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Introduction

In my last Analysis I course during winter semester 1997/98 I tried to group the fundamental
statements on sequences and series of real numbers and on continuous, differentiable and inte-
grable functions on bounded closed intervals in such a way that one can derive their equivalence
to the completeness of the real number field without too much work. The prize one has (or
better: the students have) to pay for this is a very early initiation to quite general topological
concepts (which have to be introduced anyway during the second or third semester). So, one
doesn’t loose time in the long run, but students might gain deeper insight into the basics of
mathematics.

I also addressed in bypassing the question if one can weaken the quite often assumed
property of the field to be “archimedean”. If possible without extra labor, I eliminated that
property or replaced it by the assumption that the ground field under consideration possesses
nontrivial sequences converging to zero (see the condition (%) in the supplement to the first
circle and the beginning of the second circle). Since this class of ordered fields is properly
larger than that of archimedean ordered fields, but yet proofs can be performed as in the case
of classical real analysis via convergent sequences | consider it as a “didactically permissible”
superclass.

Most of the material presented here should be well known although some of it (e. g. in
connection with differentiable functions and the main theorem of differential and integral cal-
culus) I couldn’t find explicitly in this form in other publications. However, I made no effort
to study the extensive literature devoted to this circle of ideas thoroughly (partly because it
is not easily accessible). A manuscript of similar spirit which I became aware of only after the
end of my course is [7].

In any case it is easy to carry out many, if not all of these considerations oneself. The
present note may therefore be considered merely as a “Leitfaden” for interested students and
colleagues. It goes without saying that they form only the sheer skeleton of my course (a
complete elaboration of which is in preparation; see [6]). For the same reason | didn’t find
it necessary to give here any kind of motivating comments. Let me add the remark that the
number appearing in the title of the present note has no mystical significance. In fact, it can
be altered at will by either deleting those which are not really needed for classical analysis or
by adding some of the many other rather fancy characterizations of the real numbers.

*Expanded version of a lecture given at Tokyo Metropolitan University on 9/9/1999
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I would be glad about constructive criticism and hints on further sources with similar
intention. My thanks are due to my former collaborator Dr. Andreas Leipelt and my assistant
Dr. Jérg Schiirmann for their willingness to discuss this not quite world shaking issue with me.
My special thanks go to my colleague Prof. Dr. Alexander Prestel of Konstanz who, in letters
and oral communication, helped me considerably to improve my knowledge on nonarchimedean
fields, especially by his reference to the n;—fields, and directed a question on the independence
of certain systems of axioms to the right path.

1 The first circle

In the following, K denotes always an ordered field. In order to save labor one should introduce
the notions of convergence of a sequence and of a Cauchy sequence etc. from the beginning
in the more general context of K—metric spaces and prove instantly the trivial consequences
(e. g.: Convergent sequences are necessarily bounded Cauchy sequences). After that, one can
show the equivalence of the following statements (1) till (5) e. g. by a round trip (1) =
(2) = (3) = (4) = (5) = (1). Here, Cauchy completeness means that every Cauchy
sequence possesses a (automatically uniquely determined) limit. The principle of monotone
convergence states that every increasing sequence in K which is bounded from above has a
limit. With respect to the principles of nested intervals, one has to consider closed intervals
I; =[a;, b;] CK with I; D I;41, j € N. The strong resp. weak principle of nested intervals
demands that their intersection is not void, in the second case under the extra assumption that
the sequence b; — a; of the lengths of the intervals I; tends to zero. The theorem of Bolzano
and Weterstraf§ asserts that from every bounded sequence in K one can extract a convergent
subsequence. If one wants to avoid the early appearance of the axiom of Archimedes and the
notion of a Cauchy sequence one can start the journey as well from e. g. the second place.

K is archimedean
(1) &
Cauchy complete

(2) Principle of monotone convergence

K is archimedean
&
Strong principle of

nested intervals
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K is archimedean
&
Weak principle of

nested intervals

(5) Theorem of Bolzano and Weierstraf

The proofs present no particular difficulties and could therefore be left to the reader. For the
sake of completeness they shall be added.

(1) = (2) It is sufficient to show: Every increasing sequence in an archimedean field which
has an upper bound is a Cauchy sequence. For, if this is not true, one can construct by in-
duction a strongly increasing subsequence (z;);en which is bounded from above such that
Tiy1 — x; > go with afixed ¢9 > 0. Hence, z; > z9 + jeo for all j € N; however, due to
the axiom of Archimedes, the righthand side would surpass every given bound for sufficiently
large j. Contradiction!

(2) = (3) If K wouldn’t be archimedean the sequence (j);ey would have to be bounded,
hence it is convergent and in particular a Cauchy sequence. But then,e. g. (j4+1)—j =1 has
for large enough j to be smaller than any given ¢ > 0 which is impossible (choose ¢ = 1).
Contradiction! The strong principle of nested intervals follows immediately from applying the
principle of monotone convergence to the sequences of left (resp. right) endpoints of the inter-
vals [;.

(3) = (4) Trivial.
(4) = (5) Well known. (Use the method of dividing the intervals into halves).

