

Citations From References: 0

From Reviews: 1

MR3074935 (Review) 14B05 14B07 14D15 14M25 Riemenschneider, Oswald (D-HAMB-SM)

A note on the toric duality between the cyclic quotient surface singularities $A_{n,q}$ and $A_{n,n-q}$. (English summary)

Singularities in geometry and topology, 161–179, IRMA Lect. Math. Theor. Phys., 20, Eur. Math. Soc., Zürich, 2012.

Let n and q be coprime integers, $1 \leq q < n$, ζ_n a primitive complex root of unity, and $\Gamma_{n,q}$ the cyclic group generated by the diagonal matrix $\operatorname{diag}(\zeta_n, \zeta_n^q)$. Denote by $A_{n,q}$ the quotient surface singularity $\mathbb{C}^2/\Gamma_{n,q}$. Then, the singularity is an affine toric variety and, as the author points out in Section 3 of the paper under consideration, the singularities $A_{n,q}$ and $A_{n,n-q}$ are dual to each other as affine toric varieties. This means that if $A_{n,q}$ is determined by a lattice $M \simeq \mathbb{Z}^2$ and a rational polyhedral cone σ in $M \otimes \mathbb{R}$, then $A_{n,n-q}$ is determined by the dual lattice $N = \operatorname{Hom}(M,\mathbb{Z})$ and the dual cone $\sigma^{\vee} \subset N \otimes \mathbb{R}$.

Quotient singularities of the form $A_{n,q}$ are well studied in the literature [see, e.g., J. Stevens, in Deformations of surface singularities, 163–201, Bolyai Soc. Math. Stud., 23, Springer, Berlin, 2013; and references therein]. It is known that the versal deformation $\mathfrak{X}_{n,q}^{\text{vers}}$ of $A_{n,q}$ has in general a reducible base space. There exists always one component of $\mathfrak{X}_{n,q}^{\text{vers}}$ which is the versal deformation space for deformations of $A_{n,q}$ which possess a simultaneous resolution after finite base change. It is called the Artin deformation. There is also the so-called monodromy covering $\mathfrak{Y}_{n,q}$ of the Artin deformation which is versal for deformations of $A_{n,q}$ which can be resolved simultaneously without base change. J. A. Christophersen in Singularity theory and its applications, Part I (Coventry, 1988/1989), 81–92, Lecture Notes in Math., 1462, Springer, Berlin, 1991; MR1129026] showed that the total space $\mathfrak{Y}_{n,q}$ is an affine toric variety, and M. Hamm in his dissertation [Die verselle Deformation zyklischer Quotientensingularitäten: Gleichungen und torische Struktur, Univ. Hamburg, 2008] proved that $\mathfrak{Y}_{n,q}$ and $\mathfrak{Y}_{n,n-q}$ are also dual to each other as affine toric varieties. In the present paper the author gives a proof of Hamm's result in the special cases q = n - 1 (then $A_{n,q}$ is isomorphic to the singularity A_{n-1}) and q = 1 (then $A_{n,q}$ is isomorphic to a cone over the twisted rational curve). The aim of this new proof is to make the toric duality between $\mathfrak{Y}_{n,q}$ and $\mathfrak{Y}_{n,n-q}$ more geometrically visible.

{For the collection containing this paper see MR3077315}

D. A. Stepanov

© Copyright American Mathematical Society 2016