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Introduction

The past few years have witnessed a significant progress in understanding deformations of
normal surface singularities. In general, the base space of the versal deformation of such a
singularity (simply called its versal base in the sequel) is highly singular, having many compo-
nents (including nonreduced and even embedded ones). However, due to the work of KOLL\’AR
and $SHEPHERD-BARRON$ [KSB] we know that for quotient surface singularities each (reduced)
component is smooth after normalization. The set of components is in one to one correspon-
dence to a set of certain partial resolutions of the given singularity. Moreover, the families over
these (normalized) components are equipped with monodromy which arises from certain other
partial resolutions, called M-resolutions by K. BEHNKE and J. CHRISTOPHERSEN [BC3]; the
monodromy groups may be realized as Galois groups of distinguished coverings, acting as re-
flection groups. The dassical example of course is provided by the ARTIN component (which is
always smooth), the Galois covering mentioned above being the base change needed to resolve
the family simultaneously $[Art2,Lip,W3]$ .

T. DE JONG and D. VAN STRATEN developed a new method to calculate the versal base
space by projecting the surface singularity generically to a (weakly normal) hypersurface sin-
gularity in $C^{3}$ and comparing the deformation theory of the singularity and its projection
[JSI,JS3]. They applied their own method to the case of rational quadruple points [JS2].

Since the work of Behnke and Christophersen is easily accessible and already described
in detail in a survey paper [BR], I give in these notes only a short summary and refer the
reader to the literature. However, I would like to add some new remarks on the case of cyclic
quotient singularities (CQS). Here it is known [Stl,Chr] that the reduced components are
smooth without normalization. Therefore one might hope to patch all Galois coverings together
to form one special covering of the (reduced) base space with a group acting on this covering
and inducing on the various components the monodromy coverings of the components of tbe
versal base. This is indeed the case; a somewhat fuller announcement will be gi ven in $s\langle 1\vee(:tioll\ulcorner\supset$ .

Also, the papers of de Jong and van Straten are published and nicely surveyed $e$ . $g$ . in
the article of G.-M. GREU $P_{J}^{\backslash }I$ [Gr] in the Festband edited at the occasion of the centennial
birthday of the DMV (German Mathematical Society). Therefore, I only include some remarks
about the general method and describe an application due to S. BROHME concerning minimally
elliptic singularities of embedding dimension 6 [Bro].

数理解析研究所講究録
第 807巻 1992年 93-118



94

$Spe$ci$als$ urface singulari $ti$ es

At the symposion arranged by Professor Shihoko Ishii at RIMS in March 1992 I gave in my
talk under the title Deformations of rational singularities and quivers a survey on the work of
Behnke and Christophersen; I also reported on work of H. CASSENS about a quiver construction
concerning the (resolved) versal deformation of rational double points which might be useful
to construct the families over the Galois coverings in all quotient cases [Cas]. Since the work
of H. Cassens, generalizing results of P. KRONH EIMER [K], is still in progress, I present here
only a short outline in a special case in order to give him priority for publishing his results
himself first in full strength. I also include a short description of the thesis of A. R\"o $HR$ [Roe]
which has only be mentioned in my talk at RIMS but was considered more thoroughly at other
occasions during my stay in Japan in spring of 1992.

In a sense, these notes reflect the content of all my lectures given during that period. It is
therefore my great pleasure to thank all colleagues in Japan who made my stay possible and
so pleasant. In particular, I am very much indebted to Professors SHIHOKO ISHII and No $BUO$

SASAKURA, and also to KIMIO WATANABE, KEI-ICHI WATANABE and HIDEAKI KAZA MA (the
last two especially in commemorating their kind hospitality and unforgettable musical events).

1 The general context

In these notes we mainly deal with normal surface singularities (X, $x_{0}$ ), mostly written $X$

for short. For such a singularity, $\tau$ : $\tilde{X}arrow X$ always denotes a normal modification of the
singularity with exceptional set $E=\cup E_{i}$ (most of the time assumed to be the (minimal)
resolution). It is well known that the number

$p_{g}(X, x_{0})=\dim_{C}(R^{1}\pi_{*}\mathcal{O}_{\tilde{X}})_{x_{0}}$

is independent of the choice of a resolution; it is called the geometric genus of the singularity
X.

We are mainly concerned with the case of rational singularities which are characterized by
the property $p_{g}(X)=0$ [Artl]. This class of singularities includes as a proper subclass the
quotient singularities $X=C^{2}/G,$ $G$ a finite subgroup of GL (2, C), and in particular the
rational double points (RDP) or Klein singularities for which $G$ is a subgroup of SL (2, C). If
the group $G$ is cyclic, we speak of cyclic quotient surface singularities which up to isomorphism
are of type $A_{n,q}$ or shortly of type $(n, q)$ with relatively prime integers $0<q<n$ : these are
by definition the quotients of the form $C^{2}/C_{n,q}$ where the cyclic group $C_{n,q}$ is generated by
the matrix

$(\begin{array}{ll}\mathfrak{c}_{n} 00 \zeta_{n}^{q}\end{array})$ , $(_{n}=\exp(2\pi i/n)$ .

Notice that the intersection of the classes of cyclic quotients and RDP’s consists of the $A_{n^{-}}$

singularities with equation
$z^{2}+x^{2}+y^{n+1}=0$ .

We are also considering minimally elliptic singularities which are defined by $p_{g}=1$ and
the assumption to be Gorenstein [L2]. This class contains $e$ . $g$ . the Hilbert modvlar $c$ ttsps and
simple elliptic singularities (which have as minimal resolution the total space of a negative line
$b$ undle over an elliptic curve).
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2 The Artin component for rational singularities
If $X$ is any normal surface singularity, one would like to understand all possible deformations
of $X$ . The complete information is contained in the versal deformation of $X$ [G] denoted by
$\mathcal{X}arrow S=Def(X)$ in the sequel. One of the standard questions is that about adjacencies, $i$ . $e.$ :
which singularities occur in nearby fibres? Here is a sample of some general facts:. rational singularities deform to rational singularities [E1];. quotient surface singularities deform to quotient singularities [EV,I];. cyclic quotients deform to cyclic quotients [KSB].

However, it goes without saying that in specific examples one would like to have a much more
precise classification of the adjacencies.

Also, the minimal resolution $\tilde{X}$ admits a versal deformation (relatively to the exceptional
set $E$ ), see $e$ . $g$ . [BK]:

$\tilde{\mathcal{X}}arrow T=$ Def (X)

with a smooth base space $T$ . Just by definition of rationality [Riel], this deformation can for
a rational singularity be blown down simultaneously to a deformation

$\mathcal{X}_{T}arrow T$

of $X$ itself, and by definition of versality, there is a Cartesian diagram

$\mathcal{X}_{T}|$ $\mathcal{X}\downarrow$

$T$ $S$.

It is interesting to study the mapping

Def $(X)=Tarrow S=$ Def (X).

If $X$ is an RDP, that is a singularity of type ADE, it was already known due to work of
TYURINA, BRIESKORN, GROTHENDIECK and SLODOWY [Tju,$Br3,S$ ] which relates deformations
of singularities of type ADE to the theory of simple complex Lie groups and their Weyl groups
of corresponding type that the base space Def (X) is smooth and the mapping $Tarrow S$ is
a Galois covering with Galois group the corresponding Weyl group of type ADE acting as a
reflection group on $T$ .

In general, the following holds true:

Theorem 2.1 (Artin, Lipman, Wahl) Let $X$ be a rational surface singularity. Then
Def $(\tilde{X})$ maps finitely to one to $a$ component of Def (X), called the Artin component
$($ Def $(X))_{art}$ . More precisely:

$($Def $(X))_{art}\cong$ Def $( \tilde{X})/\prod W_{j}$ ,

where the $W_{j}$ are finite Weyl groups belonging to the maximal connected $(-2)-configumtions_{f}$
$i$ . $e$ . the rational double point configumtions supported by the exceptional set of $\tilde{X}$ .
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Clearly, this implies in particular that $($ Def $(X))_{art}$ is always smooth. For RDP’s, this com-
ponent coincides with $S$ . The same is true for rational singularities of multiplicity 3 (triple
ponts) due to a general result of SCHAPS and $HILBERT-BuRCH$ on Cohen-Macaulay singu-
larities of codimension 2. The first interesting example for higher codimension was given by
PINKHAM [P]: If $X$ denotes the cone over the rational normal curve of degree 4 given by the
equations

rank $(\begin{array}{llll}x_{0} x_{1} x_{2} x_{3}x_{1} x_{2} x_{3} x_{4}\end{array})<2$ ,

the versal base space has two components, namely the Artin component

rank $(\begin{array}{llll}x_{0} x_{1}+s_{1} x_{2}+s_{2} x_{3}+s_{3}x_{1} x_{2} x_{3} x_{4}\end{array})<2$

and another component described by

rank $(\begin{array}{lll}x_{0} x_{1} x_{2}x_{1} x_{2}+s x_{3}x_{2} x_{3} x_{4}\end{array})<2$ .

In [Riel] it has been proven that for a general cyclic quotient singularity of embedding di-
mension 5 the versal base space is a product of this space with a smooth factor. Pinkham
also determined the versal base spaces for the cones of higher multiplicity and found the sur-
prising fact that they consist of the Artin component together with an embedded component
concentrated at the distinguished point. For other cyclic quotients, cf. section 5.

