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In memoriam Nobuo Sasakura

As a participant of the workshops in Kyoto and Tokyo in July 1997 where I gave lectures on deformation theory

of rational surface singularities and the result in the present notes I was certainly looking forward to see Nobuo

Sasakura again whom I met in Japan five years ago as my host and a little later as my guest in Hamburg. It

was a great shock for me to learn just before my departure to Japan that there will be no discussions with him

anymore.

There exists an extensive literature on the deformation theory of Kleinian singularities, i. e.
quotient surface singularities of embedding dimension 3 alias rational double points. E. g.
P. Kronheimer [K] gave an invariant–theoretic construction of the (monodromy trivializing
finite covering of the) versal deformation and the simultaneous resolution of this family. A
quiver–theoretic approach has been proposed by him and was carried out by others (Cassens
[C]; see also Slodowy [S] and the literature cited there).

As one can easily check in simple examples this construction has no straigthforward general-
ization to quotient singularities X = C2/Γ , Γ a (small) finite subgroup of GL (2, C) (not in
SL (2, C) , i. e. the case of Kleinian singularities) and its associated McKay– or Auslander
- Reiten–quiver. The purpose of the present note is to restate the quiver construction for the
An–singularities in such a manner that it can be generalized to yield (up to a smooth factor)
the monodromy covering of the Artin–component for all cyclic quotients. It is not clear at the
moment (besides for some special cases) how to produce with this method the other compo-
nents (not existing in the An–cases) or even the whole versal deformation (which also possesses
a monodromy covering; see Riemenschneider [R2] and Brohme - Riemenschneider [BR]).

We should point out that our construction uses in a crucial manner the specific combinatorial
properties of cyclic quotients and, hence, gives no hint how to find a conceptual way which
could be followed in the general case of quotient surface singularities. However, it should be
possible to provide our construction with an invariant–theoretic interpretation since the spe-
cial representations used below have such a description by the work of Wunram [W] and the
author (unpublished) which may lead to a general understanding of the deformation theory of
quotient surface singularities completely in terms of the representations of the group Γ . Notice
that e. g. the vector space of infinitesimal deformations of quotient surface singularities can
be described in such a way by work of Pinkham [P]. There should also exist in the cyclic case
a direct connection to the toric structure of these singularities.

1. The An–case.

We let the group Zn+1 = Z/(n + 1)Z , n ≥ 1 , act on C [ u, v ] by

(∗) u 7−→ ζn+1 u , v 7−→ ζ−1
n+1 v , ζn+1 a primitive (n + 1)st root of unity ,
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with (generating) invariants

x0 = un+1 , x1 = uv , x2 = vn+1

and (generating) equation
x0 x2 = (uv)n+1 = xn+1

1 .

The McKay–quiver is of the form

• •

◦

¾ -ª

µ I

R¾ -

M0

M1 Mn

• •¾ - ¾ -· · · · · ·
M2 Mn−1

where the n + 1 vertices are the one–dimensional representations

Mj : u 7−→ ζj
n+1 u , u ∈ C , j = 0, . . . , n ,

and tensoring Mj with the natural representation on N = C2 as in (∗) yields

Mj ⊗N = Mj−1 ⊕Mj+1 , j ∈ Zn+1

which explains the two arrows from Mj to Mj+1 and backwards. Interpreting Mj → Mj+1

as a linear homomorphism we can identify it, after fixing a basis for each Mj , with a number
uj , and

U =




0 0 . . . 0 un

u0 0 . . . 0 0
0 u1 . . . 0 0
...

...
. . .

...
...

0 0 . . . un−1 0




describes the corresponding endomorphism

U ∈ EndM , M = M0 ⊕ · · · ⊕Mn .

Similarly, we have an endomorphism V ∈ EndM with

V =




0 v1 0 . . . 0
0 0 v2 . . . 0
...

...
...

...
0 0 0 . . . vn

v0 0 0 . . . 0




.
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The endomorphisms Un+1 , U B and Bn+1 have diagonal form:

Un+1 = u0 . . . un En+1 , U V = diag (v0 un, v1 u0, . . . , vn un−1) , V n+1 = v0 . . . vn En+1 .

Take the entries of these matrices, viz.

u0 . . . un , v0 un , v1 u0 . . . , vn un−1, v0 . . . un

as generators of a subalgebra of C [ u0, . . . , un, v0, . . . , vn ] . This, then, is presented by

C [ x0, x
(0)
1 , . . . , x

(n)
1 , x2 ] / (x0 x2 = x

(0)
1 · . . . · x(n)

1 )

with x0 = u0 . . . un , x2 = v0 . . . vn , x
(j)
1 = vj uj−1 , j ∈ Zn+1 . It is well–known that this

algebra describes the total space of the (monodromy) covering of the versal deformation ([R1],
[S]) of the given singularity. Notice that the corresponding deformation can be written in the
form

[ U, V ] = U V − V U = diag (λ0, . . . , λn) ,
n∑

j=0

λj = 0 .

