

Theorem 1.3 (Whitney) Let A be a closed subset of the open subset U ⊂ Rn . Then, there exists a
function f ∈ C∞(U) , such that f ≥ 0 and f (x) = 0 if and only if x ∈ A .

A

Figure 1.2

The proof will be given in Appendix B to this Chapter.



1.4 Smooth and singular points of hypersurfaces 5

1.4 Smooth and singular points of hypersurfaces

A point x(0) of a hypersurface X will be called a smooth point or a regular point of X , if X can
be described (locally around x(0)) by the vanishing of a holomorphic coordinate function; otherwise
it is called a singular point or a singularity of X . We lay particular stress on the remark that this
set–theoretical notion of a smooth point is a preliminary one. We discuss several other concepts in
Chapter 3.7. The refined function–theoretical definition shall be given later in Chapter 7.

To make this definition more precise, let us collect some facts concerning holomorphic and biholomor-
phic maps. A map φ from an open set U in Cn to Cm is given by m functions φ1, . . . , φm : U → C .
φ is a holomorphic map, if all the functions φk , k = 1, . . . ,m , are holomorphic. If m = n , if
V = φ (U) is open in Cn and if there exists a holomorphic map ψ = (ψ1, . . . , ψn) : V → U with
ψ ◦ φ = idU , then the chain rule implies

n∑
ℓ=1

∂ψk

∂yℓ
(φ(x))

∂φℓ

∂xj
(x) = δjk , j, k = 1, . . . , n ,

such that necessarily the complex Jacobi matrix

∂φ

∂x
(x) =

(
∂φℓ

∂xj
(x)

)
ℓ=1,...,n
j=1,...,n

must have rank n at each point x ∈ U . The converse follows, at least locally, from the Inverse Function
Theorem.

*Theorem 1.4 If φ is a holomorphic map from an open set W in Cn into Cn , and if at x(0) ∈W
the Jacobi determinant

det
∂φ

∂x
(x(0))

does not vanish, then φ is a biholomorphic map (locally around x(0) ). I.e. there exist open neighborhoods
U of x(0) (contained in W ) and V of φ (x(0)) such that φ : U → V is bijective and the inverse
ψ = φ−1 is also holomorphic.

There is now a simple criterion for a point of a hypersurface to be smooth in the sense introduced
above:

Theorem 1.5 Let the origin 0 be a point of the hypersurface X = N (f) , f ∈ O (U) , 0 ∈ U ⊂ Cn .
Then 0 is a smooth point of X if, and only if, the function f can be written in a neighborhood of 0
in the form

f = gb

where the linear term of the Taylor series expansion of g at 0 is nontrivial.

Proof . a) Let 0 ∈ X be a smooth point. By definition, there exist local holomorphic coordinates
y = φ (x) near the origin such that in some neighborhood V of φ (0) = 0 :

(∗) φ (X) ∩ V = { y ∈ V : f ◦ φ−1(y) = 0 } = { y ∈ V : yn = 0 } .

Therefore, f ◦ φ−1(0, . . . , 0, yn) = 0 if and only if yn = 0 . By the Weierstraß Preparation Theorem,
we have

f ◦ φ−1(y) = e (y) · ω (y)

with a unit e and a Weierstraß polynomial

ω (y) = ybn + a1(y
′) yb−1

n + · · ·+ ab(y
′) , y′ = (y1, . . . , yn−1) .

But then (∗) can only hold, if ω (y) = ybn ; hence

f (x) = (e ◦ φ) (x)φb
n(x)



6 Chapter 1 The simple singularity of type A1

in some neighborhood of 0 . If we choose this neighborhood to be a sufficiently small polydisk P , then
(e ◦ φ) (x) ̸= 0 for all x ∈ P . Consequently, it exists a branch of the logarithm

γ (x) = log ((e ◦ φ) (x))

on P . We finally get
f (x) = g (x)b , x ∈ P ,

with g = h · φn , h (x) = exp

(
1

b
γ (x)

)
̸= 0 for all x ∈ P , and

dg (0) =

n∑
j=1

∂g

∂xj
(0) dxj = h (0) dφn(0) + φn(0) dh (0) ̸= 0 ,

since φn(0) = 0 and dφn(0) ̸= 0 , (φ1, . . . , φn) being a locally invertible holomorphic map.
b) Since N (gb) = N (g) , we may assume that

f (x) = g (x) = ℓ (x) + r (x) ,

ℓ the linear part of Tg,0 . Then dℓ (0) = dg (0) ̸= 0 , dr (0) = 0 . Putting yj = φj(x) = xj , j =
1, . . . , n− 1 , yn = φn(x) = g (x) - if, without loss of generality, (∂ g/ ∂ xn)(0) ̸= 0 - we get a locally
invertible holomorphic map φ = (φ1, . . . , φn) since

det
∂φ

∂x
(0) =

∂φn

∂xn
(0) ̸= 0

and φ (X) = { y : g ◦ φ−1(y) = 0 } = { y : yn = 0 } . □

1.5 Isolated critical points of holomorphic functions

We must carefully distinguish between regular points of a zero set N (f) = { f = 0 } and regular
points of the function f itself. Recall that a point x(0) is called regular for f ∈ O (U) , if

df (x(0)) ̸= 0 .

Otherwise, it is called a critical point of f . From the proof of Theorem 3, part b), one concludes the
following version of the Implicit Function Theorem:

Theorem 1.6 If x(0) is a regular point for f ∈ O (U) , then there exists a biholomorphic map ψ :
W → V , W an open neighborhood of 0 ∈ Cn with linear coordinates y1, . . . , yn , x

(0) ∈ V ⊂ U , such
that

f ◦ ψ (y) − f ◦ ψ (0) = yn for all y ∈W .

In particular, if x(0) ∈ N (f) is a regular point for f , then it is a smooth point of N (f) .

The converse of the last statement is not true in general. It holds, if and only if the number b in
Theorem 3 is equal to 1, since, for b ≥ 2 ,

df = bgb−1dg = 0

at points, where f vanishes. - This observation leads us to a simple criterion for detecting isolated
hypersurface singularities:

Theorem 1.7 Let x(0) ∈ N (f) be an isolated critical point for the function f ∈ O (U) , U ⊂ Cn , n ≥
2 . Then x(0) is an isolated singularity of N (f) .

Here are some Examples of curves with singularities.
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y y

x x

y
y

x

x

Figure 1.4

These are more precisely curves in the plane with exactly one singularity at the origin. They belong to
the following equations (in parenthesis the name of the corresponding singularity):

x2 = x4 + y4 (tacnode)

xy = x6 + y6 (node = ordinary double point)

x3 = y2 + x4 + y4 (cusp)

x2y + xy2 = x4 + y4 (ordinary triple point) .

Exercise (Hartshorne [4 - 03], p. 35): Which equation corresponds to which picture? Hint: it suffices
to study the symmetry properties of the curves (provided one can be sure that each equation belongs
to one of the curves). Or, one has to study the singularity type at the origin for each given equation.
So, let us do some local computations. From x2 = x4 + y4 we get x2 (1 − x2) = y4 . If we put
ξ = x

√
1 − x2 , µ = y , we obtain (locally around 0 ) ξ2 = µ4 , i.e 0 = ξ2 − µ4 = (ξ − µ2) (ξ + µ2) .

Hence, we have locally (up to analytic diffeomorphism) two parabolae which touch each other at the
origin (as in Figure 5b below). For the third equation one deduces in the same manner that after analytic
coordinate change at the origin we find the equation of the cusp: x3 = y2 . The reader may amuse
himself to consider also the other cases.

Remark . He or she may also have noticed that the singularities above lie on irreducible curves. This, of
course, is not satisfied in general as the following examples show ( y2 = x2 resp. y2 = x4 ):
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y y

x x

Figure 1.5

The node or ordinary double point as in Figure 5a above is the most simple curve singularity
conceivable. It appears on many of the famous singular plane curves. For the pleasure of the reader, we
include pictures of some Examples.