(5) = (1) That the theorem of Bolzano and Weierstrafl implies the axiom of Archimedes
follows exactly as in the proof of (2) = (3); one has only to replace the sequence (j);en
by a suitable subsequence. The remaining part is a consequence of the following general fact
which is easy to prove: A Cauchy sequence in a K-metric space which possesses a convergent
subsequence is convergent. |

Remark. In the step from (1) to (2) we used the ordinary formulation of the axiom of
Archimedes: For each pair a, b € K of positive elements there exists a positive integer j
such that a < jb. Before one can carry out the proof of the next step one has to demonstrate
that this condition is equivalent to the unboundedness of the sequence (j);ey in K. For eco-
nomical reasons, one should introduce the notion of convergence to infinity for sequences in
ordered fields, show that a sequence (a;) is convergent to co if and only if there exists N € N
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with a; > 0 for all j > N and

lim =0,
I j4N

and prove the following Proposition.

Proposition For any ordered field K the following assertions are equivalent:

i) The sequence (j);en is unbounded in K, i. e. ]IEEOJ = .

1 .
ii) The sequence <—) converges in K to zero.
J/ jenx

iii) For every pair a, b € K of positive elements it exits a positive integer j such that a < jb.

iv) For each a € K with |a| < 1 one has lim o/ = 0.
J—00

v) For given fized integer g > 2 each positive element a € K has an g-adic expansion

a = Zakg_k, tez, a,e{0,1,...,9—1}CN.
k=¢

vi) Fach element a € K is the limit of a convergent sequence of rational numbers.

vii) Every interval [a, b] C K with a < b contains elements of Q.

Addendum In vi) the sequence of rational numbers can be chosen as an increasing one.

Proof. 1) = ii) This has been explained before in greater generality.
ii) = iii) b/a is positive. Hence there is an j with 1/j < b/a and consequently a < jb.
iii) = iv) With |e¢| < 1 we have |a™!| > 1 and ¢7! = 1+ 2 where z € K is positive.
Because of iii) we find to each € > 0 an integer N € N such that for all 7 > N:

jr>e -1,

The Bernoulli inequality implies (14 z)? > 1+ jz and hence
! < ! <e€
(14 x)j — 14 jz

|| = a) =

iv) = v) Since lim g’ = 00, there exists to each given @ > 0 a uniquely determined integer
J—00
{ € 7 satisfying ¢g=* < a < ¢g~**' and further a unique element a; € {1,...,g— 1} such that

arg™ < a < (ag+1)g~* < g~ and thus

£ —£

0<a—-—ag” <y

If ¥ := a— amg~" = 0, we are done. If this is not the case there exists a unique k > ¢

with g% < a(!) < g=%*! and an element a3 € {1,...,9 — 1} such that ayg~* < oV <
(ar +1)g~"% < g=**+1 whence
0<a? =qaV - akg_k =a — (agg_é + akg_k) < g_k.
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Inductively proceeding we gain a g—adic sequence which, by the very construction and the
assumption iv), does converge to a .

v) = vi) Choose for positive a the partial sums of a g—adic expansion. For negative a look
at the expansion of —a.

vi) = vii) The center m := (a + b)/2 of the interval [a, b] satisfies @ < m < b. Since
m can arbitrarily closely approximated by rational numbers there are elements ¢ € Q with
a<q<hbh.

vil) = 1) Let K € K be an arbitrary (positive) bound. Then we find a positive rational
number ¢ = ng/m, ng, m € N* with K < ¢ < K + 1 which implies K < ¢ < n for all
n>ng.

The addendum to vi) is clear for positive elements a due to the proof. If @ is negative we
find, since K must be archimedean by the preceding considerations, a positive integer n with
—a < n. Hence a+ n is positive and thus an increasing limit of rational numbers. Then the
claim is correct for a, too. O

Remarks. 1. The g-adic expansion v) is especially valid for each rational number. It is well
known that exactly the finally periodic expansions describe the rational numbers.

2. A field K which satisfies the equivalent conditions (1) up to (5) consists of all such series
(and their negatives); see also the last section. From this it is clear (and could be elaborated
on at this place) that each archimedean ordered field can be embedded in such a field K as an
ordered subfield and that the field K is (up to order preserving isomorphism of fields) uniquely
determined.

Supplement to the first circle

We document with the aid of an example that in characterizing the real numbers via the axiom
of Cauchy completeness or the principles of nested intervals one can’t dispense with the axiom
of Archimedes. Further examples show that it is even not possible to relax it, say by assuming

(¥) K has nontrivial sequences converging to zero
or
(#%) K possesses analytically nilpotent elements, i. e. elements a # 0 with lim; ., ¢/ =0.

Notice that (+x), and consequently (), is in fact true in archimedean ordered fields because of
item iv) in the proposition above.

The first examples we would like to mention are the so called 7, —fields (see e. g. [5]);
these are ordered fields with the following property: for each pair of at most countably infinite
(possibly empty) subsets A, B in K with A < B (i.e. a <b for all elements a € A, b€ B)
there exists an element z € K satisfying A < {z} < B. Structures with this separation
property have been introduced by Hausdorff [2]. An example of such a field is the field *K
of the so called nonstandard real numbers (cf. e. g. [4] ). Applying the separation property to
A=NCK, B=10, one can see at once that K is nonarchimedean. Setting, for an arbitrary
sequence (zy):

A={0}, B={lz;—a/>0:j keN},
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and choosing ¢ with A < {e} < B, it follows easily that every Cauchy sequence in K is
trivial, in particular convergent. Thus, such 7, —fields are examples of Cauchy complete fields
which do not possess nontrivial sequences converging to zero. Therefore, they obey not only, by
trivial reasons, the weak principle of nested intervals, but also the strong one: if I; = [a;, b;]
is a sequence of nested intervals and if, without loss of generality, a; < b; for all j, one applies
the separation principle to the sets

A={a;: jeN} and B = {b;: jEN}.