3 The method of de Jong-van Straten

This method provides some tools to determine Def(X) at least up to smooth factors. The
authors project a normal surface singularity $X\subset C^{e}$ generically to a hypersurface $X’\subset C^{3}$

and study the interplay of deformations of $X$ and $X’$ . As an example we reproduce the generic
projection of the affine cone over the rational normal curve of degree 4 from [Gr].
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For the pleasant fact that $X$ ‘ is a hypersurface one has to pay a price: $X$ ‘ is in general
not normal anymore (in the reduced structure). More precisely, the singular locus $\Sigma$ (always
assumed to be equipped with the reduced structure) is one-dimensional unless $X’$ is normal
itself, $i$ . $e$ . when $X=X’$ was already a hypersurface in $C^{3}$ . The authors make heavily use of the
fact that the pair (X’, $\Sigma$ ) is nevertheless weakly normal, and therefore generically of transverse
$A_{1}$ -type. In particular, $X$ is isomorphic to the normalization of $X’$ . Admissible deformations
of the pair (X’, $\Sigma$ ) are of course those of $X’$ which induce a flat deformation of the relative
singular locus over the base space. The authors prove the existence of a semiuniversal admissible
deformation in this context and study the forgetful functors

$\underline{Def}_{(Xarrow X)}arrow\underline{Def}_{X}$ and $\underline{Def}_{(Xarrow X)}arrow\underline{Def}_{(X’,\Sigma)}$ ,

for which they show that the second one is an isomorphism and the first $0\iota$ ) $e$ is at least smooth.
(‘lonsequently, the base spaces of the versal deformations of $X$ and (X ‘, $\Sigma$ ) are equa] up to
smooth factors which we denote by the symbol $\sim$ .

Theorem 3.1 (de Jong - van Straten)

1. There exists a versal admissible deformation of (X’, $\Sigma$ );

2. Def $(X)\sim$ Def (X’, $\Sigma$ ).

For applications, the following result is very helpful:

Theorem 3.2 Let $(X_{1}’, \Sigma_{1})$ and $(X_{2}’, \Sigma_{2})$ be weakly normal hypersurface singularities in $C^{3}$

defined by the functions $f_{1}$ and $f_{2}\in \mathcal{O}_{C^{3},0}$ . Then

Def $(X_{1}’, \Sigma_{1})\sim$ Def $(X_{2}’, \Sigma_{2})$

if one of the following holds:

a) the normalizations $X_{1}$ and $X_{2}$ are isomorphic; $or$

b) $\Sigma_{1}=\Sigma_{2}$ and $f_{1}-f_{2}$ is contained in the square of the ideal defining $\Sigma_{1}$ .

With these principles, de Jong and van Straten are able to handle rational quadruple points
by reduction to certain taut singularities depending only on one extra parameter $n$ and finally
to so-called $n$-stars. For the given quadruple point $X$ the integer $n$ is just the number of
blowings up needed for dropping the multiplicity of $X$ (and is also the number of blowings up
needed for resolving the $n$-star). The final result is that the versal base space depends only
on $n$ up to smooth factors. Call this universal base $B(n)$ . They show that it is of embedding
dimension $5n-1$ ; it can be described as follows: let

$a_{0}(t),$ $a_{1}(t),$ $a_{2}(t),$ $a_{3}(t)$ be polynomials of degree $n-1$

and
$b(t)$ be a polynomial of degree $n-2$ .

They can be considered to form a manifold parametrized by the $5n-1$ coefficients. Then

$B(n)=$ { $t^{n}+b(t)$ divides $a_{0}(t)a_{i}(t)$ for $i=1,2,3$ }.

Moreover, they prove that this base space
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-is reduced,

-has $n+1$ components $Y_{j},$ $j=0,$ $\ldots,$
$n$ , of dimension $\dim Y_{j}=2n-1+2j$ and

multiplicity

$multY_{j}=(\begin{array}{l}nj\end{array})$ ,

respectively,

$-Y_{0}$ and $Y_{n}$ are smooth, all other $Y_{j}$ have smooth normalization.

Clearly, for $n=1$ , this result reproduces Pinkham’s example in a more general context.

In order to apply this method effectively it is useful to know the general hyperplane sec-
tions of singularities. This was provided in work of Behnke and Christophersen for rational
singularities for the sake of computing the space $T^{2}$ of obstructions [BC1]. In a subsequent
paper, they achieved the same task for minimally elliptic singularities [BC2].

Stephan Brohme applied their result to minimally elliptic singularities (with reduced tan-
gent cone) of multiplicity ( $=$ embedding dimension) 6. In fact, for multiplicity $m\leq 4$ , the
base space is smooth by the result of $Hilbert-Burch-Schaps$ , and for $m=5$ we have the well
known structure theorem saying that Gorenstein singularities of codimension 3 are described
by Pfaffians of some symmetric matrix which also determines the deformations such that the
base space is again smooth. Brohme proves the following

Theorem 3.3 The versal base space of a minimally elliptic singularity of multiplicity 6 $(w\uparrow th$

reduced tangent cone) is (up to smooth factors) isomorphic to the affine $con\epsilon$ over $th\epsilon$ Scgrc
embedding $P_{1}\cross P_{2}arrow$ P5.

In order to achieve this result he has to determine the singular locus (a double curve) of
the projection of a minimally elliptic singularity to $C^{3}$ in terms of elliptic partition curves.
The main result then states that - if $I$ denotes the ideal of this double curve - the generic
projection of such a singularity can be deformed modulo $I^{2}$ to a projection of a simple elliptic
singularity. Clearly, by the theory of de Jong and van Straten, this reduces the problem to the
determination of the versal base space of such a simple elliptic singularity, where the result
is known [P]. For the last result, he applies classical results of Segre on pencils amd linear
systems of plane projective curves to a certain pencil of plane sextics with nine double points.

With a completely different method using Banach analytic considerations for nonisolated
singularities, J. Stevens proved this result without restriction on the tangent cone [St4]. He
found more striking relations between the deformation theory of Cohen-Macaulay singularities
and that of Gorenstein singularities of one dimension or codimension higher.

4 The components for quotient surface singularities

As an application of a special case of three-dimensional Mori theory, Koll\’ar and Shepherd-
Barron were able to explain where the components of the reduced versal base space $S_{red}$ come
from in the case of quotient surface singularities.

Theorem 4.1 Let $X$ be a quotient surface singularity and $\lambda’arrow To$ one-parameter smooth-
$i\uparrow\iota g$ . Then there exists a modification $\mathcal{Y}arrow f\mathcal{X}$ with the following properties:
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i) $\mathcal{Y}$ has only terminal singularities;
ii) for each curve $C$ which is contracted by $f$ we have $Ky\cdot C>0,$ $i$ . $e$ . $Ky$ is f-ample ;
iii) $Y$ $:=\mathcal{Y}0$ has only quotient surface singularities.

The singularities of $Y$ can be determined: They have special deformations, namely so called
Q-Gorenstein smoothings.

Definition. Let (X, $x_{0}$ ) be a reduced surface singularity such that $X\backslash \{x_{0}\}$ is Gorenstein.
A one-parameter smoothing $\mathcal{X}arrow T$ is called $Q$-Gorenstein or $qG$ , if some multiple of the
canonical class of $\mathcal{X}$ is a Cartier divisor. A smoothing component of the versal deformation of
$X$ is called a $qG$-component, if every smoothing in it is $qG$ .

This allows the authors to identify the singularities of $Y$ to being either rational double
points (RDP) or of type T. The last ones are cyclic quotients with very special resolution
graphs. They can be described more precisely as follows: Let Z. act on $C^{3}$ by the diagonal
ma $t$ ri $x$

$(\begin{array}{lll}(_{\prime}\cdot 0 00 (_{r^{-1}} 00 0 \zeta_{r}^{d}\end{array})$ $0<d<r$ , $gcd(r\cdot, d)=1$ .

Then $C^{3}/Z_{r}$ , for which we also write $C^{3}/Z_{r}(1, -1, d)$ for the sake of resolving the ambiguity
in the defintion, is a three-dimensional quotient singularity. Let $A_{rs-1}$ be given in $C^{3}$ by
$xy=z^{rs}$ . Then $Z_{r}$ acts on $A_{rs-1}$ , too, and the non RDP type T-singularities are precisely
the quotients

$A_{rs-1}/Z_{r}(1, -1, d)\cong$ cyclic quotient of type ( $r^{2}s$ , drs–l) $=;A_{(r,s,d)}$ .

Definition. A P-resolution (partial resolution) is a modification $\pi$ : $\overline{X}arrow X$ such that

a) $K_{\overline{X}}$ is relatively ample with respect to $\pi$ ,

b) $\overline{X}$ has only singularities of type T.

Theorem 4.2 (Koll\’ar, Shepherd - Barron) For quotient surface singularities there is a
1 : l-correspondence between the set of P-resolutions and the set of components of $S_{red}$ .

The construction works as follows: Take first a component of the base space. Since $X$ is
rational, it is automatically a smoothing component. Then choose a generic curve $T$ in the
component, restrict the deformation to $T:\mathcal{X}arrow T$ , and call upon $\mathcal{Y}-\mathcal{X}$ as in the \’{n}rst

theorem. Then $\overline{X}=\mathcal{Y}0$ is the corresponding P-resolution.
Take on the other hand a P-resolution $\overline{X}$ with singular locus $sing\overline{X}=\{\overline{x}_{i}\}$ . Then there

are forgetful (smooth) functors

$\underline{\frac{Def}{Def1}}\overline{X\frac{0}{X}}$
$\prod_{(\overline{X},\overline{x}_{t})}^{0}^{\prod_{\underline{\frac{Def}{Def1}}(\overline{X},\overline{x}_{t})}}$



100

Special surface singularities

where the superscript $0$ on the symbol at the southeast corner denotes deformations of (X, $\overline{x}_{i}$ )
as a subspace of $C^{3}/Z.,$ . This defines the functor $\underline{Def}\frac{0}{X}$ on the southwest corner, and by a),
deformations representing this functor can be blown down to deformations of $X$ . The authors
then prove that $Def^{}(X)$ is unobstructed and that the corresponding morphism of base spaces

Defo $(X)arrow Def(X)$

maps the smooth space $Def^{}(X)$ generically 1 : 1 to a component of Def (X). $\square$

Consequently all components have smooth normalization. (For cyclic quotient singularities,
the components are even smooth).