1. The folium cartesium is given by the equation x3 + y3 = 3a xy , a > 0 a fixed parameter:

3a/2−a

−a

Figure 1.6

2. Another one is a singular elliptic curve y2 = x2(x + 1) :

Figure 1.7

3. The last one is the so called “Ampersand” curve (y2 − x2)(x − 1)(2x − 3) = 4 (x2 + y2 − 2x)2 .
Here, ampersand stands for and per se and where per se and means the roman “et–symbol” &.
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Figure 1.8

We conclude this Section with pictures of some surface singularities. The first one is the conical or
ordinary double point , also called the A1–singularity, the second is called a pinch point or theWhitney–
umbrella, and the last one is the limao in the gallery of surface pictures by Herwig Hauser (see Notes
and References). They have the equations x2 + y2 = z2 , x2 = zy2 , x2 = y3z3 (resp.). Please remark
that the A1–singularity is the unique singularity in both surfaces at the beginning of the Chapter that
are called the octdong and the dingdong in the gallery cited above.

Figure 1.9

1.6 Quadratic forms

In this Section we are concerned with the zero set of a quadratic form q , i.e. a function q which can
be written as

q (x) =

n∑
j,k=1

ajkxjxk , ajk ∈ C , x = (x1, . . . , xn) ∈ Cn .

We notice that N (q) is invariant under the natural action of C on the complex vector space Cn :{
N (q) × C −→ N (q)

(x , c) 7−→ cx .

Recall that sets C satisfying this invariance property are usually called (complex) cones in Cn . More
on cones can be found in Chapter 4.
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Since, without loss of generality, we may assume that ajk = akj for all j, k , and since symmet-
ric matrices can be diagonalized over the complex numbers, we can always find a linear coordinate
transformation given by an invertible matrix system C such that

q̃ (y) := q (Cy) =

r∑
j=1

y2j ,

where r is the rank of the matrix (ajk) , 0 ≤ r ≤ n .
In order to understand the geometry of N (q) , it is sufficient to study the special case r = n , since

in general {
x ∈ Cn :

r∑
j=1

x2j = 0
}

=
{
x ∈ Cr :

r∑
j=1

x2j = 0
}
× Cn−r .

It turns out that the cases n = 1 , n = 2 and n ≥ 3 behave completely differently. For n = 1 , N (q)
is a point and hence (set–theoretically) a smooth variety. Since the origin is the only critical point of
q , N (q) has an isolated hypersurface singularity at the origin for n ≥ 2 due to Theorem 5. By the
factorization

q (x1, x2) = x21 + x22 = (x1 + ix2)(x1 − ix2) , i =
√
−1

we see that (in case n = 2 ) N (q) is the union of two lines intersecting transversely at the origin: the
node or the ordinary double point .

0

x1 = ix2

x1 = −ix2

Figure 1.10

In higher dimensions there is no proper decomposition of N (q) into two or more analytic components
near 0 ∈ Cn ; in other words: it is impossible to find a nontrivial factorization of q (x) in a neighborhood
of the origin. To prove this recall that the ring C ⟨x ⟩ = C ⟨x1, . . . , xn ⟩ of convergent power series is
factorial , and that a Weierstraß polynomial

ω = xbn + a1x
b−1
n + · · ·+ ab , aj ∈ C ⟨x1, . . . , xn−1 ⟩ , j = 1, . . . , b ,

is a prime element in C ⟨x ⟩ , if and only if it is prime in the polynomial ring C ⟨x1, . . . , xn−1 ⟩ [xn ]
which is factorial by the Gauß Lemma (for proofs of these statements see Chapter 3). Hence, if the
polynomial q (x) = x21 + · · · + x2n = q′(x′) + x2n were not a prime element in C ⟨x ⟩ , there would
exist a decomposition

q (x) = (xn + g1) (xn + g2)

with elements g1 , g2 ∈ C ⟨x′ ⟩ satisfying g2 = −g1 due to the uniqueness of the Taylor series
expansion. Therefore, q′(x′) = x21 + · · · + x2n−1 would be a square in C ⟨x1, . . . , xn−1 ⟩ which is not
possible (for n = 3 thanks to the known unique factorization, for n ≥ 4 by reduction to the case
n = 3) .

The reader who is familiar with Eisenstein’s irreducibility criterion will notice that our argument is
equivalent to a proof of this result in a special case.
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1.7 Germs of holomorphic functions and automorphisms

One can rephrase Theorem 4 in the following manner: If 0 is a regular point of the function f ∈ O (U) ,
then f is near the origin biholomorphically equivalent to the function

f (0) +
∑ ∂f

∂xj
(0)xj .

We want to generalize this statement. In order to do so, we introduce some notions and concepts
which are better adapted to our local considerations. Recall that two C–valued functions f and g ,
given in some neighborhoods U resp. V of a point x(0) , are called equivalent (with respect x(0)), if
there is an open set W with x(0) ∈W ⊂ U ∩V such that f|W = g|W . The class of a function f with

respect to this equivalence relation is called the germ fx(0) of f at x(0) . It is an easy exercise to show
that the set of all germs at a given point forms, in a natural way, a C–algebra. Restricting to germs of
holomorphic functions, we find a subalgebra which usually is denoted by

OCn,x(0) or briefly On,x(0) or Ox(0) .

We always represent elements fx(0) ∈ OCn,x(0) by functions f ∈ O (U) , x(0) ∈ U , where U can be

replaced by smaller open neighborhoods of x(0) , if necessary. By assigning to each function f ∈ O (U)
its Taylor series expansion at the point x(0) :

f 7−→
∞∑

|ν|=0

∂|ν|f

∂xν
(x(0)) tν , tj := xj − x

(0)
j ,

we obtain a C–algebra isomorphism

OCn,x(0)
∼−→ C ⟨ t ⟩ = C ⟨ t1, . . . , tn ⟩ ,

the last symbol denoting the C–algebra of convergent power series centered at the origin in Cn . If
φ = (φ1, . . . , φm) : U → Cm is a holomorphic map, y(0) = φ (x(0)) , then every germ gy(0) ∈ OCm,y(0)

has a representative which can be composed from the right by a suitable restriction φ|V . By this
procedure, we get a C–algebra homomorphism

φ̂x(0) : OCm,y(0) −→ OCn,x(0)

which only depends on the germs of φ1, . . . , φm at x(0) . In the commutative diagram

OCm,y(0) C ⟨ s1, . . . , sm ⟩

OCn,x(0) C ⟨ t1, . . . , tn ⟩-∼

?

φ̂x(0)

?

φ̂x(0)

-∼

the induced vertical homomorphism on the right is determined by the substitutions

sk = φk(x
(0) + t) − y

(0)
k , k = 1, . . . ,m .

Obviously, the set
mCn,x(0) = mx(0) = { fx(0) ∈ OCn,x(0) : f (x(0)) = 0 }

is an ideal in OCn,x(0) which is maximal, since OCn,x(0)/mCn,x(0)
∼= C is a field. (See Chapter 2 for this

and further claims). Moreover, this ideal is the unique maximal ideal, the elements of OCn,x(0) \mCn,x(0)

being precisely the units in OCn,x(0) . In other words: OCn,x(0) is a local ring with maximal ideal
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mCn,x(0) . Any morphism φ̂x(0) : OCm,y(0) → OCn,x(0) induced by a map germ φ = (φ1, . . . , φm)
is automatically local in the sense that it maps mCm,y(0) into mCn,x(0) . On the other hand, if φ is
a local homomorphism from C ⟨ s1, . . . , sm ⟩ to C ⟨ t1, . . . , tn ⟩ then φ is induced by representatives
φ1, . . . , φm of the germs φ(s1), . . . , φ(sm) .

Therefore, there exists an inverse to φ̂x(0) , if and only if φ is invertible locally near φ (x(0)) as a
holomorphic map germ. In particular, in the special case x(0) = y(0) ∈ Cn , the invertible holomorphic
map germs fixing x(0) form a group (under the natural composition of maps) which is isomorphic to

the group Aut OCn,x(0) of local C–algebra isomorphisms of OCn,x(0) by sending φx(0) to (̂φ−1)x(0) .
We are now in the position to introduce the important notion of (right) equivalence for germs of

holomorphic functions: Two germs fx(0) , gx(0) ∈ OCn,x(0) are called right equivalent , if there exists an
element φ̂x(0) ∈ Aut OCn,x(0) with φ̂x(0)(gx(0)) = fx(0) . This is the same as to say that fx(0) and gx(0)

have representatives f ∈ OCn (U) and g ∈ OCn (V ) , resp., on suitable open sets U , V , and φ̂x(0)

is induced by a biholomorphic map φ : U → V such that g ◦ φ = f . In particular, we have in this
situation

φ (N (f)) = N (g)

in a neighborhood of x(0) so that - up to holomorphic coordinate transformations - the hypersurfaces
N (f) and N (g) may be considered to be identical near x(0) .