2. Statement of the result in the An,q–case.

Take now 0 < q < n and gcd (n, q) = 1 . We have a natural action of Zn on C [u, v ] by

u 7−→ ζn u , v 7−→ ζq
n v .

We call C2/Zn the quotient singularity of type An,q . Remark that An–type is the same as
An+1,n–type.

The McKay–quiver, with vertices M0, . . . , Mn−1 , has now arrows uj : Mj → Mj+1 and
vj : Mj → Mj+q , j = 0, . . . , n− 1, all indices taken modulo n , giving endomorphisms

U, V ∈ EndM , M = M0 ⊕ · · · ⊕Mn−1 .

It is well–known [R1] that the equations of an An,q–singularity are determined by the pair
(n, q) and its continued fraction expansion

n

n− q
= a1 − 1 a2 − · · · − 1 ar , aρ ≥ 2 :

if we set

i0 = n , i1 = n− q , iρ+1 = aρ iρ − iρ−1 ; j0 = 0, , j1 = 1 , jρ+1 = aρ jρ − jρ−1 ,

we get r + 2 numbers

i0 > i1 > · · · > ir = 1 > ir+1 = 0 , j0 = 0 < j1 < · · · < jr+1 = n ,

and the monomials xρ = uiρ vjρ , ρ = 0, . . . , r+1 , generate the invariant algebra. They satisfy
the equations x0 x2 = xa1

1 , x1 x3 = xa2
2 , . . . , xr−1 xr+1 = xar

r plus some other equations which
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can compactly be written in quasideterminantal form, i. e. as the 2 × 2–quasiminors of the
2× (r + 1)–quasimatrix




x0 x1 x2 · · · xr

xa1−2
1 xa2−2

2 · · · xar−2
r

x1 x2 x3 · · · xr+1


 .

Recall moreover that the exceptional divisor in the minimal resolution of such a singularity is
a string of s smooth rational curves with selfintersection numbers −bσ, σ = 1, . . . , s , where

n

q
= b1 − 1 b2 − · · · − 1 bs , bσ ≥ 2 .

As we mentioned at the beginning, our construction uses special representations. Recall that
the famous McKay–correspondence yields for any binary polyhedral group Γ ∈ SL (2, C) a
bijective mapping between the set of (nontrivial) irreducible complex representations of Γ
and the set of irreducible components of the exceptional set in the minimal resolution of the
singularity C2/Γ . For the other finite (small) subgroups Γ ∈ GL (2, C) this is no longer true;
in fact there are in these cases always more nontrivial irreducible representations than curves.
But by the work of Wunram [W] one can associate to each curve a well–defined nontrivial
representation. We call these (together with the trivial one) special representations. They form
a (proper) subset of the set of vertices in the McKay–quiver. For cyclic quotient singularities
this set can be easily described [W]: The special representations are precisely the Mα with
α = tσ , σ = 0, . . . , s , where

t0 := n , t1 := q, . . . , tσ+1 = bσ tσ − tσ−1, . . . , ts = 1 (ts+1 = 0) .

Here, of course, Mα belongs for α = tσ , 1 ≤ σ ≤ s , to the curve with label σ . If one wants
to have these numbers in their natural ordering, i. e. (modulo n )

t̃σ := ts+1−σ , σ = 0, . . . , s ,

one may find them by reversing the ordering of the bσ : writing βσ = bs+1−σ , σ = 1, . . . , s ,
yields the continued fraction expansion

β1 − 1 β2 − · · · − 1 βs =
n

q̃
, qq̃ ≡ 1 modn ,

and the nonnegative integers t̃σ are determined by

t̃0 = 0 , t̃1 = 1 , t̃σ+1 = βσ t̃σ − t̃σ−1 .

We are now able to state our Theorem. It says in particular that in order to understand the
deformation theory of cyclic quotient surface singularities one has to consider the underlying
quiver seriously as the McKay–quiver, not just as an abstract one ! In particular the cyclic
symmetry of the abstract quiver has to be broken in the general case.
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Theorem For given (n, q) , take in C [u0, . . . , un−1, v0, . . . , vn−1 ] the subalgebra generated
by those elements of the diagonal matrices

U iρ V jρ , ρ = 0, . . . , r + 1 ,

which belong to special representations. Then this algebra is canonically isomorphic to the
algebra of the total space of the (monodromy covering) of the Artin component of the An,q–
singularity up to a smooth factor .

Remark . Since in the An–case all representations are special this statement includes the former
one.