In the general rational case, one has to be more careful due to examples by Jan Stevens
and others for some rational quintupel points.

Definition. Let (X, $x_{0}$ ) be a rational surface singularity. A modification $Yarrow X$ is called a
$P$-modification or a P-resolution, if every singularity $(Y, y_{i})$ of $Y$ has a qG-component and
$Ky\cdot C>0$ for all exceptional curves $C$ in $Y$ .

Definition. A component of the versal deformation of $X$ is called a P-component, if it is the
image of a component of the deformation space of a P-resolution $Y$ , for which the induced
deformations of the singular points $(Y, y_{i})$ are all on qG-components.

With these definitions in mind, one has the following

Conjecture (Koll\’ar) Every component of the versal base space of a rational $St\iota rface$ singu-
lority is a P-component.

Up to now, the conjecture is proven to be true for:. quotient surface singularities (due to Koll\’ar, Shepherd-Barron);. rational quadruple points (due to Jan Stevens).

Jan Stevens calculated all P-resolutions for. cyclic quotients (giving a nice interpretation in terms of continued fractions and Catalan
numbers and completing work of J. Arndt and J. Christophersen- see next section);. all quotient surface singularities (reducing this case to the former one);. all rational quadrupel points (since the base space is known by the work of de Jong and
van Straten, see section before, this confirms the conjecture).

However, he failed in the quintupel case.

K. Behnke and J. Christophersen completed the work of Koll\’ar and Shepherd-Barron in
another direction: qG-deformations of type T-singularities give smoothings with Milnor fibre
of Milnor number

$\mu+1=\frac{(rs-1)+1}{r}=s$ ,
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hence $\mu=s-1$ . Therefore, in case $s=1$ these smoothings are homologically trivial, $i$ . $e$ .
without vanishing cycles. So, call the special T-singularities with $s=1$ of type $T_{0}$ . Jan
Christophersen introduced the notion of an M-resolution $\tilde{X}arrow X$ which has by definition
only $T_{0}$-singularities and $K_{\tilde{X}}\cdot C\geq 0$ for all contractible curves $C$ on $\overline{X}$ .

Theorem 4.3 (Behnke- Christophersen)

1. For every P-resolution $\overline{X}arrow X$ there exists a unique M-resolution $\tilde{X}arrow X$ dominatingxr :

and satisfying $K_{\tilde{X}}\cdot C=0$ for all f-contractible curves $C$ (also called the crepant
M-resolution of the P-resolution, since $f^{*}K_{\overline{X}}=K_{\tilde{X}}$ ).

2. The f-exceptional curves $C$ create flops (like $(-2)$ -curves in minimal resolutions) that
generate $0$ finite Weyl group W. The base change map

$Def^{}(\overline{X})$ – $Def^{}(\overline{X})$ ( $=$ normalization of a component of Def (X))

is Galois with Galois group $W$ .

3. $W$ is the monodromy group of the (normalized) component.

5 Cyclic quotient surface singularities

In the cyclic case the Galois groups $W$ of the components are products of symmetric groups.
The Galois coverings are easy to describe; they even have a toric structure. This was first
realized by Christophersen. We want to present here shortly his and J. Stevens’ tesults and
a new construction for the versal deformation as indicated in the introd $nc1$ ion bv $m$ eans of $\epsilon I$

Galois covering of the whole family.
Recall that the quotient surface singularity of type $(n, q)$ is of embedding dimension $e$ .

where
$\frac{n}{q}=a_{2}-1\propto a_{3}-\cdots-1\wedge a_{e-1}$

is the $HIRZEBRUCH-JuNG$ continued fraction expansion, and can be described by

$(\begin{array}{ll}e -1 2\end{array})$

equations of type
$x_{\delta}x_{\epsilon}=P_{5\epsilon}$ , $2\leq\delta+1\leq\epsilon-1\leq e-1$ .

By the first or initial equations, we always understand the equations of this type with $\gamma=$

s–l $=\delta+1$ . They are more precisely of the form

$x_{\gamma-1}x_{\gamma+1}=x_{\gamma^{\gamma}}^{a}$ .
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They determine inductively all other equations by the following scheme $(\delta\leq\epsilon-3)$ :

$x_{5^{X_{\xi}}}= \frac{x_{\delta}x_{\epsilon-1^{X}5+1^{X_{\xi}}}}{x_{5+1^{X}\epsilon-1}}=\frac{P_{\delta},{}_{\epsilon-1}P_{\delta+1,\epsilon}}{P_{\delta+1,\epsilon-1}}=;P_{5\epsilon}$ .

lf one introduces CHRISTOPH ERSENS $(e-2)$-chains representing zero [Chr]:

one can formulate the result on the component structure of the versal base space for cyclic
quotient singularities the following way:

Theorem 5.1 The P-resolutions (and thus the components of the reduced versal base space)

of a cyclic quotient surface singularity of type $(n, q)$ (and embedding dimension e) are in
1 : l-correspondence to the set of all $(e-2)$ -chains $(k_{2}, \ldots, k_{e-1})$ satisfying the conditions

$k_{\epsilon}\leq a_{\epsilon}$ , $\epsilon=2,$
$\ldots,$ $e-1$ .

In particular, if the exponents $a_{\epsilon}$ are large enough, there are no conditions to satisfy and
hence there are exactly as many components as zero-representing chains exist, namely exactly

$K_{r}= \frac{1}{r}(^{2(r-1)}r-1)$

many for $r=e-2$ , where $K_{r}$ is the famous $r$-th Catalan number.
Following the method of my paper [Rie2] and the dissertation of J. ARN $DT$ [Ard], one can

indeed construct a canonical candidate for the full Weyl group: In the case of a cyclic quotient
of type $(n, q)$ , this group is just $t$ he product of symmetric groups

$\mathfrak{S}_{a_{2}-1}\cross \mathfrak{S}_{a_{3}-1}\cross$ $\cdot$ . . $\cross \mathfrak{S}_{a_{e-1}-1}$ .

The corresponding Galois covering is distinguished by the property that for the lifted deforma-
tion family all polynomials in one variable occuring in the describing equations are completely
factored into linear forms. This group then induces in fact the monodromy groups

$\mathfrak{S}_{a_{2}-k_{2}}\cross \mathfrak{S}_{a_{3}-k_{3}}\cross$ $\cdot$ . . $\cross \mathfrak{S}_{a_{e-1}-k_{e-1}}$

on the components where again the tuples $(k_{2}, k_{3}, \ldots, k_{e-1})$ are the zero-representing chains
attached to the various components.

Therefore, this group really deserves the name of the monodromy group of the given sin-
gularity. However, for the proof of this statement, I will restrict myself to the case of small
codimension, that means to the representative and nontrivial cases of embedding dimension
less or equal to 6 “in order not to be lost in a morass” of notational subtleties. Concerning
the above mentioned papers, there will be a change in the numbering and notation of the
deformation parameters.
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So, let us first concentrate at the case of embedding dimension $e=5$ . According to [Rie2]
and [Ard], we make an Ansatz for the versal deformation of the first equations of the following
type:

$x_{1}(x_{3}+t_{3})=x_{2}(x_{2^{2}}^{a-1}+s_{2}^{(1)}x_{2^{2}}^{a-2}+\cdots+s_{2}^{(a_{2}-1)})$

$x_{2}x_{4}=(x_{3}+t_{3})(x_{3^{3}}^{a-1}+s_{3}^{(1)}x_{3^{3}}^{a-2}+\cdots+s_{3}^{\langle a_{3}-1)})$

$x_{3}x_{5}=x_{4}(x_{4^{4}}^{a-1}+s_{4}^{(1)}x_{4}^{a_{4}-2}+\cdot\cdot i+s_{4}^{(a_{4}-1)})$

Then there is no obstruction to form the next equation:

$x_{1}x_{4}=(x_{2^{2}}^{a-1}+s_{2}^{(1)}x_{2^{2}}^{a-2}+\cdots+s_{2}^{(a_{2}-1)})(x_{3^{3}}^{a-1}+s_{3}^{(1)}x_{3^{3}}^{a-2}+\cdots+s_{3}^{(a_{3}-1)})$ .

However, to form the equation with index label $(2, 5)$ , one has to make the polynomial

$(x_{3}+t_{3})(x_{3^{3}}^{a-1}+s_{3}^{(1)}x_{3^{3}}^{a-2}+\cdots+s_{3}^{(a_{3}-1)})$

divisible by $x_{3}$ . In other words: one has to impose the relation

$t_{3}s_{3}^{(a_{3}-1)}=0$ .

With this proviso in mind, we immediately get

$x_{2^{X}5}=(x_{3^{3}}^{a-1}+(s_{3}^{(1)}+t_{3})x_{3^{3}}^{a-2}+\cdots+(s_{3}^{(a_{3}-1)}+t_{3}s_{3}^{(a_{3}-2)}))$ .