1.8 Morse Lemma

Henceforth, we encounter the need for studying the group action (for more details on group actions in
general see Chapter 6): {

OCn,x(0) × Aut OCn,x(0) −→ OCn,x(0)

(fx(0) , φ̂x(0)) 7−→ φ̂x(0)(fx(0)) ,

whose orbits are precisely the right equivalence classes of germs of holomorphic functions. Since equiva-
lent functions have the same value at x(0) , it suffices to consider the induced action on the maximal ideal
mCn,x(0) . Plainly, there is the trivial orbit consisting of the zero germ only. By the Implicit Function
Theorem, the regular germs

fx(0) ∈ mCn,x(0) , df (x(0)) =

n∑
j=1

∂f

∂xj
(x(0)) dxj ̸= 0

are seen to form another orbit. The simplest critical germs fx(0) are those for which the Hesse form

n∑
j,k=1

∂2f

∂xj∂xk
(x(0)) ξjξk

is nondegenerate. Under this assumption, x(0) is also called a nondegenerate critical point of f ; the germ
fx(0) is sometimes called a Morse germ. In accordance with the previous Section, we find coordinates
near such a point such that x(0) = 0 and f is of the form

f (x) =

n∑
j=1

x2j + g (x) , g0 ∈ m3
Cn,0 .

Here, mk
Cn,0 denotes the ideal of germs of holomorphic functions g which vanish to at least (k − 1)–th

order at the origin:

g0 ∈ mk
Cn,0 ⇐⇒ ∂|ν|g

∂xν
(0) = 0 for all ν with | ν | ≤ k − 1 .
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Of course, if a b stands as usual for the ideal generated by all products f · g , f ∈ a , g ∈ b , a , b given
ideals in a ring R , then mk coincides with the k–fold product of m = mCn,0 .

The Morse Lemma asserts that all nondegenerate critical germs fx(0) ∈ mCn,x(0) are equivalent in
the complex–analytic category.

Theorem 1.8 Each nondegenerate critical germ f0 ∈ mCn,0 is right equivalent to the germ of the
function

n∑
j=1

x2j .

Although we can get quite easily the Morse Lemma in a more conceptual framework as a simple
Corollary from the theory of finitely determined germs (see Chapter 2) we give here a completely
elementary proof . Notice that the proof goes through mutatis mutandis (see formula (+++) below) in
the C∞–category.

By Hadamard’s Lemma (see below), we write

f (x) = x1g1(x) + · · ·+ xngn(x) .

By differentiation,

∂f

∂xj
(x) = gj(x) +

n∑
k=1

xk
∂gk
∂xj

,

such that, due to the assumptions,

gj(0) = 0 , j = 1, . . . , n .

Invoking Hadamard’s Lemma again, we can write

(+) f (x) =

n∑
j,k=1

xj xk gjk(x) ,

where, obviously, we may assume gkj(x) = gjk(x) . Consequently,

(++) gjk(0) =
1

2

∂2f

∂xj∂xk
(0) .

Hence, using the “Main Axes Theorem” of Linear Algebra and a corresponding linear coordinate change,
we even may assume that

2 gjk(0) = δjk .

(Notice that in the (real) differentiable case we are only allowed to conclude 2gjk(0) = ±δjk . This
leads to the real differentiable standard form

(+ ++) f (x) = − (x21 + · · ·+ x2r) + x2r+1 + · · ·+ x2n

for a Morse germ in which the Morse index r is well–defined). - We claim:

Lemma 1.9 Suppose that

f (x) =

n∑
j,l=1

xjxkgjk(x)

with gkj(x) = gjk(x) and ∂2f/ ∂xj∂xk (0) = δjk . Then, for each r with 0 ≤ r ≤ n , there exist

functions h
(r)
1 , . . . , h

(r)
r and h

(r)
jk , j = k = r + 1, . . . , n with hkj = hjk in a neighborhood of the

origin such that

i) h
(r)
ρ (0) = 0 and

∂h
(r)
ρ

∂xσ
(0) = δρσ , ρ, σ = 1, . . . , r ,
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ii) f (x) =

r∑
ρ=1

h(r)ρ (x)2 +

n∑
j,k=r+1

h
(r)
jk (x)h

(r)
j (x)h

(r)
k (x) .

Proof (Morse Lemma). Using the preceding Lemma for r = n yields

f (x) =

n∑
j=1

hj(x)
2 , hj := h

(r)
j ,

where hj(0) = 0 and ∂hj/ ∂xk (0) = δjk . Setting ξj = hj(x) leads to a coordinate change ξ = h (x)
after which

φ (ξ) := f (h−1(ξ)) = f (x) =

n∑
j=1

ξ2j . □

Proof (Lemma). The Lemma will be proved by induction on r . For r = 0 just put hj(x) = xj and
hjk(x) = gjk(x) . Assume that the induction hypothesis is true for r − 1 such that in particular

f (x) =
r−1∑
ρ=1

h(r−1)
ρ (x)2 +

n∑
j,k=r

h
(r−1)
jk (x)h

(r−1)
j (x)h

(r−1)
k (x) .

Necessarily, we have

h(r−1)
rr (0) =

1

2

∂2f

∂x2r
(0) = grr(0) = 1 .

Now, put h
(r)
ρ (x) = h

(r−1)
ρ (x) , ρ = 1, . . . , r − 1 , and

h(r)r (x) =
(
h(r−1)
rr (x)

)1/2

h(r−1)
r (x) +

1

h
(r−1)
rr (x)

n∑
j=r+1

h
(r−1)
rj (x)h

(r−1)
j (x)


which is well–defined in a neighborhood of the origin. A straightforward calculation shows that

h(r)r (0) = 0 and
∂h

(r)
r

∂xj
(0) = δrj .

Moreover, with suitable new functions,

f (x) =

r∑
ρ=1

h(r)ρ (x)2 +

n∑
j,k=r+1

h
(r)
jk (x)h

(r)
j (x)h

(r)
k (x) . □

Hadamard’s Lemma which we used above says:

Lemma 1.10 Every holomorphic function (germ) f vanishing at the origin can be written in the form

f (x) =

n∑
j=1

xjfj

with holomorphic functions fj . In other words: the maximal ideal of the ring of convergent power series
is generated by the coordinate functions x1, . . . , xn .

In the case of formal power series this is trivial, and in the convergent case one deduces easily from a
formal representation f = x1 f1 + · · ·+ xn fn the convergence of the series f1, . . . , fn near 0 . □

Remark . The Lemma is also true in the C∞–situation. But here, one has to use a different argument.
Choose a sufficiently small ball B with center 0 and take for x ∈ B the connecting line segment
α (t) = tx , t ∈ I = [ 0, 1 ] . If f ∈ C∞(B) , f (0) = 0 , then

f (x) =

∫
α

df =

∫
I

df ◦ α =

n∑
j=1

(∫ 1

0

∂f

∂xj
(tx) dt

)
xj .

The functions in brackets are in C∞(B) . □
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1.9 The surface singularity of type A1

According to the Morse Lemma, we may and do call any isolated hypersurface singularity defined by
a nondegenerate critical germ the singularity of type A1 or simply the A1–singularity. We intend to
discuss here some of its special features in the surface case, i.e. in the case, where the ambient space is
three–dimensional.

We first want to show that a generic linear projection ϱ of the set X = {x ∈ C3 : x21 + x22 + x23 =
0 } ⊂ C3 to a plane through 0 realizes X as a twofold analytic covering over C2 which is branched
along two lines intersecting transversely at the origin (as do the projections parallel to the coordinate
axes). Let xj = ℓj + cjz , ℓj = ajx + bjy , j = 1, 2, 3 , be a generic linear coordinate transformation;
then the defining equation for X is

f(x, y, z) =
(∑

c2j

)
z2 + 2

(∑
cjℓj

)
z +

(∑
ℓ2j

)
.