3. More explicit statement of the result .

In order to prepare the grounds for proving the theorem we derive now an explicit formulation.
We first have to compute the entries of the matrices U iρ V jρ , ρ = 0, . . . , r + 1 . These are
diagonal matrices of type

diag
(
v0 · vq · . . . · v(jρ−1)q · u(jρ−1)q+1 · u(jρ−1)q+2 · . . . · u(jρ−1)q+iρ , . . .

)
,

where the next entries are obtained from the first one by permutating the indices cyclically
modulo n .

The theorem advices us to choose only the entries belonging to the indices t̃σ , σ = 0, . . . , s .
Since these monomials are completely determined by the v-factors we suppress the u’s and
write for them

vt̃σ
vt̃σ+q · . . . · vt̃σ+(jρ−1)q , ρ = 0, . . . , r + 1 , σ = 0, . . . , s .

It now seems reasonable to make the coordinate change

v0 7−→ v0 , v1 7−→ vq , v2 7−→ v2q, . . . , i.e. vj 7−→ vjq

(all indices taken modulo n ). - We have the following

Lemma If k0 = 0 , k1 = 1, . . . , kσ+1 = bσ kσ − kσ−1 , σ = 1, . . . , s , (ks+1 = n) , then

t̃(s+1)−σ = qkσ mod n , σ = 0, . . . , s + 1 .

Proof . For σ = 0 , we have t̃s+1 = n and k0 = 0 , for σ = s − 1 it follows that t̃1 = t1 =
q , k1 = 1 . The rest follows by induction:

qkσ+1 − t̃(s+1)−(σ+1) = q(bσkσ − kσ−1) − (β(s+1)−σ t̃(s+1)−σ − t̃(s+1)−(σ−1))

= bσ (qkσ − t̃(s+1)−σ) − (qkσ−1 − t̃(s+1)−(σ−1))

≡ 0 mod n .

Combining these results we get the following description of the algebra under discussion as the
subalgebra Ãn,q of the polynomial ring C [v0, . . . , vn−1] generated by the elements

x(σ)
ρ = vkσ vkσ+1 · . . . · vkσ+(jρ−1) , ρ = 0, . . . , r + 1 , σ = 0, . . . , s .
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Notice that x
(σ)
0 = 1 and x

(σ)
r+1 = v0v1 · . . . · vn−1 for all σ . – Hence, the statement of the

theorem is equivalent to the following claim:

The algebra Ãn,q is, up to a smooth factor, the coordinate ring of the total space of the mon-
odromy covering of the Artin component of the singularity Xn,q .

4. Some examples.

Before sketching a general proof we discuss some examples. We start with the simplest non
An–case, viz. the case (n, q) = (3, 1) . The McKay–quiver is of the form

• •

◦

--
ªª

II

M0

M1 M2

We have to take into consideration the endomorphisms

U3, U2V, UV 2, V 3 .

The special representations are M0 and M1 (there is just one component in the exceptional
set of the minimal resolution of the A3,1–singularity). Thus, we have to regard the invariants

u0u1u2 , v0u1u2 , u0v1u2 , v0v1u2 , u0v1v2 , v0v1v2

which satisfy the determinantal relations
(

u0u1u2 u0v1u2 u0v1v2

v0u1u2 v0v1u2 v0v1v2

)

and no others.

Remark . Considering all invariants together with the obvious 4–parameter family given by

[ U2, V ] = diag (λ1, λ2, λ3) , [ U, V 2 ] = diag (λ4, λ5, λ6)

with
∑3

j=1 λj = 0,
∑6

j=4 λj = 0 yields the correct singularity over the origin, but no flat de-
formation of it !

This example can immediately be generalized to the cone An,1 with endomorphisms
Un, Un−1V, Un−2V 2, . . . , V n and special modules M0, M1 yielding the correct invariants and
equations

(
u0u1 · · ·un−1 u0v1u2 · · ·un−1 u0v1v2 · · ·un−1 · · · u0v1 · · · vn−1

v0u1 · · ·un−1 v0v1u2 · · ·un−1 v0v1v2 · · ·un−1 · · · v0v1 · · · vn−1

)
.
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We discuss another somewhat more complicated example, viz. the case (n, q) = (46, 27) . Here
we have

n

q
= 2 − 1 4 − 1 2 − 1 3 − 1 2 ,

hence s = 5 , and
n

n − q
=

46
19

= 3 − 1 2 − 1 4 − 1 3

such that e = r + 2 = 6 . The sequences (iρ) and (jρ) are given by 46, 19, 11, 3, 1, 0 and
0, 1, 3, 5, 17, 46, resp.; the sequence (tσ) by 46, 27, 8, 5, 2, 1, 0. Therefore, we have to
consider the following monomials (where we delete, as mentioned above, the variables uj ):