Now we come to an example of a nonarchimedean ordered field which satisfies the weak
principle of nested intervals and contains analytically nilpotent elements. We follow closely the
presentation of Efimow [1]. Let K be an arbitrary ordered field. It is easily seen that the ring
I of formal Laurent series

(+) p=uaT"+a T +a; T2+ ... @, €K, n€eZ

forms a field since each formal power series 14a;7+ayT?+- - has an inverse. For p # 0 there
exists a uniquely determined integer n € Z such that the coefficient ag in the representation
(+) is different from 0. We call n =n(p) the order of p (for p =0 one has to put n(p) =
—o00). A Laurent series p is called positive if n(p) > —oco and ag > 0. The set P of positive
elements satisfies the properties

PU(-P)U{0} =X, PN(-P)=0, P+PCP and P-PCP,
hence it defines an ordering on .. As one can easily convince oneself,
lim 779 = 0.
J—r0o0
So, I. contains analytically nilpotent elements. Furthermore, 0 < T < « forall e € K, a > 0,
and consequently j < 77! for all j € N. Thus, I is a nonarchimedean ordered field.

I satisfies for arbitrary K the weak axiom of nested intervals. This can be seen as follows:
Let I; = [p;, ¢;] be a sequence of nested intervals in I.. Since one can replace it without
loss of generality by a subsequence, one may assume that p; < p;j41 < ¢j41 < ¢; for all j
(since otherwise the intersection () I; is not empty by trivial reasons). Put n; = n(p;). This
sequence has to be bounded from below; for if limn; = —oo (without loss of generality we
can again select a subsequence) and if, by the same argument, n; > n;4; for all j, all leading
coefficients aé]) of

pi=a) T o) T 4>
would have to be positive because of p;;1 — p; > 0. But then, for given &k, we would have
n; < n(qg) for sufficiently large j and thus

P —qe >0

which is impossible. By the same argument applied to —¢; < —¢;4+1 < —pr we get the
boundedness of the sequence n(g;) from below. Therefore, it exists a number m € Z such

that we can write ) ‘
p] — ag]) Tm _I_ ag]) Tm+1 _I_ e

qj = b(()])Tm_}_bg])Tm-}—l + .- ,

where the leading coefficients aéj) and b(()j) are, however, allowed to be zero. Now, from p; <
Pi+1 < - < @j+1 < ¢, we deduce
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(++) af) <aft << <)

If, in addition, lim (¢; — p;) = 0, we must have, for large j > jo, the inequality ¢; — p; <
T+ which implies bé]) = aé]) for all 7 > jo. We set

co = af) =65, i>jo.

Proceeding by induction, one constructs an increasing sequence

Jo<ji<ja<--
with ' '
e = af) = b7, >

The series Z i TFt™ belongs to all intervals I
k>0
If K, in particular, is an 7;—field, then I. even obeys the strong principle of nested intervals.
The ﬁrst steps of the proof are the same as above including the inequality (++). Now, one
argues as follows: either lim (b( i) (])) =0 and hence ¢y = a( 7) b(]) for j > jo such that
one can proceed with the next sequence of coefficients; or there exists an element ¢y with

aéj) < e < béj) forall 7.

But then p; < ¢oT™ < ¢; forall j.
If, on the other hand, K itself is archimedean, then the strong principle of nested intervals
does not hold for the field 1. since, obviously, the intersection of the nested intervals

I = [JT,1/5]

is void. (An analogous argument applies under the assumption that K has nontrivial sequences
converging to zero).

In (1), the axiom of Archimedes can not be relaxed either. It is well known that each
ordered field can be densely embedded as an ordered subfield into a Cauchy complete ordered
field K. This implies immediately: If K contains analytically nilpotent elements so does K:
K is nonarchimedean if and only if K is nonarchimedean. Hence, there exist nonarchimedean
Cauchy complete fields with analytically nilpotent elements. Moreover, by the same argument,
there exists indeed a field satisfying all the properties (1) till (5), namely the Cauchy completion
of the field Q of rational numbers (cf. the last section).

2 The second circle

The second circle deals essentially with the aziom of suprema and the intermediate value
theorem and its logical relation to the notion of connectedness. In order to be able to carry out
the following steps consistently one first has to develop the notion of a supremum of a nonempty
subset of K. Then, one has to introduce the notion of open sets in a K—metric space X in the
usual manner and at least to mention that each nonempty subset of such a space “inherits” a
metric structure. Connectedness of a space means that it is impossible to decompose it into two
disjoint non void open sets. A K-metric space X is called totally disconnected if (besides the
empty set) only the subsets with one element are connected. Continuity of mappings between



8 37 axiomatic characterizations of the real number field

such metric spaces will be introduced via the e—d—definition. It is easily seen that this is
equivalent to the sequential continuity if the field K obeys the axiom (%) (for the definition see
the supplement to the first circle). The deeper reason for this statement lies simply in the fact
that K-metric spaces satisfy under the assumption of () the 1. aziom of countability. Thus,
in this special case, subsets of such metric spaces are closed if and only if they are sequentially
closed. The aziom of Dedekind cuts will be used in the usual formulation: If K = AU B with
nonempty sets A < B then there exists an element ¢ € K with A < {c} < B.

