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Introduction

Let (X, x) be a rational surface singularity with minimal resolution = : XX, and
let —S and £ —S be the versal geformations of X and of X, resp.. The latter
blows down to a deformation % — S of X such that there exists a cartesian diagram

Y - X

Vo
5> 5.

It has been shown by Artin [1] that the image S, of § in S is an irreducible
component of S (the Artin component), and by Lipman and the third author [4, 12]
that the mapping §— 8., can be identified with the quotient map associated to the
action of a product [T W, of Weyl groups on the affine space S, each Weyl group W,
belonging to a maximal connected configuration E® of (—2)-curves in the

r

exceptional set E= | E;C X. Blowing down these configurations E™, we get the
i=1

rational double point resolution (RDP resolution) of X which will be denoted by
X. The resolution = factors through X; the factorization will be written in the form
n=1o0.

The tangent spaces of the various base spaces can be identified with the
corresponding vector spaces of (isomorphism classes of) infinitesimal defor-
mations of first order:

TangS =T} =Exty, (% .0y, (Q%=Kahler differentials on X),
TangS=T¢=HYX,0y) {©y=tangent bundle of X).
According to Lipman and the third author [loc. cit.], the tangent space of the Artin

component is isomorphic to the space of first order deformations of the RDP

resolution X:
Tangs$,,. = T§ = Ext}(Q}, 0).
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The crucial fact in connection with the above mentioned result S, S/[TW, is the
injectivity of the canonical map

T} T} )]

resulting from blowing down deformations of X to those of X [4, Theorem], [12,
Theorem 2.2]. In particular, the smoothness of the Artin component is a direct
consequence of (1) [12, Theorem 1].

The purpose of the present note is to emphasize the usefulness of regarding the
dual situation, i.e. the cotangent spaces T", T¢", T#". As it turns out, each of these
spaces can be described in terms of maps between sections of the sheaves

Fr:=Q®wy (wy=dualizing sheaf of ¥)

for various spaces ¥, viz. X, X, X and X’=X\E= X\{x}. To be more precise, we
have (for a Stein representative X) the following sequence of canonical mappings:

HX, F5)~H(X, #) o HUX, Fy) o H(X', Fy) 2
in which

coker(H(X, %)~ H(X', F )= T} (3)

by dualizing Schlessinger’s description of Ty for normal surface singularities (cf.
[9] and, for the dual version, [3]). Our main result (cf. Sect. 1) is the
Vanishing Theorem. HYX,2®@wz)=0.

This will be proved by using (1). In fact, the Vanishing Theorem is equivalent to (1).
Hence, a direct proof would be of independent value. In Sect. 2 we relate various
quotients of modules occurring in (2) to @©-duals of deformation spaces. In
particular, we show that

T = HOX', ) HYX, %) .

Finally, in Sect. 3, we present explicit computations in the case of cyclic quotient
singularities.

1. The vanishing of H'(X, #3)

Before we prove our main result, let us deal with two special cases. Of course, if X is
a rational double point, then X =X and the vanishing is trivial. If, on the other
hand, there is no (—2)-curve at all in the resolution, then X =X and we can use
local duality:

HY(X, QQ@wy)*>HYZX, 05).

But, by a result of the third author [11, Theorem 6.1], we have for any rational
singularity X the identity

dim HYX, @)= g =number of (—2}-curves in E; @

so we are done.



A vanishing theorem concerning the Artin component 531

Besides the injectivity mentioned in the introduction, the last result is the main
ingredient for the proof of HY(X, #;)=0 in the general case. We set D =a(E)
=17 !(x) and investigate the following part of the long exact cohomology sequence
with support in D:

HOX, %)% HOX', #, ) HYR, F) - H (X, F) LHY(X', Fy) . 5]
The claim follows from the following two Propositions:
Proposition 1. ¢ is surjective.
Proposition 2. y is the zero map.

Proof of Proposition 1. By local duality and the fact that the sheaf wy is invertible
(X has only hypersurface singularities), it follows that

HYX, 24 ®0y) 2 Exti(Q}®@wy, wy)* ZExty(Q), 03)* =T,

By (3) and (5) we have a surjection of T;" on the cokernel of «; composed with ¢ this
yields the map T;i*— T¢" which must be surjective due to (1).