$(x_{4^{4}}^{a-1}+s_{4}^{(1)}x_{4^{4}}^{a-2}+\cdots+s_{4}^{(a_{4}-1)})$ .

For the last equation, one has to introduce two more relations, namely ([Rie2])

$s_{3}^{(a_{3}-1)}s_{2}^{(a_{2}-1)}=s_{3}^{(a_{3}-1)}s_{4}^{(a_{4}-1)}=0$ .

The last equation then reads

$x_{1}x_{5}=(x_{2}^{a_{2}-1}+s_{2}^{(1)}x_{2}^{a_{2}-2}+\cdots+s_{2}^{(a_{2}-1)})$ .

. $(x_{3^{3}}^{a-2}+s_{3}^{(1)}x_{3^{3}}^{a-3}+\cdots+s_{3}^{(a_{3}-2)})$ .

$(x_{4^{4}}^{a-1}+s_{3}^{(1)}x_{3^{4}}^{a-2}+\cdot . . +s_{4}^{(a_{4}-1)})$

$+s_{3}^{(a_{3}-1)}(x_{2^{2}}^{a-2}+s_{2}^{(1)}x_{2^{2}}^{a-3}+\cdots+s_{2}^{(a_{2}-2)})$ .

$(x_{3^{3}}^{a-1}+s_{3}^{(1)}x_{3^{3}}^{a-2}+\cdots+s_{3}^{(a_{3}-1)})$ .

$(x_{4^{4}}^{a-2}+s_{3}^{(1)}x_{3^{4}}^{a-3}+\cdots+s_{4}^{(a_{4}-2)})$ .

Obviously, the base space of this family has two components, given by the equations

$s_{3}^{(a_{3}-1)}=0$ resp. $t_{3}=s_{2}^{(a_{2}-1)}=s_{4}^{(a_{4}-1)}=0$ .

The eq\={u}ations for the corresponding two families are easily written down [Rie2].
We now form a Galois covering of the base space with respect to the group

$\mathfrak{S}_{a_{2}-1}\cross \mathfrak{S}_{a_{3}-1}\cross \mathfrak{S}_{a_{4}-1}$
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where the group action invoives only the s-parameters, not the t-variables. In other words:
Besides the variable $t_{3}$ , we introduce new variables

$t_{2}^{\{1)},$

$\ldots,$
$t_{2}^{(a_{2}-1)},$ $t_{3^{-}}^{(1)},$

$\ldots,$
$t_{3}^{(a_{3}-1)},$ $t_{4}^{(1)},$

$\ldots,$
$t_{4}^{(a_{4}-1)}$

and let the group act on the affine space of the t-variables in the obvious way such that the vari-
able $s_{j}^{(k)}$ is exactly the $k$-th elementary symmetric function in the variables $t_{i}^{(1)},$

$\ldots,$
$t_{j}^{(a_{2}-1)}$

We then lift the versal deformation to the space of the t-variables via this covering. This clearly
amounts to build up a deformation of the given singularity with the first equations completely
decomposed into linear factors:

$x_{1}(x_{3}+t_{3})=x_{2}(x_{2}+t_{2}^{(1)})$ . . . . $\cdot$

$(x_{2}+t_{2}^{\langle a_{2}-1)})$

$x_{2}x_{4}=(x_{3}+t_{3})(x_{3}+t_{3}^{(1)})\cdot\ldots\cdot(x_{3}+t_{3}^{(a_{3}-1)})$

$x_{3}x_{5}=x_{4}(x_{4}+t_{4}^{(1)})$ . . . . $\cdot$
$(x_{4}+t_{4}^{(a_{4}-1)})$ .

The relations which have to be imposed are necessarily the relations of the versal deformation
lifted under the covering:

$t_{3} \prod_{k=1}^{a_{3}-1}t_{3}^{(k)}=\prod_{k=1}^{a_{3}-1}t_{3}^{(k)}\prod_{j=1}^{a_{2}-1}t_{2}^{(j)}=\prod_{k=1}^{a_{3}-1}t_{3}^{(k)}\prod_{j=1}^{a_{4}-1}t_{4}^{(j)}=0$ .

Consequently, the induced family has many components, namely

$t_{3}^{(k)}=0$ for some $k$

and
$t_{3}=t_{2}^{\langle j)}=t_{4}^{(k)}=0$ for some $j$ and $k$ .

However, the Galois group interchanges the components in each of these classes, and the
stabilizer subgroup for either member is just

$\mathfrak{S}_{a_{2}-1}\cross \mathfrak{S}_{a_{3}-2}\cross \mathfrak{S}_{a_{4}-1}$

resp.
$\mathfrak{S}_{a_{2}-2}\cross \mathfrak{S}_{a_{3}-1}\cross \mathfrak{S}_{a_{4}-2}$

in accordance to our claim at the beginning of this section (recall that the only 3-chains
representing $0$ are (1,2,1) and (2,1,2)).

Notice that by this construction one finds several simultaneous resolutions of the Artin
component in one family, and these are precisely all the nonisomorphic different resolutions
which are possible.

Similarly, for embedding dimension $e=6$ we make the following Ansatz for the first
equations:

$x_{1}(x_{3}+t_{3})=x_{2}(x_{2^{2}}^{a-1}+s_{2}^{\langle 1)}x_{2^{2}}^{a-2}+\cdots+s_{2}^{(a_{2}-1)})$

$x_{2}(x_{4}+t_{4})=(x_{3}+t_{3})(x_{3^{3}}^{a-1}+s_{3}^{(1)}x_{3^{3}}^{a-2}+\cdots+s_{3}^{(a_{3}-1)})$

$x_{3}x_{5}=(x_{4}+t_{4})(x_{4^{4}}^{a-1}+s_{4}^{(1)}x_{4^{4}}^{a-2}+\cdots+s_{4}^{(a_{4}-1)})$

$x_{4}x_{6}=x_{5}(x_{5}^{a_{5}-1}+s_{5}^{(1)}x_{5^{5}}^{a-2}+\cdots+s_{s^{a_{5}}}^{(-1)})$
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having the right number of deformation parameters.
If all numbers $a_{\epsilon}\geq 3$ , then the base space is given by the following relations (cf. ARNDT):

$t_{3}s_{3}^{\langle a_{3}-1)}$

$s_{2}^{(a_{2}-1)}s_{3}^{(a_{3}-1)}$

$s_{3}^{(a_{3}-1)(a_{4}-1)\triangleleft_{4}a_{4}-2)}(s_{4}-t_{4}s)$

$s_{2}^{(a_{2}-1)}s_{3}^{(a_{3}-2)}s_{4}^{(a_{4}-1)}+s_{2}^{(a_{2}-2)}(s_{3}^{(a_{3}-1)})^{2}s_{4}^{\{a_{4}-2)}\sim$

$t_{4}s_{4}^{\langle a_{4}-1)}$

$(s_{3}^{(a_{3}-1)}+t_{3}s_{3}^{(a_{3}-2)})s_{4}^{(a_{4}-1)}$

$s_{4}^{(a_{4}-1)}s_{5}^{f^{a_{5}-1)}}$

$s_{3^{a_{3}}}^{t-1)}s_{4}^{(a_{4}-2)}s_{5}^{(a_{5}-1)}+s_{3}^{(a_{3}-2)}(s_{4}^{(a_{4}-1)})^{2}s_{5}^{(a_{5}-2)}$

Here, the entries with a tilde are defined by the relation

$(x_{\delta}+t_{\delta})(x_{\delta^{\delta}}^{a-1}+s_{5}^{(1)}x_{\delta^{\delta}}^{a-2}+\cdots+s_{\delta}^{\langle a_{\delta}-1)})$

$=x_{\delta}((x_{\delta}+t_{\delta})^{a_{\delta}-1}+s\dashv_{\delta^{1)\dashv}}(x_{5}+t_{\delta})^{a_{\delta}-2}+\cdots+s_{5^{a_{\delta}-1)}})$

In the special case $a_{2}=a_{3}=a_{4}=a_{5}=3$ , which we now treat in full extend, we write $s_{3}’$

instead of $s_{3}^{(1)}$ etc. So, we start with the following set of equations (together with the proposed
coveri ng):

$x_{1}(x_{3}+t_{3})=x_{2}(x_{2}^{2}+s_{2}’x_{2}+s_{2}’’)$

resp. $=x_{2}(x_{2}+t_{2}’)(x_{2}+t_{2}’’)$

$x_{2}(x_{4}+t_{4})=(x_{3}+t_{3})(x_{3}^{2}+s_{3}’x_{3}+s_{3}’’)$

resp. $=(x_{3}+t_{3})(x_{3}+t_{3}’)(x_{3}+t_{3}^{u})$

$x_{3}x_{5}$ $=(x_{4}+t_{4})(x_{4}^{2}+s_{4}’x_{4}+s_{4}^{u})$

resp. $=(x_{4}+t_{4})(x_{4}+t_{4}’)(x_{4}+t_{4}^{u})$

$x_{4}x_{6}$ $=x_{5}(x_{5}^{2}+s_{5}’x_{5}+s_{5}’’)$

resp. $=x_{5}(x_{5}+t_{5}’)(x_{5}+t_{5}’’)$

$s_{2}’=t_{2}’+t_{2}’’$ , $s_{2}’’=t_{2}’t_{2}’’$

$s_{3}’=t_{3}’+t_{3}’’$ , $s_{3}’’=t_{3}’t_{3}’’$

$s_{4}’=t_{4}’+t_{4}^{u}$ , $s_{4}’’=t_{4}’t_{4}’’$

$s_{5}’=t$‘. $+t_{5}’’$ , $s_{5}’’=t_{5}’t_{5}’’$

The equations of the versal base space are now given by the following list where $s_{4}’\sim=s_{4}’-t_{4}$ :