The second “semicircle” which however, due the first circle, does completely close up has
the following shape: (4) = (6) = (7) = (8) = (9) = (10) = (11) = (12) = (2).
The precise meaning is as follows:

Existence of suprema for

nonempty bounded sets

(7) [0, 1] is connected

(8) K is not totally disconnected

All intervals

are connected

Theorem of Bolzano

(10)
(Intermediate value theorem)
(11) K is connected
(12) Dedekinds axiom of cuts

Remark. If one likes one can easily omit some of the items. Dedekind’s axiom plays no role in
the whole course, but should be considered for historical reasons.
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Proof. (4) = (6) We reproduce the well known proof. Since the given set A C K is not
empty and has an upper bound there exists at least one element ag € A and an upper bound
bo € K of A.If, by chance, ag = by, we are done; for then ag = by is a mazimal element of A,
in particular a supremum. We thus may assume that the interval Iy = [ag, bo] doesn’t consist
of just one point. We now construct inductively a nested sequence of intervals I; = [a;, b;]
with the following property: I;NA # @), b; is an upper bound of A, and the length of I; is one
half of the length of I;_;. This is, besides the last requirement, fulfilled for Iy.If I; is already
constructed we look at the central point m; = (a;+b;)/2 of the interval I;.If m; is an upper
bound, we put a;41 = a;, bj41 = m; . In the other case we put a;4; = m;, bj41 = b;. In any
case, we see that the interval ;41 = [@j41, bj41] has the correct properties. Let K be the
unique element in the intersection of these intervals. For arbitrary @« € A we have a < b; for

all 7 and hence a < lim b; = K. Consequently, K is an upper bound for A. If, conversely,
J—00

K’ < K, then there exists because of lim a; = K an integer £ € N with a; > K'. Since
J—>00

I N A #(, there exist elements @ € A which are larger than K’. Hence, K’ is not an upper
bound for A. In other words: K is the smallest upper bound of A.

(6) = (7) Let Uy, Uy be open sets in K with IoUl4 =T =1[0,1] and IlpbnNIl; =0
where I; :== I NU;,j = 0,1. Assume without loss of generality that 0 € Iy and define
A:={a€l:[0,a]C Ip}.Since 0 € A the set A is not empty, and it is bounded from above
because of A C I. Hence the supremum «a of A exists. We have to show that a belongs
to A and that o = 1; for then I = Iy and I; = (. Suppose to the contrary that o & A.
Then « ¢ Iy since otherwise we could conclude from the openness of Uy that a whole interval
(a — e, a] with positive ¢ would be contained in [y and also [0, @] =[0,a]U[a, a] for
suitable @ € A with @ —¢ < a < a. Contradiction! So, we must have o € I; which, again, is
impossible due to the openness of Uy . Hence, @ € A and [0, o] C Ip. But, finally, if @ < 1
we can find, again by invoking the openness of Uy, an element o' > « with [0, o'] C Iy
which contradicts the definition of «.

(7) = (8) is absolutely trivial.

(8) = (9) Assume first that there exists a non trivial connected interval I = [a, b]. For
¢ < d, the affine mapping

is continuous and maps [ onto the interval [¢, d]. Since due to a simple lemma continuous
images of connected sets are connected the latter interval has the desired connectedness prop-
erty, too. For an arbitrary interval .J one concludes as follows: If .J is not connected it is
possible to write J as a disjoint union of non empty sets .Jg, J; which are the intersection
of J with open sets in K. Choose ¢ € Jy and d € J; and assume without loss of generality
that ¢ < d. From our assumption on .J it follows however that the interval [¢, d] is not
connected in sharp contrast to the first part of our reasoning. Hence we only have to defend
our first assumption. Let Z C K be a non trivial connected subset, and let a, b be elements
in Z with a < b. We put I = [a,b].If there would exist a ¢ € I not belonging to 7 we
would have 7 ={z € Z: 2z <c}U{z € Z: 2> c} in contradiction to the connectedness of
Z ;i thus I C Z.If I were not connected we could find a continuous function f on [ which
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admits precisely the values 0 and 1:if we write I as a non trivial disjoint union IyU [} with
I; =1INU;, U; openin K, the function

f() 0, $EIO
T) =
1, $EIl

is continuous on . But then, the function f defined on 7 by f(z) := f(a), 2 < a, z €
Z, f(z):=f(b), z>b, z €7 is continuous and thus Z can’t be connected since the image
set f(Z) ={0, 1} is not connected.

(9) = (10) Let I = [a,b] C K be an arbitrary closed interval and f : I — K a con-
tinuous function. Assume without loss of generality that f(a) < f(b) and choose ¢ with
fla)<ec< f(b). Thenthesets Ip:={z€l: f(z)<c}and [ :={z€l: f(z)>c} are
open in [, disjoint and not empty. If f(z) # ¢ forall 2 € I, then I = IoU ;. Contradiction!

(10) = (11) If K is not connected we can write K = Uy U U; with nonempty disjoint
open sets Uy, Uy . Choose elements a € Uy and b € Uy and suppose a < b. Then, if we put
I; :=[a,b]NU;, j =0,1, the function

f() —1, l‘EIO
T) =
1, l‘EIl

is continuous on [, but doesn’t take on the value 0 lying in between f(a) = —1 and f(b)=1.

(11) = (12) Let A, B be nonempty subsets of K with AUB =K and A< B.If A and B
would be open we could conclude that AN B = (otherwise there are elements a € A, b € B
with @ > b), contradicting the connectedness of K. Hence, at least one of the sets is not open,
say A. Then there exists an element ¢ € A such that (¢ —¢, c4+¢) ¢ A. Since all elements
which are smaller than ¢ belong to A, we necessarily have [¢, c+2)N B # forall € > 0.
This immediately implies A < {c¢} < B.

(12) = (2) Let a; € K be an increasing bounded sequence. We put
A={z€K:2<a; forsome j}, B:={z€K:z>a; foral j}.