Proof of Proposition 2. Let E' be the union of all (— 2)-curves in E. Any local section
of 2} on X\6(E')=X\E’ can be extended across E’ to a local section of Q}, since
the singularities of X are rational double points (cf. Steenbrink [10]). Hence there
is a_canonical map #;—0,%#; which induces a factorization of y over
HY(X, 0,%%). This module is zero, as we will show now.
Consider the five term exact sequence associated to the spectral sequence
RjT*(RkO'*g’}) = Rj+k7[*3’_x;2
0- Rt (0, F3) > R'n, Fz—1, R0, F3)—>R*1 (0, F)=0
which implies the exactness of the sequence
0-»H%X, R'7,(0,%3)~H°(X,R'n, F3) - HYX,1,(R'6,F3)-0.
By (4), the C-dimension of HY(X, R'n, #y) = H'(X, #3)is equal to g, the number of
(—2)-curves in E, and
HO(X) t*(Rla*ﬁi)) = HO(X: Rlﬂ'*ﬁx)
~®HX,,R'c, F)
~QH'X, Fy),
where X, are suitable Stein neighbourhoods of the singular points in X and

X,=c"YX,) are strongly pseudoconvex neighbourhoods of the sets E*. There-
fore, by the same result, dim HY(X, t(R'¢,F3))=¢, such that

H'\X,0,%3)=HX,R't (6, F3)=0.
This ends our proof of the Propositions and the Vanishing Theorem.

Remark. From the proof of Proposition 1 it is easily deduced that the vanishing of
HY(X, Q ®wy) in turn implies the surjectivity of the map T — T§".
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2. The description of T}’

Since the singularities of X are complete intersections, 2} is torsion-free. Hence the
map « in (5) is injective, which implies

Proposition 3. T ~H(X', )/ H*(X, %3).
We have a canonical, restriction-induced mapping from the subspace
HX, #3)/H (X, #3)
of T#" to
®HX,, F3 ) HX,, F5 )~ BT
which is clearly injective. It is surjective, too, as can be seen from the well-known

local-global relation for infinitesimal deformations [5], which in our case for the
space X comes down to the exact sequence

0—-H'\(X, @;()—-rle—»@T,%v—rO. (6)

We claim that H'(X,8;) is just the image of the blowing-down map
fi: T# - T¢. This map is zero for rational double points, hence, in view of (6), §
factorizes over H'(X, @5). By the results of [11], the kernel of § has the same
dimension as the cokernel of H'(X, @3) < T#, whence the claim (remember that T3
and 7§ have the same dimension).

Let us summarize our results:

Proposition 4. H(X, #;)/H(X, #3)~ D T§.
Proposition 5. H'(X, ©3) ~im (T} - T}).
Finally, a consequence of (6) and Propositions 3, 4, and 5 is

Proposition 6. H(X', %)/ HY(X, %) is canonically isomorphic to the C-dual of
im(T§ - T§).

3. Application to cyclic quotient singularities
In this section we shall apply Proposition 3 in order to compute
T¢ =HX, F)/imH°(X, )

for two-dimensional cyclic quotient singularities X = 4, ,. Recall that if X has a
dual graph
~b by b,

then a resolution X is given by r+ 1 coordinate patches My, ..., M, (M;~?, with
coordinates u,, v;) glued together according to

(0, 0)=(ug L, uh'vo),  (Ug 02)=(u¥3,07 1), (ua,03)=(u7 ", v, etc.,
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and functions z; = vy, 2, = Ugly, Z; + | =252, 1, 2 S €< e—1, which blow down Xto
A, , The numbers a,,...,a,_; are characterized by the property that the
configuration

—@r_y —ag;  —1 —b, ~U,

can be blown down to a smooth point. Another way of describing the relation
between the a,’s and the b;’s is the following: in an array with r columns and e—2
rows (the rows numbered 2, ..., e — 1) mark the entry (g, i) with a dot if z, vanishes to
first order along the i-th irreducible curve in the exceptional set of X. This yields
the first author’s “Punkteschema” [7] with b,—1 dots in the i-th column, a,—1
dots in the row number ¢ and such that the first dot in the (i+1)-st column is
adjacent to the last dot in the i-th.

The local algebra of 4, , is generated by the invariants z, =u"v’s, 1<e<e; in
particular z;=#", z,=u""% (here we view 4,, as a quotlient of €2 with

Pl
coordinates u,v). They satisfy the relations z,2,=z5,,2,.; [] 2% % 2<d+1
Kk=46+1

<e¢—1ZLe—1. Cf. [7] for further information.
In [2] (cf. also [6]) it is shown that in the case e = embdim(X) 2 4 the invariants

A=z(U~-V),
eoe{El)....¢a—1)35ese—20\{(2, 1),(e—1,1)},
hp=2U, A=z U+jV),35ese-2, A.y1=2z.,V,

where

U=f1£® duAdv, Vzéli du/\dv’
u uv v u

represent a basis of T,*. The following Lemma tells us which of these elements are
holomorphic on X.

