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I n t r o d u c t i o n  

Let (X, x) be a rational surface singularity with minimal resolution ~z : . ~ X ,  and 
let 5f--,S and ~ S  be the versal deformations of X and of .~, resp.. The latter 
blows down to a deformation ~--+g of X such that there exists a cartesian diagram 

g - , S .  

It has been shown by Artin [1] that the image S.rt of g in S is an irreducible 
component of S (the Artin component), and by Lipman and the third author [4, 12] 
that the mapping g--, Sa,, can be identified with the quotient map associated to the 
action of a product I]  W~ of Weyl groups on the affine space ~, each Weyl group W~ 
belonging to a maximal connected configuration E ~) of (-2)-curves in the 

exceptional set E = G E i  C .Y. Blowing down these configurations E ~), we get the 
t = 1  

rational double point resolution (RDP resolution) of X which will be denoted by 
~ .  The resolution ~ factors through s  the factorization wilt be written in the form 
7~ = " f  o 0". 

The tangent spaces of the various base spaces can be identified with the 
corresponding vector spaces of (isomorphism classes of) infinitesimal defor- 
mations of first order: 

Tangs  = Tx l - 1 1 (t2Jc = K/ihler differentials on X), - Ext~x,~(Ox, x, d~x,x) 

Tang~=  T~ = Ht(.~ ", O~t) (Ore = tangent bundle of .~). 

According to Lipman and the third author [loc. cit,], the tangent space of the Artin 
component is isomorphic to the space of first order deformations of the RDP 
resolution g :  

T a n g S . a -  T~ = Ext~O ~x, Ojc). 
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The crucial fact in connection with the above mentioned result Sart ~ ~/I] W, is the 
injectivity of the canonical map 

T~ c. Tx 1 (1) 

resulting from blowing down deformations of ~ to those of X [4, Theorem], [12, 
Theorem 2.2]. In particular, the smoothness of the Artin component is a direct 
consequence of (1) [12, Theorem 1]. 

The purpose of the present note is to emphasize the usefulness of regarding the 
dual situation, i.e. the cotangent spaces T~', T~*, T~*. As it turns out, each of these 
spaces can be described in terms of maps between sections of the sheaves 

~rr := 12~| r (co r =dualizing sheaf of Y) 

for various spaces Y, viz. X, .~, ,(  and X'=X\E=X\{x} .  To be more precise, we 
have (for a Stein representative X) the following sequence of canonical mappings: 

n~ ~:x)-" H~ ~, ~ )  ~ n~ ~:yc) ~ n~ X', ~;x,) (2) 

in which 

coker(H~ ~rx)~ n~ ~rx,)) ~- Tx 1. (3) 

by dualizing Schlessinger's description of Tx ~ for normal surface singularities (cf. 
[9] and, for the dual version, [3]). Our main result (of. Sect. 1) is the 

Vanishing Theorem. HI(~, O~| = O. 

This will be proved by using (1). In fact, the Vanishing Theorem is equivalent to (1). 
Hence, a direct proof would be of independent value. In Sect. 2 we relate various 
quotients of modules occurring in (2) to r of deformation spaces. In 
particular, we show that 

T~" ~ H~ ', ~x.)/H~ ~r~). 

Finally, in Sect. 3, we present explicit computations in the case of cyclic quotient 
singularities. 

L The vanishing of Hl(~, ~ )  

Before we prove our main result, let us deal with two special cases. Of course, ifX is 
a rational double point, then X = A ~ and the vanishing is trivial. If, on the other 
hand, there is no (-2)-curve at all in the resolution, then ~ = . ~  and we can use 
local duality: 

Hi(g, OJ~| ~ H~(g, O~). 

But, by a result of the third author [11, Theorem 6.1], we have for any rational 
singularity X the identity 

dimH~(.~, O jr) = q = number of ( -  2)-curves in E; (4) 

so we are done. 
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Besides the injeetivity mentioned in the introduction, the last result is the main 
ingredient for the proof of H~(~,#-~)=0 in the general case. We set D=tr(E) 
= z-  '(x) and investigate the following part of the long exact cohomology sequence 
with support in D: 

H~176 (5) 

The claim follows from the following two Propositions: 

Proposition 1. ~ is surjective. 