Let ¢ be determined by A < {¢} < B.Due to our assumption, a; < c forall j e N.If ¢ > 0
is arbitrarily given, we find jo such that a;, > ¢ —¢ (otherwise, we would have c—¢/2 € B).
Since the sequence a; is increasing it converges to c. O

We add still another characterization via the notion of pathwise connectedness. A K-metric
space X is called pathwise connected if to each pair of points zg, ;1 € X there exists a
continuous mapping v : I — X, [ :=[0,1] C K (a path) with v(0) = 2o, v(1) = z;. We
claim that the former axioms are equivalent to

Pathwise connected
(13) K-metric spaces

are connected
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This can be seen via (7) <= (13) Let X be pathwise connected and suppose X = Uy U U,
with nonempty open subsets Up, U1 having no points in common. Choose zg € Uy, 1 € U;
and a continuous path v : I — X with (0) = ¢, y(1) = 1. Then the preimages
I; := v7YU;),7 = 0,1, are disjoint open subsets of [ with I = Iy U I;. Contradiction!
On the other hand the unit closed interval I is pathwise connected since for all a, b € I the
image of the continuous path v: I — I with v (¢) :=a+¢(b — a) is contained in I. O

Remark. Since the existence of suprema implies the axiom of Archimedes as well as the prin-
ciples of nested intervals, the axiom (6) can be replaced by the following statement.

To each nonempty bounded set A C K
(6) it exists an increasing sequence (a;)

with a; € A and lima; =sup A

The third circle

In the following, the field K is still ordered, and f: I :=[a, b] — K denotes any function.
For the notion of differentiability at a point ¢ € I we use the difference quotient

r — C

and demand that we can find a (necessarily uniquely determined) number A € K which we
call the (first) derivative or differential quotient f'(c) of f at ¢ such that there exists to each
given ¢ >0 a 6 > 0 with

[(Af) (2) = Al < ¢

forall z € I with 0 < |z — ¢| < 4.

Remark. If the field fulfills the axiom (*) then the definition of the derivative coincides with
the following (a priori formal) one:

fI(C) .— lim f(‘r) B f(C)
Lo w—ce
where the existence of the limit means that
A e i 1ED = ()
T ojmeo mj— ¢

exists for all sequences (z;) with z; € I, z; # ¢ and lim z; = ¢ and that A is independent
of the special choice of the sequence (z;). This definition is obviously meaningful only if there
are such sequences in K, that is only if K satisfies (x).

It is immediately seen that differentiable functions are continuous: By the definition, there
is to each given ¢ > 0 a § > 0 with

[ f(z) = flal < e+ 1 (e)D]z — ¢
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forall z € I with 2 #2¢ and |z — ¢| < §.

We say that f satisfies condition (+),, n € N fixed, if f is n-times continuously differ-
entiable on [ := [a, b] and if the n—th derivative f(7) is differentiable at least on the open
interval (a, b). In the axioms stated below the meaning of the various theorems is as follows.

(15) Theorem of Rolle. Let f:[a, b] — K be a function with (4)y and f(a) = f(b), then
there exists an element £ € (a, b) such that f'(£) =0.

(16) Generalized (or 2.) mean value theorem. Let f, ¢ :[a, b] = K be functions satisfying
(+)o and ¢’ (z) #0 for all z € (a, b), then g (a) # ¢ (b), and it exists an element ¢ € (a, b)

such that
f0) = f@) _ £
g(b) —gla)  g'(&)

(17) Mean value theorem. If f :[a, b] — K satisfies the condition (+)¢ then there exists
an element £ € (a, b) with

(18) Theorem of Taylor expansion. If f:[a, b] — K fulfills (4),, then, to each z € (a, b],
there exists £ with a < & < z such that

"(a () (q
1@ =@+ M a o i g R )
where (nt1)
() 1

(remainder term in Lagrange form).

(19) If f satisfies (+), and f*+1) =0 on (a, b) then f is a polynomial function of degree
less or equal to n, i. e. a function of type

f(z) = apz"™ + a4t ap,, a; €EK.
(20) If f satisfies (+)o and f'=0 on (a, b) then f is constant.

The third “circle” consists of the implications (4) = (14) = (15) = (16) = (17) =
(18) = (19) => (20) => (7) with:

Continuous functions on [a, b]
(14)
assume their maximum

(15) Theorem of Rolle
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(16) | Generalized mean value theorem

(17) |  Mean value theorem

(18) | Taylor expansion (with Lagrange remainder term)

Characterization of polynomial functions

1
(19) o ey

(20) f'=0 = f = const.

Proof . (4) => (14) Together with (4) also (5), (6) and (6)" are fulfilled. Let K :=sup f (I) € K
if the set f(I) is bounded from above; if not we put K = oo. Certainly, we can find a
sequence z; € I with lim;_ f(z;) = K. Due to (5), we may assume (after going over to
a subsequence) that the limit ¢ € I of the sequence (z;) exists. Since f is (sequentially)
continuous we immediately derive

K = lim [ () = /(c).

j—oo
Hence, the function f assumes its maximum at the place c.