Generically, we have c =
∑
c2j ̸= 0 such that under this assumption f(x, y, z) may be considered as

a quadratic equation in z with discriminant

∆ = ∆(x, y) =
(∑

c2j

) (∑
ℓ2j

)
−

(∑
cjℓj

)2

which, as a function of x and y , can be written in the form

∆(x, y) = Ax2 + 2Bxy + Cy2

with polynomials A , B , C in the nine variables a1 , a2 , a3 , ; b1 , b2 , b3 , c1 , c2 , c3 . So, the
restriction of the projection (x, y, z) 7→ (x, y) to X = { (x, y, z) : f (x, y, z) = 0 } is a twofold
covering of the (x, y)–plane with branch locus consisting of two distinct lines, if and only if{

c =
∑
c2j ̸= 0

AC − B2 ̸= 0 .

Our statement then follows from the fact that the complement of an algebraic set A in Cn - that is the
set A of common zeros of finitely many polynomials in C [x1, . . . , xn ] - is, for A ̸= Cn , necessarily
(open and) dense in Cn , when applied to GL (3, C) interpreted as the open set

{
(a1, . . . , c3) ∈ C9 : det

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 ̸= 0
}
⊂ C9

and to the intersection of GL (3, C) with the set { c · (AC − B2) ̸= 0 } .
In Chapter 6, we will develop a general theory of multiplicities for all (normal) surface singularities

by showing that almost all linear projections ϱ of such a singularity to a complex plane have the
same number m of sheets (i.e. the cardinality of the fibers ϱ−1(u) , u outside the branch locus).
For a singularity, we necessarily must have m ≥ 2 ; singularities with m = 2 are called double
points. (Observe that the ordinary double point in C2 satisfies the condition that almost all of its
projections to a complex line are twofold). Hence, the A1–singularity is a double point. It will be shown
in Chapter 6 that it is the unique double point whose (generic) branch locus has an ordinary double
point as singularity.

To a certain extent, the method of analytic coverings reduces the study of d–dimensional singularities
to the study of the (d − 1)–dimensional branch locus Σ in Cd . However, it is not merely the abstract
singularity Σ which comes into play; what really matters is the pair (Σ, Cd) , since e.g. the topological
(and even holomorphic) types of unbranched coverings of Cd \ Σ are classified by the fundamental
group π1(Cd \ Σ) . For the special case, where Σ is the union of the coordinate axes in C2 , we shall
determine all possible surface singularities branched over Σ in Chapter 6.
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Another way to visualize the (topological) complexity of an isolated hypersurface singularity x(0) ∈
X in Cn lies in forming the so–called link of X : We take a small ball

Bε(x
(0)) = {x ∈ Cn : |x − x(0) | < ε } , ε > 0 ,

and intersect X with the sphere Sε(x
(0)) = ∂Bε(x

(0)) to get

Xε = X ∩ Sε(x
(0)) .

We will prove in Chapter 15 that, for small enough ε > 0 , the link Xε is a real (2n − 3)–dimensional
differentiable manifold and that, topologically, X is the real cone over Xε :

Xε

X

x(0)

Figure 1.11

Of course, if we form Xε for a hyperplane X ⊂ Cn or, more generally, for a smooth point x(0) of a
hypersurface X , then Xε will be homeomorphic to the (2n − 3)–dimensional standard sphere. What,
however, is the link of the A1–singularity?

Without violating the topological structure we can perform an analytic coordinate transformation.
Therefore, we may assume that X is given by the equation

z2 − 2xy = 0 .

We define a holomorphic map
π : C2 −→ C3

by
π (u, v) = (u2, v2,

√
2uv) .

It is an easy exercise to prove that π maps C2 surjectively onto X and that, for all (u, v) ∈ C2 , the
fiber π−1 ◦ π (u, v) consists of the points (u, v) and (−u, −v) . Obviously,

|x |2 + | y |2 + | z |2 = (|u |2 + | v |2)2

for (x, y, z) = π (u, v) . This implies that the link

Xε = X ∩ ∂Bε , Bε = Bε(0)

is homeomorphic to the quotient of the 3–sphere in C2(u, v) (with center 0 and radius
√
ε ) by the

action of the antipodal map (u, v) 7→ (−u, −v) , i.e. Xε is topologically the real projective space
P3(R) which is not homeomorphic to the 3–sphere.

We should remark here that for n ≥ 4 it can happen that Xε is homeomorphic to the sphere
without x(0) being a smooth point of X . However, in Chapter 15, we prove that this cannot occur for
surface singularities.

There is yet another description of the A1–singularity X following from the existence of the map
π : C2 → X . As we remarked earlier, two points of C2 are mapped to the same point in X , if and
only if they are conjugate under the action of the holomorphic map τ : C2 → C2 which is given by



1.10 Barth’s sextic 17

τ (u, v) = (−u, −v) . Therefore, as a set, X is equal to the quotient C2/Z2 , where Z2 = Z/ 2Z
acts by the generator τ . But, since the action of Z2 is given by biholomorphic automorphisms, the
topological quotient C2/Z2 can be equipped with the structure of a complex analytic space (for more
details, see Chapter 8) on which the holomorphic functions are precisely the holomorphic functions
on C2 that are invariant under the action of Z2 . We will show that X is indeed isomorphic to this
holomorphic quotient C2/Z2 .

The general theory of quotients implies in particular that the integral domain A = OC3,0/ (x
2
1 +

x22 + x23)OC3,0 is normal , i.e. algebraically closed in its quotient field. This, however, is true for any
factor ring OC3,0/ f OC3,0 with an arbitrary function f ∈ O (U) , 0 ∈ U ⊂ C3 , having an isolated
critical point at the origin, as we shall see in Chapter 13.

As a last description of the A1–singularity, we identify it with the special fiber of a holomorphic
map between complex analytic manifolds which arises canonically in the theory of complex Lie groups.

The special linear group SL (2, C) of 2 × 2–matrices with determinant 1 has the structure of a
smooth hypersurface in C4 :

SL (2, C) =
{
M =

(
α β
γ δ

)
: αδ − βγ = 1

}
.

To each matrix M =

(
α β
γ δ

)
we associate its trace tr (M) = α + δ ∈ C ; the holomorphic map

C4 → C , given by (α, β, γ, δ) 7→ α + δ , induces a holomorphic map

tr : SL (2, C) −→ C .

The special fiber over the point t0 = 2 consists of all matrices M with eigenvalue 1 (of multiplicity
2); in other words: tr−1(2) is the unipotent variety of SL (2, C) (a matrix M is called unipotent, if
M − E , E the unit 2× 2–matrix, is nilpotent). The unipotent variety of SL (2, C) can henceforth be
described analytically by the equation

α (2 − α) − β γ = 1

in C3 which is critical only at α = 1 , β = γ = 0 . Introducing the new variables ξ = α − 1 , η =
β , ζ = γ , the singularity is given by

ζ2 − ξ η = 0 .

Hence we see that the unipotent variety of SL (2, C) turns out to be singular precisely at the unit
matrix E , the singularity being isomorphic to the A1–singularity. We will sketch a more conceptual
approach to this phenomenon in Appendix B to Chapter 16.

1.10 Barth’s sextic

Up to now, we have mainly seen some “global” curves and surfaces with exactly one singularity. But
there is at least one exception: The surface on the frontispiece has obviously many singularities, all of
type A1 . This leads to a completely different question: Given a certain isolated singularity. How many
of them can have a global object of this dimension? Of course, one has to make precise what we mean
by a global object. Since, for instance, a hypersurface in Cn may have singularities at infinity it might
be reasonable to take them also into account. Therefore, one is more or less forced to consider projective
varieties, i.e. curves, surfaces etc. in Pn (see Chapter 4) and to impose eventually stronger restrictions.

For varieties in Pn , a useful invariant is their degree (see again Chapter 4), which in case of hyper-
surfaces is nothing else but the degree of a defining homogeneous polynomial. Barth’s polynomial of
degree 6 (hence the word sextic) is the following:

4 (ρ2x2 − y2) (ρ2y2 − z2) (ρ2z2 − x2) − (1 + 2ρ) (x2 + y2 + z2 − 1)2 = 0 , ρ =
1 +

√
5

2

the golden ratio. It has exactly 65 nodes and no other singularities. In fact, Barth’s sextic reached a
world record .