Proposition 2. ~p is the zero map. 

Proof of Proposition 1. By local duality and the fact that the sheaf wx is invertible 
(2  has only hypersurfaee singularities), it follows that 

no()~, I2x| o~) = Extx(t2x| ~o~, o9~) = Extx(Ox, ~ )  = Tx ~ . 

By (3) and (5) we have a surjection of T~* on the cokernel of~; composed with 9 this 
fields the map Tx~*~Tx ~* which must be surjective due to (1). 

Proof of Proposition 2. Let E' be the union of all ( -  2)-curves in E. Any local section 
of f2~ on X\o(E') = 2 \E '  can be extended across E' to a local section of ~2Jt, since 
the singularities of J~ are rational double points (cf. Steenbrink [10"l). Hence there 
is a canonical map ~ t r , ~ - x  which induces a factorization of tp over 
H1()7, tr,~-t). This module is zero, as we will show now. 

Consider the five term exact sequence associated to the spectral sequence 
RJz,(Rktr,~) =~ R J+ kx,~-x.: 

O~ R lz ,(a ,~" ~:)~ R lrc , . ~  ~ z ,(R l a , f ' x ) ~  R 2"c ,(tr , . ~ )  =0  

which implies the exactness of the sequence 

O~H~ R 1 "c,(o-,~-~))~H~ RI~z ,~ )~H~ z,(R 1 ~r ,~-~c)) - ,0 .  

By (4), the ~-dimensiou of H~ R' rr,~qr~) = HI(_~, ~r~:) is equal to e, the number of 
(-2)-curves in E, and 

H~ z , ( R ~ , ~ D )  -- H~ R, ~r , ~ )  

~_ ~H~ g t  a , ~ )  

___ ~n ' (2~ ,  ~ ) ,  

where .g, are suitable Stein neighbourhoods of the singular points in .~ and 
~ = tr- 1(.~,) are strongly pseudoconvex neighbourhoods of the sets E t~. There- 
fore, by the same result, dimH~ z,(R'a,~-~))=e, such that 

n'(2, ~ , ~ )  = n~ R~z , (~ ,# -~ ) )  = 0 .  

This ends our proof of the Propositions and the Vanishing Theorem. 

Remark. From the proof of Proposition 1 it is easily deduced that the vanishing of 
H~(X, t2J~| in turn implies the surjectivity of the map T~*~T]*. 
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2. The description of TJ* 

Since the singularities of ~ are complete intersections, ~x is torsion-free. Hence the 
map ~ in (5) is injective, which implies 

Proposition 3. Tx: * "" n~ x ', ~:x, ) / H~ ( ~,  ,r ). 

We have a canonical, restriction-induced mapping from the subspace 

H~ r176 ~,) 

of T~* to 

@ H~ ( 2 ,, ~,t.) / H~ 2 ,,, .~, ) " �9 Ti* 

which is clearly injective. It is surjective, too, as can be seen from the well-known 
local-global relation for infinitesimal deformations [5], which in our case for the 
space ~ comes down to the exact sequence 

0-*H'(2, 0,)~ Tx ~-+ �9 Tx~-+0 �9 (6) 

We claim that H*(2, OD is just the image of the blowing-down map 
: Tg-~ T#. This map is zero for rational double points, hence, in view of (6), fl 

factorizes over H*(~, O~). By the results of [11], the kernel of fl has the same 
dimension as the cokernel of H 1(2, 0 3 ) ~  Tx ) , whence the claim (remember that T~ 
and Tx ~ have the same dimension). 

Let us summarize our results: 

Proposition 4. H~ ,~)/H~ ...~) ~ �9 Tx;*~. 
Proposition 5. H'(2, O:~)- im (T~ ~ T:~). 

Finally, a consequence of (6) and Propositions 3, 4, and 5 is 

Proposition 6. H~176 is canonically isomorphic to the eE-dual of 
im(T~-~ T.~). 