(14) = (15) We deduce first from the condition (14) that the field K is archimedean ordered;
or to put it the other way around: for a nonarchimedean field K the statement (14) is wrong.
In that case there exist “infinitely small” positive elements in K, i. e. elements ¢ > 0 with
e < 1/n for all n € N*, and consequently “infinitely large” elements K which are larger than
any n € N. The sets

Upn :={z €K:z=m or |z —m| infinitely small } , m € N* |

are open (and pairwise disjoint) since together with ¢, ¢’ also € + ¢’ is infinitely small. Namely,
if z €U, and |z — 2’| < ¢ for any infinitely small positive ¢, then also z’ € U, . We claim
moreover that the (necessarily open) union of the sets U, is closed, i. e. that the complement

UO Z:K\ U Um

meEN*

is open. If z € Uy and & > 0 is infinitesimally small we immediately see as above that the
whole (z —¢, 2+ ¢) is contained in Up.
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Now, U U,, is an open covering of [0, K|, K infinitely large, from which no element can
meN
be removed. The function

m, x €Uy
o

0, otherwise
is continuous but assumes no maximum on the interval [0, K'].
We next show that the theorem of Rolle is valid. By assumption, the function f is continuous
on [a, b] C K, hence assumes its maximum and minimum. We may suppose that one of these
extremal places £ lies in the open interval (a, b) since otherwise f(z) = f(a) and f' =0.
Without loss of generality we assume moreover that f has a maximum at £. Then we have
for the difference quotient

f(@) - f(© { 20, @ <¢
z—§ <0, z>¢&.
From the definition of the differential quotient it follows for all positive ¢ and all = > £ which
are lying sufficiently close to £ :

f'€) <e+(Af)(@) <e.
Hence, f'(¢) < 0. Correspondingly, we get with elements z < & that f'(£) > 0.

(15) = (16) Introduce the new function

Fz) = (f(z) = f(a) (g(®) = g(a)) = (9(z) = g(a)) (f(b) = f(a)).
F satisfies (+)o and F'(a) = F'(b) = 0. Hence we find £ € (a, b) with F'(§) = 0, and
therefore
(€ (g0) —g(a) =g () - fla)
But g (a) # ¢ (b) since otherwise we find 5 € (a, b) with ¢'(n) = 0, in contradiction to our
assumption on g¢.

(16) = (17) Look at the function g (z) ==z .

(17) = (18) To each a < x < b there exists a uniquely determined element p (z) € K such
that

Y@ o G
f(ﬂﬁ)—jz:;J 7 (z - a) +P(9E)W
Now, for fixed z with a < z < b, put
_ O PN )
P (t) -—f(iﬂ)-l';) 7 (z—1) +P($)m

By our assumptions on f the function F is continuous for all ¢ € [a, ] and differentiable
on (a, z).Furthermore, F'(z) =0 and F'(a) = 0 according to the definition of p (z) . Hence,
we find an element £ between a and z such that F'(£) = 0. By a simple calculation, we get

() ) ) | o)
rw =0+ I e B et o O

-1 n!
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Since a < & < z it follows that p(z) = f*+1 (€).

(18) = (19) We have R, 1y (z) =0 for all z > a by assumption. Hence

m
f(w)ZZ:f

N(a :
J'( )(az—a)], z€a,b].

(19) = (20) Trivial since polynomial functions of degree < 0 are constants.

(20) = (7) If [0, 1] is not connected there exist locally constant functions which are not
constant. O

Remark. The trick in the proof of the conclusion (17) = (18) is taken from Heuser [3].

The preceding axioms are equivalent to either of the following assertions. Here a function
f: I =K, I an arbitrary interval, is called convez if for all a, b€ I, a <b:

f@) < f@+ -0 PO ey
(21) f'>0 = f increasing
(22) f">0 = f convex

Obviously, (21) can be derived from the mean value theorem (17). On the other hand, if (21)
is fulfilled, we conclude from f’ =0 that f' > 0 and (—f)" > 0 and hence that f and —f
are increasing. Hence, f must be constant; in other words: (21) implies (20). We don’t repeat
the standard proof for (22) using only former results. If, finally, (22) is fulfilled and f is a
differentiable function with f' =0 then f is twice differentiable with f” = 0. Due to (22) f
as well as —f are convex. Therefore, f is an affine linear function: f(z) = dz 4 ¢. Because
of f'=0, necessarily d =0 and f = ¢ is constant. Hence, (22) implies (20). O.

Remark. If one demands the validity of e. g. the intermediate value theorem or the mean value
theorem only for polynomials instead of continuous and differentiable functions one is lead to
the much larger class of the real closed fields invented and thoroughly studied by Emil Artin
and Otto Schreier.

The fourth circle

The fourth circle comprises compactness statements in the sense of properties of open coverings
of intervals [a, b] C K. Notice that there exists a classification of all (not necessarily ordered)
locally compact fields. Lebesgues’ Lemma is used in the following formulation: To each open
covering

[a,b]C |J U

=yl
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it exists § > 0 (sometimes called the Lebesgue number of the covering) such that to each pair
of elements zy, 29 € [a, b] with |z; — 23| < § there exists ¢ € I such that zy, 29 € U,. We
prove the following implications: (4) = (23) = (24) = (25) = (26) = (27) = (2).

(23) [0, 1] is compact

K is archimedean
(24) &

Lebesgues’ Lemma

K is archimedean
&

Continuous functions on [a, b]

(25)

are uniformly continuous

Continuous functions on [a, b]
(26) can arbitrarily closely approximated

by step functions

K satisfies (k)
(27) &

Continuous functions on [a, b] are bounded

Remark. 1t is plain that together with [0, 1] every closed interval [a, b] C K is compact.

Remark. 1 didn’t find the statements (24), (25), (26) and (27) explicitly formulated as axioms
of the real numbers in the literature. It is clear that (27) can also be replaced by

Continuous functions on [a, b]
(28)

are bounded by a natural number n
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since one easily deduces from it that K is archimedean. (For positive a the function f (z) = az
is continuous on the interval [0, 1]; consequently, a = f (1) < n with suitable n € N). One
can find this axiom in Steiner [7].