*Theorem 1.11 No hypersurface in P3 of degree 6 can have more than 65 nodes.
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1.11 Determinantal varieties

Linear algebra provides us with some other very special albeit extremely instructive Examples. Instead
of Cn we regard the space Cn×n = M (n × n, C) of all n × n–matrices. The regular , i.e. invertible
matrices form the open dense subset

Reg (n× n, C) = {A ∈M (n× n, C) : det A ̸= 0 } .

The complement

H = {A ∈M (n× n, C) : det A = 0 } = {A ∈M (n× n, C) : rankA ≤ n − 1 }

of singular matrices forms therefore a complex–analytic (in fact, by the well–known expression of the
determinant, a complex–algebraic) subset of Cn×n . We write for the general matrix

A = (xjk)j,k=1,...,n , xjk ∈ C .

Then, by Laplace’s rule,

∂

∂xℓm
det A = ±det Aℓm ,

where Aℓm denotes the (n − 1)×(n − 1)–minor of the matrix A which one forms out of A by deleting
the ℓ–th row and the m–th column. Therefore, A is a singular point of the hypersurface H of singular
matrices of size n× n , if and only if

det Ajk = 0 , j, k = 1, . . . , n ,

i.e. if and only if rank A ≤ n − 2 .

In other terms, if we set

M (r)(n× n, C) := {A ∈M (n× n, C) : rank A ≤ r } ,

we have complex–algebraic subsets of Cn2

(since M (r)(n × n, C) is described by the vanishing of all
the (r + 1)× (r + 1)–minors of A ), such that

H = M (n−1)(n× n, C) = sing M (n× n, C) = sing M (n)(n× n, C)

and

sing H = sing M (n−1)(n× n, C) = M (n−2)(n× n, C) .

We shall prove in Chapter 4 that, more generally, the algebraic sets

M (r)(m× n, C) = {A ∈M (m× n, C) : rankA ≤ r }

in Cm×n = M (m× n, C) satisfy

sing M (r)(m× n, C) = M (r+1)(m× n, C) ,

and that the submanifold

M (r)(m× n, C) \M (r+1)(m× n, C)

of M (n)(m× n, C) = Cm×n has codimension (m − r) (n − r) .
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1.A Appendix A: Fundamental properties of holomorphic
functions

1.A.1 Real and complex differentiability

Recall that a real or complex valued function f in the real variables x1, . . . , xn is called (totally) real
differentiable at a point x(0) if there is a neighborhood U of x(0) and there are functions ∆1, . . . ,∆n

on U which are continuous at x(0) such that

f (x) = f (x(0)) +

n∑
j=1

∆j(x) (xj − x0j) , x ∈ U .

In particular, f is necessarily continuous at x(0) . The functions ∆j(x) are in general not uniquely
determined, but there values

∂f

∂xj
(x(0)) := ∆j(x

(0))

are.
A complex valued function f in n complex variables x1, . . . , xn is called (totally) real differentiable

if it is differentiable in the sense defined above with respect to the 2n real variables ξj = Re xj , ηj =
Imxj , j = 1, . . . , n . Due to Euler formulas

ξj =
xj + xj

2
, ηj =

xj − xj
2i

,

this is equivalent to an expansion of the form

f (x) = f (x(0)) +

n∑
j=1

Aj(x) (xj − x0j) +

n∑
j=1

Bj(x) (xj − x0j)

with functions Aj , Bj : U → C which are continuous at x(0) . The Wirtinger derivatives are defined
by

∂f

∂xj
(x(0)) := Aj(x

(0)) ,
∂f

∂xj
(x(0)) = Bj(x

(0))

and can easily be expressed by linear combinations of the partial derivatives
∂f

∂ξj
and

∂f

∂ηj
. Such

a function f is called (totally) complex differentiable at x(0) if one can choose Bj ≡ 0 for all
j = 1, . . . , n . f is then necessarily (totally) real differentiable at x(0) and satisfies the Cauchy–
Riemann equations

∂f

∂xj
(x(0)) = 0 , j = 1, . . . , n ,

which are equivalent to

∂g

∂ξj
(x(0)) =

∂h

∂ηj
(x(0)) ,

∂g

∂ηj
(x(0)) = − ∂h

∂ξj
(x(0)) , g = Re f , h = Im f .

1.A.2 The Cauchy integral formulas

Recall from classical Complex Analysis that a function in one complex variable is holomorphic (in
an open set U ⊂ C ), if and only if it is totally real differentiable and satisfies the Cauchy–Riemann
equations at each point of U . Therefore, the implications ii) =⇒ iii) =⇒ iv) in the following Theorem
are immediately clear.

Theorem 1.12 Let U ⊂ Cn be open and f : U → C a function. Then, the following are equivalent :



20 Chapter 1 Appendix A Fundamental properties of holomorphic functions

i) f is holomorphic on U ;

ii) f is totally complex differentiable on U ;

iii) f is totally real differentiable on U and satisfies the Cauchy–Riemann equations ;

iv) f is continuous on U and holomorphic in each complex variable separately ;

v) for each point x(0) ∈ U and each polydisk P with x(0) + P ⊂ U one has the Cauchy integral
formula

f (x(0) + h) =
1

(2πi)n

∫
T

f (x(0) + ζ)

(ζ1 − h1) · . . . · (ζn − hn)
dζ , h ∈ P ,

where T = { |x1 | = r1 } × · · · × { |xn | = rn } ⊂ ∂P .

Corollary 1.13 In the situation above, f is arbitrarily often (totally) complex differentiable, and f
satisfies the Cauchy integral formulas

Dνf (x(0) + h) =
ν!

(2πi)n

∫
T

f (x(0) + ζ)

(ζ1 − h1)ν1+1 · . . . · (ζn − hn)νn+1
dζ .

In particular,

Dνf (x(0)) =
ν!

(2πi)n

∫
T

f (x(0) + ζ)

ζν1+1
1 · . . . · ζνn+1

n

dζ .

Proof of Theorem 11. Only a few implications are left. i) =⇒ ii). By a formal power series expansion,
one can find formal power series ∆1, . . . ,∆n around 0 such that formally

(∗) f (x(0) + h) = f (x(0)) + h1 ∆1(h) + · · ·+ hn ∆n(h)

and hj ∆j(h) is a subseries of the power series expansion of f at x(0) . By assumption, all ∆j converge
at some point h ∈ (C∗)n . Hence, all ∆j are convergent in a neighborhood of 0 , and therefore, (∗)
holds as an equation for functions near h = 0 . Since the functions ∆1, . . . ,∆n are at least continuous
at the origin, f is totally complex differentiable at any point x(0) ∈ U .

iv) =⇒ v). Since f is continuous, the Cauchy integral on the right hand side exists and is equal to an
iterated Cauchy integral

1

2πi

∫
∂D1

dζ1
ζ1 − h1

(
· · ·

(
1

2πi

∫
∂Dn

f (x(0) + ζ)

ζn − hn
dζn

)
· · ·

)
.

Since f is partially holomorphic one can now apply the classical Cauchy integral formula.

v) =⇒ i). This works as in the classical case by replacing the geometric series by the “multiple” geometric
series. □

Proof of Corollary 12. Just differentiate the Cauchy integral formula. □

1.A.3 The Identity Theorem and other applications

The Identity Theorem for holomorphic functions in several complex variables reads as follows.

Theorem 1.14 Let G be a domain in Cn and let f, g be holomorphic functions on G . Then, the
following are equivalent :

i) f = g ,

ii) f|U = g|U for some nonempty open subset U ⊂ G ,

iii) all partial derivatives of f and g agree at one point x(0) ∈ G .
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Remark . It is obviously not sufficient (as in dimension 1) that f agrees with g on a non discrete subset
D ⊂ G : Just take f (x1, x2) := x1 x2 and g = 0 .

Proof of Theorem 13. Plainly, i) =⇒ ii) =⇒ iii). For the remaining implication iii) =⇒ i) define h :=
f − g and

A := {x ∈ G : Dνh (x) = 0 for all ν ∈ Nn } .
By assumption, A is not empty; moreover A is open since h = 0 locally near an arbitrary point
x ∈ A due to the Identity Theorem for power series. Since all partial derivatives of h are continuous
functions, A is also closed in G . Hence, A = G and h = 0 on G . □

Corollary 1.15 If G is a domain in Cn , then the ring of holomorphic functions on G is integer, i.e.
does not contain zerodivisors.

