

Citations

From References: 1 From Reviews: 1

MR1032944 (91b:14003) 14B07 14B10 14E15 14J17 Riemenschneider, Oswald (D-HAMB); Röhr, Ancus (D-HAMB); Wahl, Jonathan M. (1-NC)

A vanishing theorem concerning the Artin component of a rational surface singularity.

Math. Ann. 286 (1990), no. 1-3, 529-535.

Let (X, x) be a rational surface singularity; denote by \widetilde{X} , \widehat{X} and X' the minimal resolution, the RDP-resolution and the space $X \setminus \{x\}$, respectively. On each of these spaces the authors consider the sheaf $\mathcal{F} := \Omega^1 \otimes \omega$, and they obtain the following chain of maps: $H^0(X, \mathcal{F}_X) \to H^0(\widehat{X}, \mathcal{F}_{\widehat{X}}) \hookrightarrow H^0(\widetilde{X}, \mathcal{F}_{\widehat{X}}) \hookrightarrow H^0(X', \mathcal{F}_{X'})$. The paper contains the following results: (1) The dual spaces of T_X^1 , $T_{\widehat{X}}^1$, $\operatorname{Im}(T_{\widehat{X}}^1 \to T_{\widehat{X}}^1)$ and $\bigoplus_{\nu} T_{\widehat{X}_{\nu}}^1$ (\widehat{X}_{ν} are the germs of the rational double points of \widehat{X}) are described as certain cokernels of the above maps (or their compositions). (2) $H^1(\widehat{X}, \mathcal{F}_{\widehat{X}}) = 0$. (3) As an application, $T_{\widehat{X}}^{1\perp} \subseteq T_X^{1*}$ is computed for 2-dimensional cyclic quotient singularities. Klaus Altmann

© Copyright American Mathematical Society 1991, 2016