Proof. We first convince ourselves that the condition (23) resp. (26) implies the axiom of
Archimedes. In other words: in a nonarchimedean field K neither (23) nor (26) holds. In the
case of (23) we have this already seen in the proof of the implication (14) = (15) where we
constructed an interval [0, K'] together with a countably infinite open covering from which
no element can be deleted. Thus, this interval - and also the standard interval [0, 1] - is not
compact.

If (26) holds true we find for the function f(z) = 2 on [0, 1] and any infinitely small
€ > 0 asubdivision ap =0 < a; <---<a, =1 and elements ¢; € K such that

|z —c;| < e, a;j<z<ajy.

From this one deduces that all a; and all ¢; must be infinitely small which is impossible
because of a, = 1.

We are now in the position to prove these implications. (4) = (23). Let U,e; U, D [0, 1]
be an open covering from which one can’t select a finite subcovering. This remains true for at
least one of the two intervals [0, 7] and [1, 1]. Inductively proceeding in the same manner
we find a nested sequence of intervals Ip D Iy D Iy D --- such that no I; can be covered by
finitely many U, . But choosing zq Eﬂ(;io I; there exists a ¢o € I such that z¢o € U, and

therefore also a jo with I;, C U, . Contradiction!
(23) = (24) Each set U, is a union of intervals {|z — z¢| < Jd} with

{lz — 29| <28} CU,.

Since [a, b] is compact it can be covered by finitely many of such intervals:
[a,b] C U{|.r -zl <&}y, {lr—z;| <26} cu, .
=1

Put § := min(8y,...,0,); let z € [a, b], hence |z — ;| < §; for some j, and let z’ be
another element with |z — 2’| < §.Then, |2/ —z;| < |2/ —z|+ |z —2;| < §+§; < 24;,
in particular z, 2’ € U, .

(24) = (25) We show instead: To every continuous function f: [a, b] — K and every € > 0
it exists a finite (even an equidistant) subdivision of [a, b]: ey =a < a; <---< a, =b such
that for all z;, { with a; < z;, & < aj41 one has:

| f(z;) — f(&)] <e.

This is, in fact, equivalent to the uniform continuity of f under the additional assumption
of the axiom of Archimedes. Let € > 0 be given. Then, to each zg € [a, b] there exists a
b = 8 (zo) with the property that from |z — zo| < &, = € [a, b] one can conclude that
| f(z) — f(z0)| < §.Let 6 >0 be the Lebesgues number of the covering

U {lz -2l <do},

Ioe[avb]
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and choose n € N in such a way that

1 5
—(b—a)< .
n ( @) < 2
Then our claim is true for the subdivision a; = a + 7 (b—a),j=0,1,...,n.
n

(25) = (26) Trivial because of the equivalent formulation used in the preceding step.
(26) = (27) Trivial because of the remark at the beginning of the proof.

(27) = (2) We assume that the field K satisfies (*) but not (2), and construct a continuous
function f on an interval [0, K] which is unbounded. Since (2) is not true there exists a
(without loss of generality strongly) increasing sequence ag < a; < --- having an upper bound
which is not convergent. We define

Ip={zeK:z<a}, [j={z€K:a_y <z<a}, j>1,

and A =UZZ,I;. Obviously, A is also the union of the open intervals (—o0, @; ), hence open
itself. However, due to the nonexisting limit of the sequence (a;);ey it is easily seen that the
set A is sequentially closed in K and hence, due to (x), even closed.

Namely, if (bg) is a sequence in A converging to b € K then there are two possibilities: Either
there exists a j such that by < a; for almost all £. Then b < a; and consequently b € A.
Or for each j there are infinitely many k& with by > a; and hence b > a; for all j. Choose
now to an arbitrarily given € > 0 an index k such that by > b — ¢ and a jo with by < a;, .
Then we have for all 7 > jp:

0<b—-—a; <b—-a;, <b-10bp <c¢

in contradiction to the assumption that the sequence (a;) does not converge.

Therefore, the set
K\A={z€K:z > q; forall j}

is open (and by assumption nonempty). Let furthermore ¢; € K be a sequence with ¢ =0 <

¢ < ¢z <---and lim; . ¢; = 0o (existing again due to (*)). Then, we define f:K — K via
0, x € I
T —a;_ ,
f(z) = c;i1 + 7]1(0]‘—0]'_1), €l 7>1
a; — a;_1
0, rglI.
f is obviously continuous, but unbounded on every interval [0, K] with K € K\ A. O

The fifth circle

The fifth circle contains (Riemanns) integration theory and the main theorem of differential
and integral calculus. We prove the equivalence of each of the following statements to a former
one; here f always denotes a continuous function f: [a, b] — K. The main theorem asserts
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that each continuous function f : [a, b] — K admits an antiderivative, and two antideriva-
tives differ only by an additive constant.

K satisfies (k)
&

For continuous f exists the upper integral

/a*b f(z)dx

K satisfies (k)
&

For continuous f exists the Riemann integral

/abf(.r)d:v

K satisfies (k)
&
For continuous f > 0 exists an antiderivative,

and each antiderivative is increasing

K satisfies (k)
(32) &

Main theorem of differential and integral calculus

Proof. From the axiom (26) follows that to each continuous function f : [a, b] — K there
exist step functions ¢, ¥ : [a, b] = K with ¢ < f < 4. Hence, the set

{/b P (z)dz: f < 1 step function}

is nonempty and bounded from below by

/abgo(ac)d.r
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for any step function ¢ < f. Thus, because of (6), there exists

/*bf(x)dm = inf{/bw(m)dl‘: f <, ¥ stepfunction} .