Proof . As in the classical case of one variable. □

As a more important application, we formulate and proof

Theorem 1.16 (Hartogs’ Extension Theorem) Let 0 < ρj < rj , j = 1, . . . , n , n ≥ 2 , be real
numbers, and define

P := Pr , r = (r1, . . . , rn) , P
′ = Pρ′ , ρ′ = (ρ1, . . . , ρn−1, rn),

Q := {x ∈ P : |xj | ≥ ρj , j = 1, . . . , n − 1 , |xn | ≤ ρn },

H := P \Q .

Then, every holomorphic function f on H can (uniquely) be extended to a holomorphic function on
P . In other words: the canonical restriction homomorphism

O (P ) −→ O (H)

is bijective.

Proof . Choose ϑn with ρn < ϑn < rn and x ∈ P ′′ := {x ∈ P : |xn | < ϑn } .

|xn|

rn

ϑn

ρn

|x1|, . . . , |xn−1|

Figure 1.12

Then, the function

F (x) :=
1

2πi

∫
|ξn|=ϑn

f (x1, . . . , xn−1, ξn)

ξn − xn
dξn

is continuous on P ′′ and satisfies the Cauchy–Riemann equations, i.e. F ∈ O (P ′′) . Moreover, F
coincides with f on the polydisk P ′ ∩ P ′′ due to Cauchy’s integral formula in one variable. By the
Identity Theorem, F = f on the domain H ∩ P ′′ . Hence,

x 7−→

{
f (x) , x ∈ H

F (x) , x ∈ P ′′
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defines a holomorphic extension of f . The injectivity of the homomorphism O (P ) → O (H) follows
from the Identity Theorem. □

Remark . In dimension 1 , each domain G ⊂ C is a domain of holomorphy , i.e. there exist holomorphic
functions f on G which cannot be extended to any larger domain. In dimension n ≥ 2 , this is no
longer true as the example of the Hartogs’ domain H shows. Examples of domains of holomorphy are
balls and polydisks.

By the same technique or as a direct consequence of Hartogs’ Theorem one easily deduces the
following

Corollary 1.17 Let 0 ≤ ρ < r be given and K := Pr \ Pρ . Then, for n ≥ 2 , the restriction
homomorphism O (Pr) → O (K) is an isomorphism. In particular, there are no isolated “singularities”
for holomorphic functions in n ≥ 2 variables (and thus no isolated zeroes either).

1.A.4 The Riemann Extension Theorems

Let G ⊂ Cn be a domain and A ⊂ G a closed subset of G . A is called an analytic set in G if to each
x(0) ∈ A there exists an open neighborhood x(0) ∈ U ⊂ G and finitely many holomorphic functions
f1, . . . , fr ∈ O (U) such that

A ∩ U = {x ∈ U : f1(x) = · · · = fr(x) = 0 } .

We say that A is of codimension ≥ k at x(0) ∈ A if one can find an affine subspace L of dimension
k through x(0) such that A ∩ L = {x(0) } in a neighborhood of x(0) .

L A3

A1

A2

A = A1 ∪A2 ∪A3

Figure 1.13

The codimension codimx(0)A of A in G at x(0) is the maximal k with that property, and the
codimension of A in G is defined by

codimA := min
x(0)∈A

codimx(0)A .

It is an easy exercise to show that codimx(0)A = 0 at some point x(0) ∈ A implies A = G .
We say that Riemann’s Extension Theorem holds for A in G , if the homomorphism O (G) →

O (G \ A) is surjective. Clearly, this cannot be satisfied without further restrictions on A and/or on
f . If, for instance, f ∈ O (G) is nontrivial with non empty zero set A = {x ∈ G : g (x) = 0 } , then
f := 1/ g has no holomorphic continuation to G . - We now state

Theorem 1.18 (Riemann’s Extension Theorems)

1. Let A ⊂ G be an analytic subset of codimension ≥ 1 . Then, G \ A is a domain, and each
holomorphic function f on G \A which is locally bounded at the points of A has a holomorphic
extension to G .
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2. If codimA ≥ 2 , no restrictions on f are needed, i.e. the canonical homomorphism

O (G) −→ O (G \A)

is an isomorphism.

Proof . It is sufficient to show that G \ A is dense in G and that we have extendability locally at
any point x(0) ∈ A since by the first fact local holomorphic extensions are uniquely determined and
hence patch together to a global function on G . Connectedness of G \A can from this be deduced as
follows: If this were not true one could find nontrivial locally constant functions f1, f2 ∈ O (G\A) with
f1 f2 = 0 . But then F1 F2 = 0 for extensions F1, F2 of f1, f2 , and by a well known consequence of
the Identity Theorem, one of the Fj must vanish identically (see Corollary xx).

So, we may assume that x(0) = 0 ∈ A = {x ∈ U : f1(x) = · · · = fr(x) = 0 } , and that A ∩ {x1 =
· · · = xn−1 = 0 } = { 0 } . This implies that at least one of the functions f1, . . . , fr , say g := f1 , is
xn–regular at the origin. Hence, due to the Weierstraß Preparation Theorem, there exists a Weierstraß
polynomial ω in xn at 0 such that (locally around 0 )

A ⊂ B = {x ∈ P : ω (x) = 0 }

for a certain polydisk P . It is immediately clear that P \ B and consequently P \ A as well is dense
in P , thus taking care of our first claim. So, it remains to show that bounded holomorphic functions
on P \B extend holomorphically to P ′ for suitably chosen polydisks P ′ ⊂⊂ P with center the origin.
Without loss of generality we may assume that

P = Pr , r = (r1, . . . , rn) , P ′ = Pr′ , r
′ = (r1, . . . , rn−1, ρn) , 0 < ρn < rn ,

and that all solutions of ω (x′, xn) = 0 , x′ = (x1, . . . , xn−1) with |xj | < rj , j = 1, . . . , n − 1 ,
satisfy |xn | < ρn .

Figure 1.14

For fixed x′ , f (x′, xn) is holomorphic in xn outside of the finite set ω (x′, xn) = 0 and bounded.
Therefore, the classical Riemann Removable Singularity Theorem implies that this function can holo-
morphically be extended to all xn with |xn | < rn such that the function

F (x) :=
1

2πi

∫
|ξn|=ρn

f (x1, . . . , xn−1, ξn)

xn − ξn
dξn , x ∈ P ′

is equal to f on P ′ \B . Again, F is continuous on P ′ and satisfies the Cauchy–Riemann equations,
such that F is a holomorphic extension of f on P ′ .

The case codimA ≥ 2 can simply be reduced to the case handled before by invoking the Maximum
Principle for holomorphic functions (following from the Cauchy integral formula as in the classical case
n = 1 ) which implies that holomorphic functions near points x(0) ∈ A have to be bounded. Or else,
one can use the general theory of branched coverings to find a similar picture as in Figure 10 where
the base has dimension n − 2 instead of n − 1 but the fibers of the projection A → Cn−2 are
still discrete. Then, the result is an immediate consequence of (the Corollary to) Hartogs’ Extension
Theorem. □
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1.B Appendix B: The Theorems of Whitney and Sard

1.B.1 The Theorem of Whitney

We proof the Theorem of Whitney (Theorem 3) in a more general version. Notice that we assume
all topological spaces (especially differentiable and analytic manifolds) to satisfy the second axiom of
countability and hence to be paracompact .

Theorem 1.19 (Whitney) Any closed subset A of the manifold M equals the zero set of a nonneg-
ative function f ∈ C∞(M) .

Proof . By the assumptions, M carries a countable atlas and an underlying differentiable partition of
unity . Therefore, we can restrict ourselves to the case M = Rn ; furthermore, let, without loss of
generality, A ̸= Rn , i.e. U = Rn \A is supposed to be open and not void. Then, we have

U =

∞⋃
j=0

Bj

with open balls Bj , and there are functions fj ≥ 0 on Rn satisfying

fj(x) > 0 if and only if x ∈ Bj .