$s_{2}’’s_{3}’s_{4}’’+s_{2}’’(s’’s^{ts_{4}^{s})})^{t}s_{4}^{3’}s_{3}’’(s_{4}-s_{2^{2}}’’s^{3},4^{3_{\sim_{\sim’’}}}’|_{s_{3}^{4,\prime}}t(s_{s_{4}^{u_{/}}s’’+s(s_{4}’’)^{2}s_{5}’}3’$

.

with the components
$\{s_{3}’’=s_{4}’’=0\}$

$\{s_{2}’’=t_{3}=s_{4}’’=s_{4}’\sim=0\}$

$\{s_{2}’’=t_{3}=s_{4}’’=t_{4}=s_{2}’=s_{5}’’=0\}$

$\{s_{5}’’=t_{4}=s_{3}’’=s_{3}’=0\}$

$\{s_{5}’’=t_{4}=s_{3}’’=t_{3}=s_{5}’=s_{2}’’=0\}$
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We write down a complete list of the equations for the first three (base) components. It is clear
that these correspond successively to the diagrams ( $c$ . $f$. [BR])

$\ldots$ .
$\cross$ $\cross$ $\cross$

$0$ $0$

$0$

$\ldots$ .
$\cross$ $\cross$ $\cross$

$\cross$ $0$

$0$

$\bullet$ $\bullet$ $\bullet$ .
$\cross$ $\cross$ $\cross$

$\cross$ $0$

$\cross$

$x_{1}(x_{3}+t_{3})=x_{2}(x_{2}^{2}+s_{2}’x_{2}+s_{2}^{u})$

$x_{2}(x_{4}+t_{4})=x_{3}(x_{3}+t_{3})(x_{3}+s_{3}’)$

$x_{3^{X}5}=x_{4}(x_{4}+t_{4})(x_{4}+s_{4}’)$

$x_{4^{X}6}=x_{5}(x_{5}^{2}+s_{5}’x_{5}+s_{5}’’)$

$x_{1}(x_{4}+t_{4})=(x_{2}^{2}+s_{2}’x_{2}+s_{2}’’)x_{3}(x_{3}+s_{3}’)$

$x_{2^{X}5}=(x_{3}+t_{3})(x_{3}+s_{3}’)x_{4}(x_{4}+s_{4}’)$

$x_{3^{X}6}=(x_{4}+t_{4})(x_{4}+s_{4}’)(x_{5}^{2}+s_{5}’x_{5}+s_{5}’’)$

$x_{1}x_{5}=(x_{2}^{2}+s_{2}’x_{2}+s_{2}’’)(x_{3}+s_{3}’)x_{4}(x_{4}+s_{4}’)$

$x_{2}x_{6}=(x_{3}+t_{3})(x_{3}+s_{3}’)(x_{4}+s_{4}’)(x_{5}^{2}+s_{5}’x_{5}+s_{5}’’)$

$x_{1}x_{6}=(x_{2}^{2}+s_{2}’x_{2}+s_{2}’’)(x_{3}+s_{3}’)(x_{4}+s_{4}’)(x_{5}^{2}+s_{5}’x_{5}+s_{5}’’)$

and
$x_{1}x_{3}=x_{2}^{2}(x_{2}+s_{2}’)$

$x_{2}(x_{4}+t_{4})=x_{3}(x_{3}^{2}+s_{3}’x_{3}+s_{3}’’)$

$x_{3}x_{5}=x_{4}(x_{4}+t_{4})^{2}$

$x_{4}x_{6}=x_{5}(x_{5}^{2}+s_{5}’x_{5}+s_{5}’’)$

$x_{1}(x_{4}+t_{4})=x_{2}(x_{2}+s_{2}’)(x_{3}^{2}+s_{3}’x_{3}+s_{3}’’)$

$x_{2}x_{5}=(x_{3}^{2}+s_{3}’x_{3}+s_{3}^{u})x_{4}(x_{4}+t_{4})$

$x_{3}x_{6}=(x_{4}+t_{4})^{2}(x_{5}^{2}+s‘. x_{5}+s_{5}’’)$

$x_{1}x_{5}=(x_{2}+s_{2}’)(x_{3}^{2}+s_{3}’x_{3}+s_{3}’’)^{2}x_{4}$

$x_{2}x_{6}=(x_{3}^{2}+s_{3}’x_{3}+s_{3}’’)(x_{4}+t_{4})(x_{5}^{2}+s_{5}’x_{5}+s_{5}’’)$

$x_{1}x_{6}=(x_{2}+s_{2}’)(x_{3}^{2}+s_{3}’x_{3}+s_{3}’’)^{2}(x_{5}^{2}+s_{5}’x_{5}+s_{5}’’)$



107

Special surface singularities

and
$x_{1}x_{3}=x_{2}^{3}$

$x_{2}x_{4}=x_{3}(x_{3}^{2}+s_{3}’x_{3}+s_{3}’’)$

$x_{3}x_{5}=x_{4}^{2}(x_{4}+s_{4}’)$

$x_{4}x_{6}=x_{5}^{2}(x_{5}+s_{5}’)$

$x_{1}x_{4}=x_{2}^{2}(x_{3}^{2}+s_{3}’x_{3}+s_{3}’’)$

$J$

$x_{2}x_{5}=(x_{3}^{2}+s_{3}’x_{3}+s_{3}’’)x_{4}(x_{4}+s_{4}’)$

$x_{3}x_{6}=x_{4}(x_{4}+s_{4}’)x_{5}(x_{5}+s_{5}’)$

$x_{1}x_{5}=x_{2}(x_{3}^{2}+s_{3}’x_{3}+s_{3}’’)^{2}(x_{4}+s_{4}’)$

$x_{2}x_{6}=(x_{3}^{2}+s_{3}’x_{3}+s_{3}’’)(x_{4}+s_{4}’)x_{5}(x_{5}+s_{5}’)$

$x_{1}x_{6}=(x_{3}^{2}+s_{3}’x_{3}+s_{3}’’)^{2}(x_{4}+s_{4}’)^{2}(x_{5}+s_{5}’)$

These examples show that insisting in producing the miniversal deformation destroys some
symmetry in the equations. We therefore propose to increase at the beginning the number of
extra variables to some extend and to make the families minimal only at the end by setting
some of the parameters to zero. Such a symmetric Ansatz has also the advantage that we can
start with only two equations and that we have to increase the number of variables only when
we add a new equation in a new row.

In order to make that precise [Rie5], let us look in embedding dimension 4 at the two initial
equations

$x_{1}y_{3}=x_{2}^{(1)}\cdot\ldots\cdot x_{2}^{(a_{2})}$ , $x_{2}y_{4}=x_{3}^{(1)}\cdot\ldots\cdot x_{3}^{(a_{3})}$

Then

$x_{1}y_{4}= \frac{\prod x_{2}^{\langle\ell)}}{x_{2}}\frac{\prod x_{3}^{(f)}}{y_{3}}=\sum_{j=0}^{a_{2}-1}\sigma_{j}(x_{2};x_{2}^{(l)})x_{2^{2}}^{a-j-1}\cdot\sum_{j=0}^{a_{3}-1}\sigma_{j}(y_{3};x_{3}^{(l)})y_{3^{3}}^{a-j-1}$

under the side conditions

$\sigma_{a_{2}}(x_{2};x_{2}^{(\ell)})=\prod_{\ell=1}^{a_{2}}(x_{2}-x_{2}^{(l)})=0$ ,

$\sigma_{a_{3}}(y_{3};x_{3}^{(t)})=\prod_{\ell=1}^{a_{3}}(y_{3}-x_{3}^{(t)})=0$ ,

where in general
$\sigma_{j}(z_{k};x_{k}^{(1)})$

denotes the j-th elementary symmetric function in the variables $z_{k}-x_{k}^{(t)},$ $\ell=1,$
$\ldots,$

$a_{k}$ .
Minimalization just means to select one of the equations $x_{2}=x_{2}^{(\ell)}$ , say $x_{2}=x_{2}^{(a_{2})}$ , and
correspondingly $y_{3}=x_{3}$

$(a_{3})$ . This leads to

$x_{1}y_{3}=x_{2}x_{2}^{(1)}\cdot\ldots\cdot x_{2}^{(a_{2}-1)}$ , $x_{2}y_{4}=y_{3}x_{3}^{(1)}\cdot\ldots\cdot x_{3}^{(a_{3}-1)}$ ,

$x_{1}y_{4}=x_{2}^{(1)}\cdot\ldots\cdot x_{2}^{(a_{2}-1)}\cdot x_{3}^{(1)}\cdot\ldots\cdot x_{3}^{(a_{3}-1)}$
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The obvious action of $\mathfrak{S}_{a_{2}-1}\cross \mathfrak{S}_{a_{3}-1}$ and introduction of new coordinates produces the versal

family.
For embedding dimension 5, we have to add a third initial equation

$x_{3}y_{5}=x_{4}^{(I)}\cdot\ldots\cdot x_{4}^{(a_{4})}$

and the equation

$x_{2}y_{5}= \frac{\prod x_{3}^{(\ell)}}{x_{3}}$ $\frac{\prod x_{4}^{(\ell)}}{y_{4}}=\sum_{j=0}^{a_{3}-1}\sigma_{j}(x_{3};x_{3}^{(l)})x_{3^{3}}^{a-j-1}\sum_{J^{=0}}^{a_{4}-1}\sigma_{j}(y_{4} ; x_{4}^{(\ell)})y_{4}^{a_{4}-j-1}$

together with the conditions

$\sigma_{a_{3}}(x_{3};x_{3}^{(\ell)})=0$ , $\sigma_{a_{4}}(y_{4}; x_{4}^{(\ell)})=0$ .

