

From References: 5 From Reviews: 2

## MR0437808 (55 #10730) 32G10 32C40 Riemenschneider, Oswald

Familien komplexer Räume mit streng pseudokonvexer spezieller Faser. *Comment. Math. Helv.* **51** (1976), *no.* 4, 547–565.

The author gives the following results, which generalize to higher dimensions some aspects of work of E. Brieskorn [Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, pp. 279–284, Gauthier-Villars; #10720 above], M. Artin [J. Algebra **29** (1974), 330–348; MR0354665] and of the author [Manuscripta Math. **14** (1974), 91–99; MR0414930]. Let  $\tilde{\pi}: \tilde{Z} \to S$  be a holomorphic map between complex spaces. Let  $0 \in S$ . Let  $\tilde{Z}_0 = \tilde{\pi}^{-1}(0)$  be strictly pseudoconvex. Let K be compact in  $\tilde{Z}_0$ . Then there are open sets  $U \subset \tilde{Z}$  and  $V \subset S$  with  $K \subset U$ ,  $0 \in V$  and  $\tilde{\pi}(U) \subset V$  such that  $\tilde{\pi} | U: U \to V$  is a 1-convex map. So one can assume that  $\tilde{\pi}$  is 1-convex. Let  $\sigma: \tilde{Z} \to Z$  be the Remmert reduction of Z with  $\tilde{\pi} = \pi \circ \sigma$ . Let  $\mathcal{F}$  be a coherent sheaf on  $\tilde{Z}$  which is flat over S near  $\tilde{Z}_0$ . If  $H^1(\tilde{Z}_0, \mathcal{F}_0) = 0$  or if dim  $H^1(\tilde{Z}_s, \mathcal{F}_s)$  is constant in a neighborhood of 0 and S is reduced near 0, then  $\sigma_*\mathcal{F}$  is  $\pi$ -flat near the fiber  $Z_0 = \pi^{-1}(0)$ . Typically  $\mathcal{F}$  is  $\mathcal{O}$ , the structure sheaf. Suppose that  $H^2(\tilde{Z}_s, \mathcal{O}_s)$  has constant dimension. Then there is a maximal reduced subspace  $S_a$  of S such that restriction to  $S_a$  makes  $\pi_{\alpha}$  a flat deformation of  $Z_0$ ; here

$$S_a = \{ s \in S : \dim H^1(\tilde{Z}_s, \mathcal{O}_s) = \dim(\tilde{Z}_0, \mathcal{O}_0) \}.$$

If  $H^2(\tilde{Z}_0, \mathbb{O}_0) = 0$  and  $\tilde{\pi}$  is a versal deformation of the germ of  $\tilde{Z}_0$  near its exceptional set, then  $\pi_a$  is the versal deformation of  $Z_0$  which can be simultaneously resolved (without base change) and with initial resolution  $\tilde{Z}_0$ .

The existence of such a versal  $\tilde{\pi}$  is now known in some cases to be published by D. Leistner ("Vollständigkeitssatz für Deformationen von streng pseudokonvexen Mannigfaltigkeiten", preprint, 1976) and by the reviewer ("Deformations of two-dimensional pseudoconvex manifolds", to appear in Proceedings of the Conference on Complex Analysis (Cortona, 1977)). *H. B. Laufer* 

© Copyright American Mathematical Society 1978, 2016