By multiplication with a suitable constant we can achieve that for given εj > 0 the estimates

sup
Rn

|Dνfj | ≤ εj

are satisfied for all ν = (ν1, . . . , νn) ∈ Nn with | ν | ≤ j . Choose the numbers εj such that the
series

∑∞
j=0 εj is convergent. Let now ν ∈ Nn be fixed; then the series

∑
j≥|ν| εj is a majorant to∑

j≥|ν| D
νfj . Hence, the series

∞∑
j=0

Dνfj

are absolutely and uniformly convergent, and consequently f =
∑∞

j=0 fj is a C∞–function on Rn .
For x ∈ A are all fj(x) = 0 , thus f (x) = 0 ; for x ̸∈ A , i.e. x ∈ U , we have x ∈ Bj for at least one
j and therefore

f (x) ≥ fj(x) > 0 . □

Similarly, one can show the following Theorem.

Theorem 1.20 Let A ⊂ M a closed subset. Then, there is a C∞–function f on M such that A is
the critical locus of f .

Proof . Exercise. □

1.B.2 The Theorem of Sard

The more surprising is the following theorem.

Theorem 1.21 (Sard) Let f : M → N be a differentiable map. Then, the set of critical values is
meager in N , i.e. of Lebesgue measure zero in any coordinate chart. In particular, the set of regular
values is dense in N , if dim N > 0 .
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First, some remarks on the formulation of the Theorem and some preparations for its proof are in
order. A set C ⊂ Rn is called of Lebesgue–measure zero (or meager) if for any ε > 0 there exists a
countable covering by squares ⋃

j∈N
Wj ⊃ C

with ∑
j∈N

VolnWj < ε .

This is equivalent to the statement that the characteristic function χC is Lebesgue–integrable with∫
Rn

χC dx
n = 0 .

It is evident that the following hold true:

1. If C is of measure zero and D ⊂ C , then D is of measure zero, too.

2. If Cj , j ∈ N , are meager sets, then also

C =
⋃
j∈N

Cj .

Further, we remind the reader to the following well–known

Theorem 1.22 Let U ⊂ Rn be open, C ⊂ U meager and f : U → Rn a C1–map. Then, f (C) is
meager in Rn .

Proof . U is a union of countably many compact cubes Wj . We may, therefore, suppose that C ⊂
W 0 ⊂ W ⊂⊂ U and that f|W can be extended to a C1–map Rn → Rn , i.e. we suppose without loss

of generality U = Rn . Putting K : = sup
W

∥Df ∥ , we get due to the Mean Value Theorem

(+) ∥ f (x1) − f (x(0)) ∥ ≤ K · ∥x1 − x(0) ∥ , x(0), x1 ∈W .

To every ϵ > 0 and L > 0 there exists a (new) covering by cubes

C ⊂
∞⋃
j=1

Wj with

∞∑
j=1

VolnWj ≤ ϵ

L

and Wj ⊂ W for all j . If aj denotes the length of the edges of the cube Wj and xj its center, then
f (Wj) is, because of (+), contained in the ball with center xj and radius K aj

√
n/ 2 and therefore

also in a cube W̃j of edgelength K aj
√
n . From this, we deduce

f (C) ⊂
∞⋃
j=1

W̃j , VolnW̃j = Kn
√
n

n
VolnWj

and finally

∞∑
j=1

VolnW̃j ≤ ε if L := Kn
√
n

n
. □

Corollary 1.23 A subset C of a manifold is meager if, and only if, its intersection with each chart
of a fixed countable atlas is meager. In particular, the above Theorem remains true also for maps
f : M → N , dim M = dim N .
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With this result and the arguments of the proof of Theorem 19 we immediately see that it is sufficient
to prove the following local version of the Theorem of Sard.

Theorem 1.24 The set of critical values of a differentiable map

f : U −→ Rp , U ⊂ Rn open

is meager.

The proof will be performed in several steps. We set

C0 := C = {x ∈ U : rgxDf < p }

and
Cj = {x ∈ U : (Dνfk) (x) = 0 , 1 ≤ | ν | ≤ j , k = 1, . . . , p } .

Then, C0 ⊃ C1 ⊃ C2 ⊃ · · · , and thus

C0 = (C0 \ C1) ∪ (C1 \ C2) ∪ · · · ∪ (Cj−1 \ Cj) ∪ Cj

for each j .
Let us first prove that the set f (C0) is meager in Rp . For this, the following suffices.

Theorem 1.25 To each point x(0) ∈ U there exists a neighborhood V = V (x(0)) ⊂ U such that the
sets

f ((C0 \ C1) ∩ V ) , . . . , f ((Cj−1 \ Cj) ∩ V ) , f (Cj ∩ V )

are meager for j ≥ n/ p − 1 .

Proof . We proceed by induction on n , where for n = 0 nothing has to be shown. Therefore, we may
assume in the following that the Theorem of Sard has been proven already for n − 1 ≥ 0 .

a) Regard C0 \ C1 . Here, we may suppose moreover that p ≥ 2 , because otherwise C0 = C1 . Let
x(0) ∈ C0 \ C1 and, without loss of generality,

x(0) = 0 ,
∂f1
∂x1

(0) ̸= 0 .

Denote by φ : U → Rn the map φ (x) = (f1(x), x2, . . . , xn) . Due to the Invertible Mapping Theorem,
φ is invertible in a neighborhood V of 0 , and in the diagram

V V ′-φ

Rp

f
@
@

@
@R

g = f ◦ φ−1
�

�
�

�	

the map g is of the form
g (x1, . . . , xn) = (x1, g2(x), . . . , gp(x)) .

Since φ (C ∩ V ) = C ′ is the critical set of g , we also have g (C ′) = f (C) . We may therefore
suppose that f = g and, consequently, that f maps the hyperplane {x1 = t } onto the hyperplane
{ y1 = t } , (y1, . . . , yp) ∈ Rp . Let gt be the respective restriction, regarded as a map of an open part
of Rn−1 to Rp−1 . Because of

Dg =

 1 0

∗ ∂gtj/∂xk


a point in ({ t } ×Rn−1)∩ V ′ is critical for g if and only if it is critical for gt . – In order to finish the
proof in this case we need a Theorem of Fubini–type.
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Theorem 1.26 Let D ⊂ Rp be the union of countably many compact sets, p ≥ 2 , and suppose that

Dt = D ∩ Rp
t , Rp

t = { (y1, . . . , yp) ∈ Rp : yp = t }

is meager in Rp
t = Rp−1 for each t ∈ R . Then, D is meager in Rp .

This is an easy consequence of the Theorem of Fubini since compact sets are Lebesgue–measurable.
Sets which satisfy the more general assumptions made in the preceding Theorem are

a) closed subsets A because of A =
⋃

R>0 A ∩BR ,

b) open sets (since they are unions of countably many compact balls),

c) continuous images of such sets,

d) countable unions and finite intersections of such sets.

Since the sets Cj are closed in U , the sets f (Cj) and f (Cj−1 \Cj) are of this type. – This argument
finishes the proof of part a).

b) Let x(0) = 0 ∈ Cj−1 \ Cj , j ≥ 2 . Then, without loss of generality,

∂jf1
∂x1∂xs1 · . . . · ∂xsj−1

(0) ̸= 0 .

Set w (x) = ∂j−1f1 / ∂xs1 · . . . ·∂xsj−1
. Due to x(0) ∈ Cj−1 , we infer w (0) = 0 , but ∂w/ ∂x1 (0) ̸= 0 .

Regard now as in part a) the transformation φ (x) = (w (x), x2, . . . , xn) and conclude similarly by
induction.

c) Let W be a compact cube of side length a , W ⊂ U . From the Taylor formula we conclude

(++) ∥ f (x + h) − f (x) ∥ ≤ K ∥h ∥j+1

for x ∈ Cj ∩W , x + h ∈ W . Decompose W in rn cubes of side length a/ r . If W1 denotes one of
these cubes and if x(0) ∈ Cj ∩W1 , then each point in W1 can be written in the form x(0) + h with
∥h ∥ ≤

√
n · a/ r . Thus, because of (++), f (W1) is lying in a cube of edge length

2K (
√
n · a)j+1/ rj+1 =

b

rj+1

with a constant b = b (W, f) . These cubes have altogether a volume sum

rn · bp

rp(j+1)
= bp

1

rp(j+1)−n
,

and this expression becomes arbitrarily small for sufficiently fine subdivisions of W if p (j +1)− n > 0 ,

i.e. j >
n

p
− 1 . □

Notes and References

(Local) complex analytic geometry will be treated to a higher extend in Chapters 2, 3 and 6 of this
book. Our main source for this topic is the second volume of the Grauert–Remmert trilogy:

[01 - 01] H. Grauert, R. Remmert: Coherent Analytic Sheaves. Grundlehren der mathematischen Wis-
senschaften 265, Berlin–Heidelberg–New York–Tokyo: Springer–Verlag 1984.