3. Application to cyclic quotient singularities 

In this section we shall apply Proposition 3 in order to compute 

7~= H~176 

for two-dimensional cyclic quotient singularities X = A,.~. Recall that if X has a 
dual graph 

-bl -b2 -b, 

then a resolution �9 is given by r + 1 coordinate patches M o . . . . .  Mr (M~ - eE 2, with 
coordinates %, vc) glued together according to 

(u,,vl)=(uol,~'Vo), (u2,v2)=(u,~z,v~l), (us, vs)=(u~',u~sv2) etc., 
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and functions z ~ = v o, z~ = UoV o, z, + x = z~'z~2t, 2 < e < e - 1, which blow down ~ to 
A,,a. The numbers a2,...,a~-~ are characterized by the property that the 
configuration 

-a~_~ -a~  - I  -b~ -b,- 

can be blown down to a smooth point. Another way of describing the relation 
between the a~'s and the b{s is the following: in an array with r columns and e - 2  
rows (the rows numbered 2,. . . ,  e -  1) mark the entry (e, 0 with a dot if z, vanishes to 
first order along the i-th irreducible curve in the exceptional set of X. This yields 
the first author's "Punkteschema" [7] with b~-1 dots in the i-th column, a ~ - 1  
dots in the row number e and such that the first dot in the ( i+  1)-st column is 
adjacent to the last dot  in the i-th. 

The local algebra of A.,~ is generated by the invariants z~ = u% J', 1 < e < e; in 
particular z~ =u ~, z2=u"-qv (here we view A,.~ as a quotient of C 2 with 

g-J_ 

coordinates u,v). They satisfy the relations z~z,=za+~z,_x l-I z,*'-2, 2<6+1= 
so=6+ 1 

< e -  1 < e -  1. Cf. I-7] for further information. 
In I-2] (el. also 1,-6]) it is shown that in the case e = embdim(X) > 4 the invariants 

L" = z~CV - v3, 
(e, ~x) ~ {(~, 1) . . . . .  (~, a~--1), 3 < e_< e - -2} \{ (2 ,1 ) , (e -  1,1)), 

).2 = z2 U , 2~=z~(i,U+j~V), 3 < e_<e -  2, ,~_t=z~_lV,  

where 

u = du | du ^ dv v =  dv | du A dv 
U UU 1) Ul) 

represent a basis of T~ . The following Lemma tells us which of these elements are 
holomorphic on 3~. 

Lemma. Suppose 2 < e < e - 1  and (A,B)E~2\{0}.  Then the pull-back of the 
invariant 2=z~(AU + BV) is in H~  if and only if either of the following 
two conditions is fulfilled: 

1) ~=1 ,  3 _ < ~ e - 2 ,  a ,=2 ,  Aj~+Bt~=O, 
2) ~_->2. 

Here the numbers ~ and f, are defined as ~ = i , - i ,  + ~, L =L + ~-L.  

Proof. On Mi we have zE=u~'v~ ~ with nonnegative exponents. Moreover  fin, 
~,i>1 if e ~ { 2 , . . . , e - l ) .  Since AU+BV=AiUi+BiVI  on M~ (where Ui, Vi are 
defined like U, V with u~,v~ instead of u,v), 2 is holomorphic  if ~ > 2 .  

N o w  consider the case ~ = 1. If ~ = 2 or  e = e -  1, 2 is not  holomorphic on Mo or 
M, respectively, so we restrict to 3 < ~ < e - 2 .  

Suppose a, ~ 3. Then there are two adjacent curves in the exceptional set along 
which z, vanishes to first order. Hence z~ =u~v~ for some i, and 2 cannot be 
holomorphic on M~. Now ira,  = 2 we still have/~a = 1 or ~'a = 1 for some i. Then 2 is 
not  holomorphic on M~ unless Ai = 0 (resp. Bi = 0). Hence A and B have to satisfy a 
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nontrivial  linear condition. There is no other condit ion since 

-~': = ~ t ~  v - L  v )  ~ u,%~o,((p~ + , . ,  - ~0~)u, + (r, § 1., - 7~,) v,) 

is holomorphic  on 2 :  for all i we have 

fl ,-1,i q- fl,+ l,i=atflti=- 2fl~i, 
hence fla-~ 2 or fl~ + 1,i-- fl~i = 0, since all ffs involved are ~ 1; and the same holds for 
the 7's. This proves the Lemma. 

