

Citations

From References: 7 From Reviews: 1

MR643282 (83e:14002) 14B05 13H10 Riemenschneider, Oswald

Zweidimensionale Quotientensingularitäten: Gleichungen und Syzygien. (German) [Two-dimensional quotient singularities: equations and syzygies] *Arch. Math. (Basel)* **37** (1981), *no.* 5, 406–417.

Let 0 be the local ring of a 2-dimensional quotient singularity with embedding dimension e. Then $\mathcal{O} = \mathbb{C}[z_1, \cdots, z_e]/\mathfrak{a}$. The aim of the author is to determine a minimal set of generators of the ideal \mathfrak{a} . Except for some tetrahedral singularities with $e \geq 6$, it turns out that \mathfrak{a} is almost determinantal in the following sense: The general form of a minimal set of generators may be given by $f_{ij} = a_i \cdot b_j - t_{i,j} \cdot b_i \cdot a_j$ with $t_{i,j} := c_{i,i+1} \cdots c_{j-1,j}$. Hence the f_{ij} may be considered as generalized 2×2 minors of the matrix

$$\begin{pmatrix} a_1 \cdots a_{e-1} \\ b_1 \cdots b_{e-1} \end{pmatrix}$$

with a set of "deformation" elements $c_{1,2}, \dots, c_{e-2,e-1}$. For the exceptional cases, the ideal \mathfrak{a} can be generated by the 2×2 minors of an array

$$\begin{bmatrix} a_1 & \cdots & a_{e-1} \\ b_1 & \cdots & b_{e-1} \\ c_1 & c_2 & \end{bmatrix}$$

However, it should be noted that not all of the minors are independent. Still, it is always possible to split off two of them to get a minimal set of generators. *Ulrich Karras*

© Copyright American Mathematical Society 1983, 2016