For instance, the Weierstraß Preparation Theorem can be found there on p. 42. The factoriality of the

ring C ⟨x ⟩ = O(n)
0 which we used in Section 6 is proved on p. 44. We also make permanent use of the

noetherian and henselian property of the local ring O(n)
0 . Concerning such purely algebraic notions

and results, we often refer to the first volume of the above mentioned trilogy:
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[01 - 02] H. Grauert, R. Remmert: Analytische Stellenalgebren. Unter Mitarbeit von O. Riemenschnei-
der. Die Grundlehren der mathematischen Wissenschaften 176, Berlin–Heidelberg–New York:
Springer–Verlag 1971.

The English speaking reader or the impatient may find it more convenient to consult Chapter I,
Local Theory of Complex Spaces, written by R. Remmert, in:

[01 - 03] H. Grauert, Th. Peternell, R. Remmert: Several Complex Variables VII. Sheaf–Theoretical
Methods in Complex Analysis. Encyclopaedia of Mathematical Sciences, Volume 74, Berlin–
Heidelberg–New York–London–Paris–Tokyo–Hong Kong–Barcelona–Budapest: Springer–Verlag
1994.

The Chain Rule and the Inverse Mapping Theorem are most easily derived from the corresponding
results for differentiable real–valued maps using in addition the Cauchy–Riemann equations. A proof
along these lines is found e.g. in the booklet

[01 - 04] H. Grauert, K. Fritzsche: Einführung in die Funktionentheorie mehrerer Veränderlichen.
Springer Hochschultext, Berlin–Heidelberg–New York: Springer–Verlag 1974

resp. in its English edition which appeared under the title Several Complex Variables as Graduate Text
in Mathematics 38 at Springer Heidelberg in 1976. The latter has been substantially rewritten and
vastly expanded as

[01 - 05] K. Fritzsche, H. Grauert: From Holomorphic Functions to Complex Manifolds. Graduate
Texts in Mathematics 213, New York etc.: Springer–Verlag 2002.

There exist now quite a lot of excellent and extensive introductions to several complex variables
which treat the local and global theory at the same time. We list some of them in chronological order:

[01 - 06] R. Gunning, H. Rossi: Analytic Functions of Several Complex Variables. Prentice–Hall Series
in Modern Analysis, Englewood Cliffs, N.Y.: Prentice–Hall, Inc. 1965.

[01 - 07] L. Hörmander: An Introduction to Complex Analysis in Several Variables. The University
Series in Higher Mathematics, Princeton, N.J.: D.van Nostrand Company, Inc. 1966.

[01 - 08] H. Whitney: Complex Analytic Varieties. Addison–Wesley Series in Mathematics, Reading,
Mass.: Addison–Wesley Company, Inc. 1972.

[01 - 09] L. Kaup, B. Kaup: Holomorphic Functions of Several Variables. de Gruyter Studies in Math-
ematics 3, Berlin–New York: Walter de Gruyter 1983.

We finally mention as a very useful general introduction and survey (without complete proofs):

[01 - 10] G. Fischer: Complex Analytic Geometry. Lecture Notes in Mathematics 538, Berlin–
Heidelberg–New York: Springer–Verlag 1976,

and for the more algebraically oriented reader the books of

[01 - 11] S. S. Abhyankar: Local Analytic Geometry. Pure and Applied Mathematics, New York–
London: Academic Press 1964

and

[01 - 12] Th. de Jong, G. Pfister: Local Analytic Geometry. Basic Theory and Applications. Advanced
Lectures in Mathematics. Braunschweig/Wiesbaden: Friedr. Vieweg & Sohn.

The other books on singularities which we mentioned in the preface to this volume are the following:
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[01 - 13] H. B. Laufer: Normal two–dimensional Singularities. Annals of Mathematics Studies 71,
Princeton, New Jersey: Princeton University Press and University of Tokyo Press 1971.

[01 - 14] K. Lamotke: Regular Solids and Isolated Singularities. Advanced Lectures in Mathematics,
Braunschweig–Wiesbaden: Friedr. Vieweg & Sohn 1986.

[01 - 15] D. Bättig, H. Knörrer: Singularitäten. Lectures in Mathematics. ETH Zürich. Basel–Boston–
Berlin: Birkhäuser 1991.

[01 - 16] A. Dimca: Topics on Real and Complex Singularities. Advanced Lectures in Mathematics,
Braunschweig–Wiesbaden: Friedr. Vieweg & Sohn 1987.

[01 - 17] T. Okuma: Plurigenera of Surface Singularities. Huntington, N. Y.: Nova Science Publishers
2000.

[01 - 18] W. Barth, C. Peters, A. Van de Ven: Compact Complex Surfaces. Ergebnisse der Mathematik
und ihrer Grenzgebiete, Berlin–Heidelberg–New York–Tokyo: Springer–Verlag 1984.

[01 - 19] E. Looijenga: Isolated Singular Points on Complete Intersections. London Math. Soc. Lecture
Note Series 77, Cambridge: Cambridge University Press 1984.

[01 - 20] V. I. Arnol’d, S. M. Gusein–Zade, A. N. Varchenko: Singularities of Differentiable Maps,
Volume I. Monographs in Mathematics, Boston–Basel–Stuttgart: Birkhäuser 1985.

[01 - 21] V. I. Arnol’d, S. M. Gusein–Zade, A. N. Varchenko: Singularities of Differentiable Maps,
Volume II. Monographs in Mathematics, Boston–Basel–Stuttgart: Birkhäuser 1988.

The wonderful (real) pictures of surfaces with singularities are taken fromHerwig Hauser’s Gallery
that can be found on his homepage under

www.homepage.univie.ac.at/herwig.hauser/gallery.html

The picture on the frontispiece shows Wolf Barth’s famous sextic in a version that has been
prepared by Andreas Leipelt. He also created a rotating icon that still appears on the homesite of
my Arbeitsbereich Analysis und Differentialgeometrie at the Mathematics Department of the University
Hamburg.

Barth published his construction in

[01 - 22] W. Barth: Two projective surfaces with many nodes, admitting the symmetries of the icosa-
hedron. J. Algebraic Geom. 5, 173 - 186 (1996).

For more on this sextic, in particular the history of Theorem 11, and the life and other achievements of
Wolf Barth, see:

[01 - 23] Th. Bauer et alii: Wolf Barth (1942-2016). Jahresber Dtsch Math-Ver 119, 273 - 292 (2017).

For the Appendix, our sources have been the following:

[01 - 24] Th. Bröcker: Differenzierbare Abbildungen. Der Regensburger Trichter, Band 3. 2. erweiterte
und verbesserte Auflage. Regensburg 1973.

[01 - 25] Th. Bröcker, L. Lander: Differentiable Germs and Catastrophes. London Mathematical So-
ciety Lecture Notes 17. Cambridge: Cambridge University Press 1975.

[01 - 26] M. Golubitsky, V. Guillemin: Stable Mappings and Their Singularities. New York–
Heidelberg–Berlin: Springer 1973.
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A highly welcome addition to the literature on singularities is Shihoko Ishii’s Introduction to Sin-
gularities that appeared in its original Japanese version in 1997 and in its first English printing in
2014. We consulted the second edition many times during the process of the revision of our text and
recommend it warmly to everybody interested in the subject including higher dimensional singularities.

[01 - 27] Sh. Ishii: Introduction to Singularities. 2nd edition. Springer Japan K.K. 2018.

An extremely useful, but dense introduction - especially to the question, which topological informa-
tion determines the analytic structure of a surface singularity (obviously the basis of a book project) -
is given by

[01 - 28] A. Nemethi: Five Lectures on Normal Surface Singularities. Proceedings of the Summer
School, Bolyai Society Mathematical Studies 8, Low Dimensional Topology, 269 - 351 (1999).
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