

Citations From References: 2

From Reviews: 1

MR0212210 (35 #3084) 32.22

Riemenschneider, Oswald

Über den Flächeninhalt analytischer Mengen und die Erzeugung *k*-pseudokonvexer Gebiete. (German) *Invent. Math.* **2** 1967 307–331

Results of K. Oka [Japan. J. Math. **32** (1962), 1–12; MR0159032] are extended from analytic sets of pure condimension 1 to analytic sets of pure dimension k. At first different but equivalent definitions of k-pseudo-convexity are given. For r > 0, define D(r) = $\{z: |z| < r\}$ and $D^n(r) = D(r) \times \cdots \times D(r)$ (n-factors). Let $\overline{D}^n(r)$ be the closure of $D^n(r)$. Define $D_0^n(r) = D^n(r) - \{0\}$. Let G_0 be an open subset of a pure n-dimensional complex manifold G. Then G_0 is said to be k-pseudo-convex in G if the following condition holds: "If $a \in \overline{G}_0 - G_0$ and if $f: U \to V$ is a biholomorphic map of the open neighborhood U of $\{0\} \times \overline{D}^{n-k}(r)$ in \mathbb{C}^n onto an open subset V of G with f(0) = a and with $f(\{0\} \times D_0^{n-k}(r)) \subseteq G_0$, then $r_1 > 0$ exists such that

$$f(\{z\} \times D^{n-k}(r)) \cap (G - G_0) \neq \varnothing$$

for each $z \in D^k(r_1)$."

For $0 < r_1 < r$ and $0 < r_1' < r'$ define

$$\begin{split} P &= P\left(\frac{k}{n} \left| \frac{r}{r'} \right) = D^k(r) \times D^{n-k}(r), \\ Q\left(\frac{k}{n} \left| \frac{r}{r_{1'}, r'} \right) = D^k(r) \times (D^{n-k}(r') - \overline{D}^{n-k}(r_{1'})) \\ H^0\left(\frac{k}{n} \left| \frac{r_{1,r}}{r_{1'}, r'} \right) = Q\left(\frac{k}{n} \left| \frac{r}{r_{1'}, r'} \right) \times P\left(\frac{k}{n} \left| \frac{r_{1}}{r'} \right). \end{split}$$

Let Δ_m be the set of all integers p with $1 \leq p \leq m$. Take s with 0 < s < k. Let S be the set of all injective and increasing maps $\sigma: \Delta_s \to \Delta_k$, where 0 < s < k. For $\sigma \in S$ and $p \in \Delta_k$ define $m_{\sigma}(p) = r$ if $p \in \sigma(\Delta_s)$ and $m_{\sigma}(p) = r_1$ if $p \in \Delta_k - \sigma(\Delta_s)$. For $\sigma \in S$ define

$$Q^{\sigma}\left(\frac{k}{n}\left|\frac{r_{1},r}{r'}\right) = D(m_{\sigma}(1)) \times \dots \times D(m_{\sigma}(k)) \times P\left(\frac{k}{n}\left|\frac{r_{1}}{r'}\right),$$
$$H^{s} = H^{s}\left(\frac{k}{n}\left|\frac{r_{1},r}{r_{1'},r'}\right) = Q\left(\frac{k}{n}\left|\frac{r}{r_{1'},r'}\right) \cup \bigcup_{\sigma \in S} Q^{\sigma}\left(\frac{k}{n}\left|\frac{r_{1},r}{r'}\right).$$

Then (H^s, P) is said to be an (s, k, n)-Hartogs figure. The open subset G_0 of G is said to be (s, k)-pseudo-convex in G if the following property is true: "If $a \in \overline{G}_0 - G_0$, if (H^s, P) is an (s, k, n)-Hartogs figure and if $f: U \to V$ is a biholomorphic map of an open neighborhood U of \overline{P} onto an open subset V of G with f(0) = a such that $f(H^s) \subseteq$ G_0 , then $f(P) \subseteq G_0$." Theorem: "If $0 \leq s < k \leq n$, then G_0 is (s, k)-pseudo-convex in G if and only if G_0 is k-pseudo-convex in G." The advantage of this result is that (k - 1, k)-pseudo-convexity pseudo-convexity is better adapted to induction.

Again, let G be a pure n-dimensional complex manifold with a countable base of open sets. Let χ be the (1, 1)-form associated to a Hermitian metric on G. Define $\chi_k = (1/k!)\chi \wedge \cdots \wedge \chi$ (k-times). A real k-divisor $A = \{A_\lambda, a_\lambda\}_{\lambda \in \Lambda}$ consists of a locally finite family $\{A_\lambda\}_{\lambda \in \Lambda}$ of irreducible analytic sets of dimension k on G and a family $\{c_\lambda\}_{\lambda \in \Lambda}$ of real numbers. The k-divisor A is said to be positive if all $c_\lambda > 0$. The k-divisor is said to be integral if all c_λ are integers. For an open, relative compact subset U of G the volume

 $F_{\chi}(A; U) = \sum_{\lambda \in \Lambda} c_{\lambda} \int_{A_{\lambda} \cap U} \chi_k$ exists. A set \mathfrak{A} of positive k-divisors on G is said to be bounded at $c \in G$ if an open, relative compact neighborhood U of c and a number K > 0exist such that $F_{\chi}(A; U) \leq K$ for all $A \in \mathfrak{A}$. This condition is independent of the choice of χ . The set $G(\mathfrak{A})$ of all points c of G where \mathfrak{A} is bounded is obviously open and is called the set of local boundness. The author's main result: " $G(\mathfrak{A})$ is k-pseudo-convex."

In the case n-1 = k = 1, this theorem is due to K. Oka [loc. cit.] and to T. Nishino [J. Math. Kyoto Univ. 1 (1961/62), 357–377; MR0148945]. In the case of a set \mathfrak{A} of positive integral (n-1)-divisors, the domain $G[\mathfrak{A}]$ of normality is defined. Montel's theorem asserts $G[\mathfrak{A}] = G(\mathfrak{A})$. In this case, T. J. Barth ["The normality domain of a set of divisors", Ph.D. dissertation, Univ. Notre Dame, Notre Dame, Ind., 1966] proved independently that $G(\mathfrak{A})$ is pseudo-convex. Also, O. Fujita [J. Math. Soc. Japan 16 (1964), 379–405; MR0178158] gave a direct proof for the pseudo-convexity of $G[\mathfrak{A}]$. He considered the case of $G(\mathfrak{A})$ using induction [J. Math. Kyoto Univ. 4 (1964/65), 627–635; MR0180700]. In his first paper, Fujita introduced a certain notion of normality for a set of positive integral k-divisors and proved that $G[\mathfrak{A}]$ is k-pseudo-convex. However, a Montel theorem for k-divisors is not yet proved.

{The reviewer has formulated the results in a somewhat more general fashion than is done in the paper under review, where only open subsets G of \mathbb{C}^n and only k-divisors $A = \{A_\lambda, a_\lambda\}_{\lambda \in \Lambda}$ with $a_\lambda = 1/C$ const are considered. However, the lemma (page 309 and 319) and Satz 4 (page 313) yield easily this more general formulation.} W. Stoll

© Copyright American Mathematical Society 1968, 2016