The last equation is formally given due to our general scheme by

$x_{1}y_{5}= \frac{\prod x_{2}^{(l)}}{x_{2}}$ . $\frac{\prod x_{3}^{(\ell)}}{x_{3}y_{3}}$ $\frac{\prod x_{4}^{(l)}}{y_{4}}$

Before we can proceed further, we have to prepare the middle term. We write

$\frac{\prod x_{3}^{\langle\ell)}}{y_{3}}=\sum_{j=0}^{a_{3}-1}\sigma_{j}(y_{3};x_{3}^{\langle\ell)})y_{3^{3}}^{a-j-1}=\sum_{j=0}^{a_{3}-1}\sigma_{j}(y_{3};x_{3}^{\langle\ell)})(x_{3}+(y_{3}-x_{3}))^{a_{3}-j-1}$

$= \sum_{k=0}^{a_{3}-1}\tilde{\sigma}_{k}(x_{3}, y_{3};x_{3}^{\langle\ell)})x_{3^{3}}^{a-k-1}$

with the obvious definition for the coefficients

$\tilde{\sigma}_{k}(x_{3}, y_{3};x_{3}^{\langle\ell)})=\sum_{j=0}^{k}(\begin{array}{ll}a_{3}-j -lk-j \end{array}) \sigma_{j}(y_{3};x_{3}^{(\ell)})(y_{3}-x_{3})^{k-j}$ , $k=0,$ $\ldots,$
$a_{3}-1$ .

We next introduce the following two relations

$\sigma_{a_{2}-1}(x_{2}; x_{2}^{\langle\ell)})\cdot\tilde{\sigma}_{a_{3}-I}(x_{3}, y_{3}; x_{3}^{(\ell)})=\tilde{\sigma}_{a_{3}-1}(x_{3}, y_{3}; x_{3}^{(\ell)})\cdot\sigma_{a_{4}-1}(y_{4}; x_{4}^{(\ell)})=0$ .

Remark that
. $\tilde{\sigma}_{a_{3}-1}(x_{3}, y_{3}; x_{3}^{\langle\ell)})=\sum_{j=0}^{a_{3}-1}(y_{3}-x_{3})^{a_{3}-j-1}\sigma_{j}(y_{3}; x_{3}^{(\ell)})$ .

With this proviso in mind, we see that the right side of $x_{1}y_{5}$ is indeed regular (we use

some obvious abbreviations):

$x_{1}y_{5}= \sum_{j=0}^{a_{2}-1}\sigma_{2j}x_{2}^{a_{2}-\gamma-1}\sum_{j=0}^{a_{3}-1}\tilde{\sigma}_{3j}x_{3^{3}}^{a-j-2}\sum_{i=0}^{a_{4}-1}\sigma_{4j}y_{4}^{a_{4}-j-1}$

$=x_{2}y_{4} \sum_{j=0}^{a_{2}-2}\sum_{j=0}^{a_{3}-1}\sum_{j=0}^{a_{4}-2}-s_{2,a_{2}-1^{S}4,a_{4}-1}\sum_{j=0}^{a_{3}-2}+s_{4,a_{4}-1}\sum_{j=0}^{a_{2}-1}\sum_{j=0}^{a_{3}-2}+s_{2,a_{2}-1}\sum_{\dot{J}^{=0}}^{a_{3}-2}\sum_{\dot{J}^{=0}}^{a_{4}-1}$
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Now, $x_{2}y_{4}= \prod x_{3}^{(\ell)}$ contains the factor $x_{3}$ by the third relation, such that the right side is
indeed regular.

To minimalize the construction, we have to put

$(\alpha_{3})$ $(a_{2})$ $(a_{4})$

$y_{3}=x_{3}$ , $x_{2}=x_{2}$ , $y_{4}=x_{4}$

Then, from the first four relations only one remains, namely

$(x_{3}-y_{3}) \prod_{\ell=1}^{a_{3}-1}(x_{3}^{(I)}-x_{3})=0$ ,

$i$ . $e$ .
$(x_{3}-y_{3})\sigma_{a_{3}-1}’(x_{3};x_{3}^{(\ell)})=0$ ,

if $\sigma_{j}’(x_{3}; x_{3}^{(\ell)})$ now denotes the $j$ -th symmetric function in the variables $x_{3}^{(p)}-x_{3}$ , $p=$

$1,$
$\ldots,$

$a_{3}-1$ , only, and similarly with respect to the other lower indices. Then,

$\sigma_{a_{2}-1}(x_{2};x_{2}^{(\ell)})=\sigma_{a_{2}-1}’(x_{2}; x_{2}^{\langle\ell)})=\prod_{l=1}^{a_{2}-1}(x_{2}^{(p)}-x_{2})$

and

$\sigma_{a_{4}-1}(y_{4}; x_{4}^{(\ell)})=\prod_{\ell=1}^{a_{4}-1}(x_{4}^{(\ell)}-y_{4})$ .

Finally, we get

$\tilde{\sigma}_{a_{3}-1}(x_{3}, y_{3}; x_{3}^{(\ell)})=\sum_{j=0}^{\alpha_{3}-1}(y_{3}-x_{3})^{a_{3}-j-1}\sigma_{j}’(x_{3}^{\langle\ell)}-y_{3})=\sigma_{a_{3}-1}’(x_{3};x_{3}^{(l)})$ .

Hence, we have exactly the relations introduced earlier in this section and the correct action of
the group $\mathfrak{S}_{a_{2}-1}\cross \mathfrak{S}_{a_{3}-1}\cross \mathfrak{S}_{a_{4}-I}$ . Dividing out this group action yields the versal deformation.
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6 The McKay correspondence

$McKAY$ linked together binary polyhedml groups and the (extended) CDW-diagrams by the
following calculation: Take $\rho_{0}$ the trivial representation and $\rho_{1},$ $\ldots,$ $p_{k}$ the nontrivial irre-
ducible complex representations of a finite subgroup of SL (2, C), which we here call $\Gamma$ instead
of $G$ for certain reasons which will be become transperent in the next section. Denote further
by $c$ the natural representation induced by the embedding $\Gamma\subset$ SL $(2, \mathbb{C})$ . Then decompose
the representation $\rho_{i}\otimes c$ into irreducibles:

$\rho_{i}\otimes c=\sum_{j}n_{J^{i}}\rho_{j}$

and realize that
$n_{ji}=1$ or $0$

wi $th$

$n_{i_{\dot{t}}}=0$

and

2 $E_{k+1}-(n_{ji})=$ Cartan matrix of the extended CDW diagram of type $\tilde{A}$ DE,

where the extra vertex $\otimes belongs$ to the trivial representation. The following diagram shows
the case $\overline{A_{k}}$ :

Moreover, it is easy to observe that the ranks of the representations equal the weights of
fundamental divisor on the minimal resolution of the correponding Klein singularity and are
also equal to the weights of the highest root of the associated CDW-diagram.

A geometric explanation for this phenomenon was given by Artin and Gonzales-Sprinberg,
Artin and Verdier [AV] and H. Esnault [Es]: The irreducible representations are in 1:1-
correspondence to the indecomposable reflexive modules on $X=C^{2}/\Gamma$ which in turn are
classified by certain (full) indecomposable vector bundles on the minimal resolution $arrow\tilde{Y}$ whose
C’hcrn $di\uparrow’\dot{\uparrow.}sor$ intersect precisely one exceptional curve wit $h$ rn ult $i$ plicit $y1$ (if $t$ hev $d\mathfrak{l}()$ non ( ri $\backslash \cdot-$

ial, of course). $\ulcorner 1^{\tau}l\iota i\llcorner s$ result has been extended to a great part to all quotient surface singularit ies
by H. Esnault and J. Wunram [Wu]:

Take a quotient singularity $C^{2}/\Gamma,$ $\Gamma\subset$ GL (2, C) a small subgroup. Then one should
regard the McKAY quiver. As above, $\rho_{0},$

$\ldots,$
$\rho_{r}$ denote the irreducible complex representations

of $\Gamma$ with $p_{0}$ the trivial one, and take now the dual representation $c^{*}$ instead of $c$ : $\Gammaarrow\succ$

GL (2, C). Then, as above, the decomposition

$p_{i} \otimes c^{*}=\sum_{r=0}^{r}n_{ij}\rho_{j}$

defines in a natural way a quiver which is identical to the AuSLANDER-REITEN quiver if one
replaces the representations by the associated reflexive modules.
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It should be apparent that in this general case there are much more representations of
$\Gamma$ than curves in the minimal resolution of the quotient surface singularity. But there exists
a 1:1-correspondence between the exceptional curves and some special nontrivial full vector
bundles which have been characterized by J. Wunram. On the level of representations, the
characterization is as follows[Rie4]: A nontrivial irreducible representation $\Gammaarrow AutV$ is special
if and only if the canonical homomorphism

$(\Omega_{C}^{2})^{\Gamma}\otimes(O_{C^{2}}\otimes V)^{\Gamma}arrow(\Omega_{C}^{2}\otimes V)^{\Gamma}$

is surjective.

7 The quiver construction
Using representations of the binary polyhedral groups $\Gamma\subset SL(2, C)$ and the theory of hyper-
Kahler-quotients, P. KRONHEIMER [K] constructed in an ingenious way the versal deformation
(or rather its simultaneous resolution after lifting by the Weyl group $W$ ):

$\mathcal{X}_{T}=\mathcal{X}\cross\tau/wT$ .