x
(0)
0 = 1

x
(0)
1 = v0

x
(1)
1 = v1

x
(2)
1 = v2

x
(3)
1 = v7

x
(4)
1 = v12

x
(5)
1 = v29

x
(0)
2 = v0v1v2

x
(1)
2 = v1v2v3

x
(2)
2 = v2v3v4

x
(3)
2 = v7v8v9

x
(4)
2 = v12v13v14

x
(5)
2 = v29v30v31

x
(0)
3 = v0 · . . . · v4

x
(1)
3 = v1 · . . . · v5

x
(2)
3 = v2 · . . . · v6

x
(3)
3 = v7 · . . . · v11

x
(4)
3 = v12 · . . . · v16

x
(5)
3 = v29 · . . . · v33

x
(0)
4 = v0 · . . . · v16

x
(1)
4 = v1 · . . . · v17

x
(2)
4 = v2 · . . . · v18

x
(3)
4 = v7 · . . . · v23

x
(4)
4 = v12 · . . . · v28

x
(5)
4 = v29 · . . . · v45

x
(0)
5 = v0v1 · . . . · v45

A computation by hand or via [GPS] yields the following equations in quasideterminantal form,
leaving the remaining variables untouched:




x
(0)
0 x

(2)
1 x

(2)
2 x

(4)
3 x

(5)
4

x
(1)
1 x

(2)
3 x

(3)
3 x

(4)
4

x
(0)
1 x

(0)
2 x

(0)
3 x

(0)
4 x

(0)
5


 .

5. Sketch of proof .

The main point is to show that the algebra Ãn,q is - up to a smooth factor - the generic
deformation of the given singularity in its canonical quasideterminantal format ([R1], [Ro]).
The last example gives the right idea. Recall [R1] that

e − 3 = r − 1 =
s∑

σ=1

(bσ − 2)

and, dually,

s − 1 =
r∑

`=1

(a` − 2) .

Define now

sρ =
ρ∑

`=1

(a` − 2) + 1 , ρ = 1, . . . , r ,
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such that s1 = a1 − 1 ≤ s2 ≤ · · · ≤ sr = s , and select the following variables out of all x
(σ)
ρ :

x
(0)
ρ , ρ = 0, . . . , r + 1 ,

x
(σ)
1 , σ = 1, . . . , s1 ,

x
(σ)
ρ , σ = sρ−1, . . . , sρ , ρ = 2, . . . , r .

Notice that they form a system of e+
∑r

ρ=1(aρ−1) variables. Obviously, it is sufficient to show

that the complete set x
(σ)
ρ of variables satisfies the following (generating) quasideterminantal

relations:



x
(0)
0 x

(s1)
1 x

(s2)
2 · · · x

(sr)
r

x
(1)
1 · . . . · x(s1−1)

1 x
(s1)
2 · . . . · x(s2−1)

2 · · · x
(sr−1)
r · . . . · x(sr−1)

r

x
(0)
1 x

(0)
2 x

(0)
3 · · · x

(0)
r+1




which is just the generic deformation of the quasideterminantal format in question.

In order to do this, one can use induction with respect to the number r , the case r = 1 being
trivial. Therefore, we start with a fixed number r ≥ 1 and a continued fraction expansion

n′

n′ − q′
= a1 − 1 a2 − · · · − 1 ar+1 ,

where
n

n − q
:= a1 − 1 a2 − · · · − 1 ar .

Similarly, we provide the indices referring to the pair (n′, q′) by an accent; in particular, we
have r′ = r +1 , a′ρ = aρ, ρ = 1, . . . , r , a′r′ = ar+1 and j′ρ = jρ , ρ = 1, . . . , r +1 , j′r′ = n and
j′r′+1 = n′ . Moreover, invoking the ,,dot“–diagram in [R1], it follows that

s′ = s + (ar+1 − 2) ,

b′σ = bσ , σ = 1, . . . , s− 1 , b′s = bs + 1 , b′σ = 2 , σ = s + 1, . . . , s′ .

These identities imply

k′σ = kσ , σ = 1, . . . , s , k′s+σ = ks + σn , σ = 1, . . . , s′ − s .

and the following

Lemma ks = n − jr .

Proof . We have by induction k′s′ = (ar+1 − 2)n + ks = (ar+1 − 1)n − jr = ar+1n − jr − n =
ar+1jr+1 − jr − jr+1 = n′ − j′r′ .

Moreover, we get by the same reasoning

x(sr)
r = vn−jr · . . . · vn−1 , x

(sr)
r+1 · . . . · x(sr+1)

r+1 = vn−jr · . . . · vn′−1

and hence the relation
x(sr)

r x
(0)
r+2 = x

(0)
r+1 · x(sr)

r+1 · . . . · x(sr+1)
r+1 ,
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since x
(0)
r+1 = v0 · . . . · vn−1 etc. This shows that the variables chosen satisfy the quasidetermi-

nantal equations as above.

The only problem left is to show that there are no other relations and moreover only trivial
ones with respect to the remaining variables. We leave this as an exercise to the reader.
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