Lemma. Suppose 2<eSe—1 and (4,B)e C*\{0}. Then the pull-back of the
invariant A=z4AU +BV) is in HY(X, %) if and only if either of the following
two conditions is fulfilled:

1) a=1,3<e<e~2, a,=2, 4j,+Bi,=0,
2) az2.
Here the numbers 1, and j, are defined as [,=i,—i, 4 1, Js=Jjo s 1—Jo

Proof. On M; we have z,=uf=y?* with nonnegative exponents. Moreover f,,
a1 if ee{2,...,e—1}. Since AU+BV=A,U;+ BV, on M, (where U, V, are
defined like U, ¥ with u,, v, instead of u,v), 4 is holomorphic if «2 2.

Now consider the case o= 1. If ¢=2 or e=e— 1, 4 is not holomorphic on M, or
M, respectively, so we restrict to 3SeSe—2.

Suppose a, = 3. Then there are two adjacent curves in the exceptional set along
which z, vanishes to first order. Hence z,=uw,; for some i, and A cannot be
holomorphic on M, Now if a, =2 we still have ;=1 or y,,=1 for some i. Then A is
not holomorphic on M, unless 4;=0 (resp. B;=0). Hence A and B have to satisfy a
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nontrivial linear condition. There is no other condition since
=z iU ] V)~ uf=v(B,+ G BV G 1,i— 70V
is holomorphic on X: for all i we have
ﬂe— 1,i+ﬂz+ l,izasﬁsi =2ﬁci’

hence B,; =201 B, ;—Bu=0,sinceall fsinvolved are = 1; and the same holds for
the y’s. This proves the Lemma.

It is easy to see that the invariant 2-forms z,(uv) " 'du A dv,2<e<e—1, generate
wy. Up to scalar factors, their pull-backs to X are equal to
w,: = z,(tig0p) " *dug A dv,.

Proposition 7. The tensors J,=d(z, .,z V0, ,, 3<e<e~2, represent a basis of
a

Proof.
We have
L= Z41%-1 (42,41 dz, @y gy (9241 dz, dug A dug
= Dottt (Fhvs T} @ 01 _jeem (Chern P g Sl %0
z, Zev1 Ze Z3 Zg+ 1 Z; Uglp

hence 1, € H(X, #;) by the Lemma. By Proposition 4, we first have to show that,
for each v, , represents the zero element of T§..

Before doing so, we shall have a closer look at the dot diagram described above.
Think of each dot (¢, i) as replaced by the coordinate representation of z,in the two
coordinate patches covering the i-th exceptional curve E; (i.e. M,_, and M,). Then
in columns with one dot only [corresponding to (— 2)-curves] all exponents are 1
whereas in each of the remaining columns the exponents of either the «’s (if i is odd)
or the v’s change by +1 from one row to the next. Remember also that z, =v,;
similarly, z, is either u, or v,, depending on which one vanishes along E,.

Now look at a maximal (— 2}-configuration X, which does not contain either
E, or E,. We know explicitly how to blow down this configuration since we know
this in general for cyclic quotients. From our discussion of the z,, we infer that in
fact for a suitable & the functions (x, y,2) ={zs_ 125\, 25 25+ 125 ) blow down X, to
the rational double point X,={xz=y*"2}. Now, if § <e, then f,e H%X,, #3 )
follows from the fact that z, 2z, ! is a holomorphic function in x, y,z: for ¢=4,
this is clear, and, if § <e, we have

Zet+y =ZZaZg+1 =z £ 22
z K

. Z5+12; x=d+1

If £ < 6, we use the same argument for d(z,_ ;2 )®w, , , which is equal to — 1, in
Ty¢". Finally, if E, (resp. E,) belongs to X, we have blowing-down functions (x, y, z)
=(zy, 24, 2325 }) [1e8P. (2,- 22, Z.-1,2.)] and we can argue as above.

Using the basis of 73", one can show without difficulty that Z, is a (nonzero)
C-linear combination of the elements 4%~ ! and 1, [modulo im H%(X, #,)], and
that the 1, actually generate T¢ as a vector space.
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Remark. Appending two more coordinate patches M ., M _ according to

Uy =(1+u0)v(2)’ u_=(1-—u0)u§, U+=U_.=Ual

to X, we get a manifold ¥ which is blown down by the functions
yi=hzi, y,=hz,z,, y,=h"z,, 3=Zc=e,
where h=1—wu;? and

1+(—1)=
L=a,—[ay2), li=[a,/2], li=asl,— ___.(_2.._)__’

Lii=al,—1l., 4=ese—1,
to the dihedral singularity D, ,. Putting
Ma=Wy, N3=Y1 '¥aMla, Mes1=VertVe N»3SeS3-2,

the elements #,=d(y,. Y, 1)®11,5_~1 represent a basis of T3, where ¥ is the RDP
resolution of D, ,. Restricted to X, we have £,=/, in T{". Cf. [8] for details.
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