It  is easy to see that  the invariant  2-forms z~(uv)- ~ du ^ dr, 2 < e < e - l ,  generate 
to x. Up to scalar factors, their pull-backs to 2 are equal to 
o9,: = z,(UoVo)- lduo ^ dv o. 

Proposition 7. The tensors ~ = d(z~ + ~ z f  ~)| eg~_ ~, 3 < e < e - 2, represent a basis o f  

r•. 
Proof. 

We have 

z~+ j z~ I [dz,+ i 

Zt \ Z~+ i Ze / Z2 k, Z~ + 1 Zt / UoO o 

hence ~ e H ~  ~yt) by the Lemma. By Proposi t ion 4, we first have to show that, 
for each v, ;~, represents the zero element of Tx;~*. 

Before doing so, we shall have a closer look at the dot  diagram described above. 
Think of each dot  (e, i) as replaced by the coordinate representation ofz~ in the two 
coordinate  patches covering the i-th exceptional curve E i (i.e. M~_ t and M~). Then 
in columns with one dot  only [corresponding to ( -  2)-curves] all exponents are 1 
whereas in each of the remaining columns the exponents of either the u's (if/is odd) 
or  the v's change by +1 from one row to the next. Remember also that zl =Vo; 
similarly, ze is either ur or %, depending on which one vanishes along E,. 

Now look at  a maximal  ( -  2)-configuration 2 ,  which does not contain either 
E 1 or E,. We know explicitly how to blow down this configuration since we know 
this in general for cyclic quotients. F r o m  our  discussion of the z,, we infer that  in 
fact for a suitable 6 the functions (x, y, z) = (z~_ lz~- 1, za ' z~ + lzg 1) blow down ~ ,  to 
the rat ional  double point  2 ,  = {xz  = y ~ -  2}. Now, if c5 < ~, then ~, e n ~  ~ :c )  
follows from the fact that  z, § ~z~-* is a holomorphic  function in x, y, z: for e = c~, 
this is clear, and, if 6 < e, we have 

Ze+----~I -~-Z Z~Z~+I =Z ~ Z~ ~-2. 
Z~ Z~+ iZe x=~+ 1 

If  s < c~, we use the same argument for d(z,_ i zi" 1)| co~ +, which is equal to - ~, in 
1 "  " " T~ . Finally, ffE~ (resp. E,) belongs to ~ ,  we have blowing-down functions (x, y, z) 

(z,_ 2z~-1, z~_ l, z,)] and we can argue as above. =(z l ,  zz, zaz~ 1) [resp. -1 
Using the basis of Tx ~', one can show without difficulty that  ,~ is a (nonzero) 

C-l inear  combinat ion of the elements 2~ ~ 1 and ,~, [modulo  imH~ ~-x)], and 
that the ;~, actually generate T:~ as a vector space. 
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Remark. Appending  two more  coordinate  patches M +, M _  according to 

u+ =(l  +uo)u 2, u_=( l - -uo)v  2, v+ = v _ = v o  1 

to ~ ,  we get a manifold  ~" which is b lown down by the functions 

yl =hz  2, y2=hl2z2z3, y~=hl~ 3 <-e<e, 

where h = 1 - u o 2 and  

1 + ( -  1) *~ 
12 = a2 -- [a2/2]' t3 = [a2/23 ' 14 = a313 2 ' 

l~+l=a~l,-l~_ 1 , 4 < 8 < e - 1 ,  

to the dihedral  singularity D,.q. Put t ing  

~2 ~--- (/)2 , q 3 = Y l  l y 2 r / 2 ,  q , + i = y , + t y [ l r l , , 3 < 8 < 3 - 2 ,  

the elements ~ ,=d(y ,+  1 s  a ) |  represent a basis of T#, where l? is the R D P  
resolut ion of D,,~. Restricted to ~ ,  we have ~, =~,  in Tx ~'. Cf. [8] for details. 
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