He realized himself that his construction can be formulated in terms of representations of
quivers. The program has been carried out by W. EBELING, P. SLODOWY and a student in
Hamburg, H. CASSENS.

We give a short description of the results. Let $\tilde{\Delta}$ be any quiver in the sense that with any
arrow also the arrow in the opposite direction occurs:

(So, in this special situation, only McKay quivers of ADE-type are allowed but no quivers
associated to arbitrary subgroups $G\subset$ GL $(2, C)$ $.$ ) Then, choose an oriented subgraph $P$ of
$\triangle\sim$ such that $\triangle\sim=P\cup\overline{P}$ , where of course $\overline{P}$ denotes the graph $P$ with all arrows reversed.
For instance, the graph $P$ can in the case $\tilde{A}_{k}$ be choosen as follows:

Associate now to any vertex $i$ a complex vector space $V_{i}$ of fixed dimension $d_{i}$ and call
$d=(d_{0}, \ldots, d_{k}),$ $d_{i}=\dim V_{i}$ , the dimension vector. We always assume that the index $0$

belongs to the trivial representation, that is to the extra vertex $\otimes in$ the McKay quiver.

A representation of the quiver $\tilde{\Delta}$ (with respect to the given dimension d) is just a system
of homomorphisms

$f_{j}^{i}$ : $V_{i}arrow V_{j}$ , $(iarrow j)\in\tilde{\Delta}$ .
The representation space is then

$y_{d}=$ $\oplus$ $Hom(V_{i}, V_{j})\oplus$ $\oplus$ $Hom(V_{j}, V_{i})$ .
$(iarrow j)\in P$ $\langle iarrow j$) $\in P$
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Isomorphism classes of such representations are orbits with respect to the conjugation operation
of the group

$\tilde{G}=\prod$ GL $(V_{j})$ .

Clearly, the diagonally embedded subgroup $C^{*}\subset\tilde{G}$ operates trivially on the representation
space, such that the group $G=\tilde{G}/C^{*}$ is operating effectively. Now, put

$V=\oplus V_{j}$ ,

and regard
$\oplus Hom(V_{i}, V_{i})$ as a subgroup of End $V$ .

In other words, we interpret elements in $y_{d}$ as pairs $(\alpha, \beta)\in$ End $V\oplus EndV$ . In these terms,
the momentum map can be regarded as

$\{\begin{array}{l}\mathcal{Y}_{d}arrow g=LieG(\alpha,\beta)-[\alpha,\beta]=\alpha o\beta-\beta o\alpha\end{array}$

Denote now by $T$ the center $C(g)$ of $\mathfrak{g}$ and remark that $T$ is a manifold of the correct
dimension if all $d_{i}\geq 1$ . Moreover, let $\mathcal{Y}\tau$ be the preimage of $T$ under the momentum map
$y_{d}arrow 9$ . Then the group $G$ acts on the fibers of this family such that one can form

$\mathcal{X}_{T}=\mathcal{Y}\tau//Garrow T=C(g)$ .

Theorem 7.1 (H. Cassens) If the dimension vector is choosen appropriately, $i$ . $e$ . if $d_{i}$

equals the multiplicity of $E_{i}$ in the fundamental cycle of the Klein singularity $X=C^{2}/\Gamma$ ,
then

$\mathcal{X}_{T}=\mathcal{Y}\tau//Garrow T$

is the versal deformation of $X$ after lifting under the natuml action of the Weyl group $W$ .

Remarks.

1. H. Cassens is also able to construct the simultaneous resolution of this family.

2. He can identify nearby fibers, even nongenerically.

3. There are examples that this construction works for other McKay quivers. At least,
one finds the correct singularity and its resolution by blowing up subvarieties of the
representation space for some cyclic quotients.

The results on deformations in the non RDP-case are not satisfactory at the moment. We
nevertheless still hope to find by this procedure all (or at least the Artin) component(s) for
cyclic quotient singularities.

Let us give some hints to the proof of Cassen’s result: The special fiber has to be calculated
which is quite easy in all cases except for the CDW-diagram of type $E_{8}$ . Flatness of the family
$\mathcal{X}_{T}arrow T$ reduces to that of $y_{d}arrow \mathfrak{g}$ : Since $G$ is linearly reductive, $\mathcal{O}(\mathcal{X})$ is a direct summand
of $\mathcal{O}(\mathcal{Y}_{T})$ as a $\mathcal{O}(T)$-module. Hence it suffices to prove flatness of $\mathcal{O}(\mathcal{Y}_{T})$ over $\mathcal{O}(T)$ . But
flatness is preserved by base change such that we are reduced to the claim. Now $y_{d}arrow \mathfrak{g}$ is a
C’-equivariant mapping of smooth affine spaces with a good C’-action which is easily seen to
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be flat if and only if the dimension of the special fibre equals the difference of the dimensions
of the source and the target. By a result of LUSZTIG, the dimension of the special fibre is equal
to ord $\Gamma+1$ . On the other hand,

$\dim G=\sum d_{i}^{2}-1=$ ord $\Gamma-1$

and
$\dim \mathcal{Y}_{d}=\sum n_{ij}d_{i}d_{j}=2$ ord $\Gamma$ ,

$q$ . $e$ . $d$ . $\square$

As an example we treat the case $\tilde{A}_{k}$ : Here $V_{0},$
$\ldots,$

$V_{k}$ are all of dimension 1. So the
mappings represented by arrows are just numbers:

$V_{i}$
$\underline{\alpha:}\succ$

$V_{i+1}$ ,
$V_{i}$

$\underline{\beta_{1}}$

$V_{i+1}$ .

Moreover, $y_{d}=C^{2k+2}$ , and $G=(C^{*})^{k+1}/C^{*}\cong$ maximal torus

$\{(t_{0}, \ldots,t_{k})\in(C^{*})^{k+1} : \prod t_{\kappa}=1\}\subset$ SL $(k+1, C)$

operates on
$\mathcal{O}(\mathcal{Y}_{d})=C[\alpha_{0}, \ldots, \alpha_{k}, \beta_{0}, \ldots, \beta_{k}]$

by
$t\alpha_{i}=t_{1}^{-1}\alpha_{i}$ , $t\beta_{i}=t_{i}\beta_{i}$ .

The invariants are readily computed:

$\mathcal{O}(\mathcal{Y}_{d})^{G}=C[\alpha_{0}\beta_{0}, \ldots, \alpha_{k}\beta_{k}, \alpha_{0}\ldots\alpha_{k}, \beta_{0}\ldots\beta_{k}]$

$\cong C[z_{0}, \ldots, z_{k}, x, y]/(z_{0}\cdot\ldots\cdot z_{k}-xy)$ .

Finally, we have
$T \cong\{(t_{0}, \ldots, t_{k}):\sum t_{i}=0\}$

and the relations
$\beta_{i+1}\alpha_{i+1}-\alpha_{i}\beta_{i}=t_{i+1}$ .

Putting all $t_{i}=0$ yields the equations

$z_{i}=\alpha_{i}\beta_{i}=\alpha_{i+1}\beta_{i+1}=.$ . . $=z_{0}$ .

Hence the special fiber has the equation

$xy=z_{0}^{k+1}$ ,

a singularity of type $A_{k}$ as it should be. More generally, if we set $z$ $:= \frac{1}{k+1}\sum\alpha_{i}\beta_{i}$ , we get

$z_{i}$ $:=\alpha_{i}\beta_{i}=z\backslash +t_{i}$ , $t=(t_{0}, \ldots, t_{k})\in T$ suitably choosen. The final equation then is

$xy= \prod_{i=0}^{k}(z+t_{k})$ , $\sum t_{i}=0$ ,

which is indeed the equation for the versal family after $W$ -lifting. $\square$
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8 Formats of rational singularities

I want to finish this survey with some results due to A. $R\ddot{o}HR$ [Roe]. His investigations started
from J. Wahl’s theorem [W1] that the Artin component of a determinantal rational surface
singularity is just given by varying the entries of a describing matrix generically.

Of course, determinantal equations are special in the sense that relations between the
equations can be read off very easily. There are other “formats” like quasideterminantal ones
introduced by the author which also give the Artin component by perturbation in the case of
cyclic quotients. In this case, the other components are obviously caused by different formats.

A. Rohr now formalizes the concept of a format which I don’t want to repeat here. More
importantly, he shows that there exists at least one format in his abstract sense associated
to any rational surface singularity $X$ , namely (the germ of) the total space $F(X)$ of the
deformation space of $X$ over the Artin component “modulo smooth factors” which perhaps
should be called the Artin format. His main result may be stated as follows:

Theorem 8.1 (A. R\"ohr) Let $X,$ $X’$ be rational surface singularities. Then the following
are equivalent:

i) $X’$ is of type $F(X)$ ;

ii) there exists a complete intersection $X’arrow F(X)$ ;

iii) $F(X’)\cong F(X)$ .

Here, I don’t want to make the first assumption precise. lt is a rather technical definition
saying intuitively that $X$ ‘ can be described by specializing the equations of $F(X)$ . The precise
definition includes ii) as a part.

An easy consequence of this theorem is the following

Corollary 8.1 If $X$ is (rational and) determinantal (resp. quasideterminantal) then so is
$F(X)$ .

He is even able to characterize these singularities by their minimal resolution graph gener-
alizing a result of J. Wahl.