If, conversely, (29) or (30) holds then, necessarily, every continuous function f: [a,b] = K
must be bounded (from above). Hence, (27) is fulfilled. In particular - due to (26) - we find
to each continuous function f : [a,b] — K and every ¢ > 0 step functions ¢, ¥ with

o < f <9 and supp, (¥ — ¢) < bL . Consequently,
’ -a

b b
0< [ W@ds - [ pla)ds < e,

and with (29) we conclude that

hence (30).

From (30) to (31) one argues as follows: By assumption, the integral

exists for all z € [a, b]. The well known proof shows that F is differentiable with F' = f.
Since the integral is additive we get for 21 < x4

Fla2) = F(a1) = /: f(2)de = /I f(z)dz > 0

1 *T
since ¢ : [21, z2] = K with ¢ (z) = 0 is a step function such that ¢ < f|[z1,2q]. If G is

another antiderivative we have (G- F)' = G'— " = f— f =0 and, because of (20), G — F =
const. In particular, G is increasing, too.

(31) = (32) Every continuous function f can be written as f = f; — f_ with the continuous
functions

f+ = max (f,0), f- = —min(f,0).

Since fy and f_ are nonnegative they admit antiderivatives F,. and F_ resp., and
F := F,—F_ is an antiderivative of f.Let G be another antiderivative of f;then H :=G-F
is an antiderivative of 0. Hence H' =02> 0 and (—H)' =0 2> 0. Due to (31), H as well as
—H must be increasing functions which implies H = const.

Finally, if (32) holds true then f'=0=0" implies f = const. This is axiom (20). O

Other characterizations of the real numbers

Up to now, we didn’t use the fact that the axioms considered so far characterize in fact a (up
to isomorphisms of ordered fields) uniquely determined field. The ezistence can be derived e. g.
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from the general theory of Cauchy completions for K-metric spaces thus using axiom (1) as
a guiding principle for the construction (see e. g. [6] for more details). Needless to say that
every course treating the subjects of this note should emphasize the (hi)story of constructing
the reals and the role played also by the other axioms, especially by (2), (3) and (12).

As we already mentioned earlier (at the end of the first circle) each archimedean ordered
field can be embedded (as an ordered subfield) into such an archimedean ordered Cauchy com-
plete field. This follows easily e. g. from the proposition which we proved there and axiom
(2) and implies the just formulated uniqueness statement. Thus, archimedean ordered Cauchy
complete fields can also be characterized by the axiom of mazimality. (On the other hand, the
field @ of rational numbers is the minimal archimedean ordered field). Notice that we didn’t
use this fact either in the previous circles.

K is archimedean
&

(33)
Each archimedean ordered field

can be embedded into K

Another manifestation of the uniqueness is the aziom of g—adic expansion which we also claim
to be equivalent to the other ones.

(34) g—adic expansion

By this, we understand more precisely the following assertion: For each natural number g > 2,
the g—adic series

Zakg_k7 KEZ7 ak6{0717"'7g_1}
<k

are convergent in K, and each nonnegative element in K can be expanded into such a series.

Proof. The partial sums

xj = Z akg_k
£<k<j
of such a g-adic series form an increasing sequence. Under the assumption of (2) we get, using
(3), that (¢7%)ren is a sequence converging to zero. Hence

B 1
2 <Y (g-1g™* zgé(g—l)ﬁ = ¢!
<k -9

and the given g-—adic series is convergent. The representation of any positive element by means
of such a series is a simple consequence of the axiom of Archimedes as we have seen at the end
of the first circle.

Conversely, if every g—adic series is convergent then it follows from the convergence of the
special series 3, g% that the element 1/g is analytically nilpotent. Therefore, the sequence
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(gk)keN of positive integers in K is unbounded; hence K is archimedean and can be embedded
into the maximal archimedean field K. Since all positive elements of K can be developed into
a g—adic series the fields K and K must coincide. |

Using (33) we can deduce further equivalent axioms for the real numbers in terms of
statements on absolutely convergent series like the criterion of majorants, the associativity of

absolutely convergent series and the conclusion ,absolute convergence = convergence“.

Warning This is not true with respect to commutativity of infinite series. This clearly holds
in any archimedean ordered field due to (33).

Thus, we claim that the following axioms are equivalent to the former ones.

K is archimedean
(35) &

Criterion of majorants

K is archimedean
(36) &

Associativity for absolutely convergent series

K is archimedean
(37) &

Absolutely convergent series are convergent

Proof. By assumption, K is an ordered subfield of the maximal field K. It remains to show
that in case K # K neither of the assertions (35), (36) and (37) are true. For this it suffices
to construct a series ) 72, ax, ai € K which is not convergent in K such that > 72, | ax],
nevertheless, is convergent in K. (In case of (36) a counter example is given by the double
series (a;;);ken With aor = ar, a1p = —ay, a;p = 0 otherwise).

So, let K # K, and take an element a € [0, 1] C K which is not contained in K. Write a
as a dual number:

S,
= — 0,1}.
a ]Cz::l ok Cr € { ) }

Since for all j < £
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we can write a also as
> 1
a = Zak with ak::I:Q—kEQCK.
k=1

The series 3" |ag| is convergent to 1 in Q (and thus also in K). 0
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