Theorem 8.2 Let $X$ be a rational surface singularity of multiplicity $m\geq 3$ .
a) $X$ is determinantal if and only if the minimal resolution contains one excepti\S nal curve of
selfintersection number $-m$ ;
b) $X$ is quasideterminantal if and only if the minimal resolution graph contains the (linear)
graph of a cyclic quotient singularity of the same multiplicity.

Since the graphs of quotient surface singularities are known [Br2] this implies the

Corollary 8.2 Quotient surface singularities are quasideterminantal.

Rohr also determines all possible Artin formats for small multiplicity. For $m=3$ , there
exists only the determinantal one. For $m=4$ , there are of course the determinantal and the
quasideterminantal one, but a third one is showing up which is described by the following
interesting set of equations:
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$|\begin{array}{ll}x_{1} x_{2}x_{3} x_{4}\end{array}|+|\begin{array}{ll}y_{1} y_{2}y_{3} y_{4}\end{array}|=0$

$|\begin{array}{ll}x_{1} x_{2}y_{1} y_{2}\end{array}|-|\begin{array}{lll}y_{1} x_{3} y_{3}z_{1} 0 z_{3}y_{2} x_{4} y_{4}\end{array}|=0$ , $|\begin{array}{ll}x_{1} x_{2}y_{3} y_{4}\end{array}|-|\begin{array}{lll}y_{1} x_{3} y_{3}z_{2} 0 z_{3}y_{2} x_{4} y_{4}\end{array}|=0$ ,

$x_{1}^{2}+|\begin{array}{lll}z_{1} y_{1} z_{2}y_{1} x_{3}^{2} y_{3}z_{2} y_{3} z_{3}\end{array}|=0$ , $x_{1}x_{2}+|\begin{array}{lll}z_{1} y_{1} z_{2}y_{2} x_{4}x_{3} y_{4}z_{2} y_{3} z_{3}\end{array}|=0$ , $x_{2}^{2}+|\begin{array}{lll}z_{1} y_{2} z_{2}y_{2} x_{4}^{2} y_{4}z_{2} y_{4} z_{3}\end{array}|=0$ .



116

Special surface singularities

References

[Ard] J. Arndt. “Verselle Deformationen zyklischer Quotientensingularitaten.” Dissertation,
Universit\"at Hamburg, 1988.

[Artl] M. Artin. On isolated rational singularities of surfaces. Amer. J. Math. 88, 129-136
(1966).

[Art2] M. Artin. Algebraic construction of Brieskorn’s resolution. J. of Algebra 29, 330-348
(1974).

[AV] M. Artin, J.-L. Verdier. Reflexive modules over rational double points. Math. Ann. 270,
79-82 (1985).

[BC1] K. Behnke. J. Christophersen. Hypersurface sections and obstructions. Rational su rface
singularities. (With an appendix by J. Stevens). Compositio Mathemat ica 77, 233 258
(1991).

[BC2] $I_{\backslash }’$ . Behnke. J. Ch ristophersen. Hypersurface sections and obstructions (minimally elli p-
tic singularities). To appear in: Transactions AMS.

[BC3] K. Behnke, J. Christophersen. M-resolutions and deformations of quotient singularities.
Preprint, University of Oslo, 1991.

[BK] J. Bingener, S. Kosarew. Lokale Modulr\"aume in der analytischen Geometrie. Aspekte
der Mathematik D2, D3. Braunschweig-Wiesbaden: Vieweg 1987.

[BKR] K. Behnke, C. Kahn, 0. Riemenschneider. Infinitesimal deformations of quotient sur-
face singularities. In “Singularities,” Banach Center Publications 20, Polish Scientific
Publishers, pp. 31-66, Warsawa 1988.

[BR] K. Behnke, 0. Riemenschneider. Quotient surface singularities and their deformations.
Proceedings of the Summer School on Singularities held at Trieste 1991. Preprint, Uni-
versitat Hamburg 1991.

[Brl] E. Brieskorn. Die Aufl\"osung der rationalen Singularitaten holomorpher Abbildungen.
Math. Ann. 178, 255-270 (1968).

[Br2] E. Brieskorn. Rationale Singularit\"aten komplexer Fl\"achen. Inventiones math. 4, 336-358
(1968).

[Br3] E. Brieskorn. Singular elements of semisimple algebraic groups. In Actes Congr\‘es Intern.
Math. 1970, tome 2, 279-284.

[Bro] S. Brohme. “Verselle Basisr\"aume minimal-elliptischer Fl\"achensingularitaten und De-
formationen schwach normaler Hyperfl\"achensingularitaten.’’ Diplomarbeit, Universit\"at
Hamburg 1992.

[Cas] H. Cassens. Dissertation, Universit\"at Hamburg. In preparation.

[Chr] J. Christophersen. On the components and discriminant of the versal base space of
cyclic quotient singularities. In: “Proceedings of the Warwick Symposium on Singularity
Theory and Applications”, 81-92. Lecture Notes in Mathematics 1462, Springer Verlag,
1991.



117

Special surface singularities

[E1] R. Elkik. Singularit\’es rationelles et d\’eformations. Inventiones math. 47, 139-147 (1978).

[Es] H. Esnault. Reflexive modules on quotient surface singularities. J. Reine Angew. Math.
362, 63-71 (1985).

[EV] H. Esnault, E. Viehweg. Two dimensional quotient singularities deform to quotient
singularities. Math. Ann. 271, 439-449 (1985).

[I] S. Ishii. Small deformations of normal singularities. Math. Ann. 275, 139-148 (1986).

[JS1] T. de Jong, D. van Straten. Deformation of the normalization of hypersurfaces. Math.
Ann. 288, 527-547 (1990).

$0$

[JS2] T. de Jong, D. van Straten. On the base space of a semiuniversal deformation of
rational quadruple points. To appear in: Ann. of Math.

[JS3] T. de Jong, D. van Straten. A deformation theory for nonisolated singularities. Abh.
Math. Sem. Univ. Hamburg 60, 177-208 (1990).

[G] H. Grauert. \"Uber die Deformationen isolierter Singularit\"aten analytischer Mengen. In-
ventiones Math. 11, 263-292 (1970).

[Gr] G.-M. Greuel. Deformation und Klassifikation von Singularitaten und Moduln. Jahres-
bericht der Deutschen Mathematiker-Vereinigung. Jubil\"aumstagung 100 Jahre DMV
Bremen 1990. B. G. Teubner: Stuttgart 1992.

[GL] G.-M. Greuel, E. Looijenga. The dimension of smoothing components. Duke Math. J.
52, 263-272 (1985).

[KSB] J. Koll\’ar, N. Shepherd-Barron. Threefolds and deformations of surface singularities.
Invent. Math. 91, 299-338 (1988).

[K] P. B. Kronheimer. The construction of ALE spaces as hyper-K\"ahler quotients. J. Dif-
ferential Geom. 29, 665-697 (1989).

[L1] H. Laufer. On rational singularities. Amer. J. Math. 94, 597-608 (1972).

[L2] H. Laufer. On minimally elliptic singularities. Amer. J. Math. 99, 1257-1295 (1977).

[Lip] J. Lipman. Double point resolutions of deformations of rational singularities. Compo-
sitio Math. 38, 37-43 (1979).

[P] H. Pinkham. Deformations of algebraic varieties with $G_{m}$-action. Ast\’erisque 20, Soc.
Math. de France, Paris 1974.

[Riel] $0$ . Riemenschneider. Deformations of rational singularities and their resolutions. Rice
University Studies 59 (1), 119-130 (1973).

[Rie2] O. Riemenschneider. Deformationen von Quotientensingularitaten (nach zyklischen
Gruppen). Math. Ann. 209, 211-248 (1974).

[Rie3] $0$ . Riemenschneider. Zweidimensionale Quotientensingularitaten: Gleichungen und
Syzygien. Archiv $d$ . Math. 37, 406-417 (1981).



118

Special $surt\dot{a}(\in)$ singula$ri$ ties

[Rie4] O. Riemenschneider. Characterization and application of special reflexive modules on
rational surface singularities. Unpublished manuscript, Universitat Hamburg 1987.

[Rie5] $0$ . Riemenschneider. Manuscript in preparation.

[Roe] A. R\"ohr. “Formate rationaler Fl\"achensingularitaten.’’ Dissertation, Universit\"at Ham-
burg, 1992.

[S] P. Slodowy. Simple singularities and simple algebraic groups. Lecture Notes in Mathe-
matics 815, Springer Verlag.

[Stl] J. Stevens. On the versal deformations of cyclic quotient singularities. In:“Proc. War-
wick Symposium on Singularity Theory and Applications, Vol. 1”, 302-319. Lecture
Notes in Mathematics 1462, Springer Verlag 1991.

[St2] J. Stevens. Partial resolutions of quotient singularities. Preprint, Universit\"at Hamburg
1991.

[St3] J. Stevens. Partial resolutions of rational quadruple points. Intern. J. of Math. 2, 205-
221 (1991).

[St4] J. Stevens. Preprint, Universit\"at Hamburg 1991.

[Tju] G. N. Tjurina. Resolutions of singularities of flat deformations of rational double points.
Funct. Anal. Appl. 4, 77-83 (1970).

[W1] J. Wahl. Equations defining rational singularities. Ann. Sci. \’Ecole Norm. Sup. 20, 231-
264 (1977).

[W2] J. Wahl. Simultaneous resolution of rational singularities. Compositio Math. 38, 43-54
(1979).

[W3] J. Wahl. Smoothings of normal surface singularities. Topology 20, 219-246 (1981).

[Wu] J. Wunram. Reflexive modules on quotient surface singularities. Math. Ann. 279, 583-
598 (1988).


