Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter Summer term 2017

Exercise sheet no 5

For the exercise class on the 29th of May

- 1 (Moore spaces) Let G be an arbitrary finitely generated abelian group.
- a) Construct a CW space M(G, n) whose reduced homology is concentrated in degree n with $\tilde{H}_n(M(G, n)) \cong G$. Such a space is called a *Moore space of type* (G, n).
 - b) How does M(G, n) look like if G is a finite cyclic group?
 - c) Do you recognize $M(\mathbb{Z}/2\mathbb{Z},1)$?
 - d) Let A_1, A_2, \ldots be a sequence of abelian groups. Construct a space X with $\tilde{H}_i(X) \cong A_i$ for all $i \geqslant 1$.
- **2** (Euler characteristics of covering spaces) Assume that X is a finite CW complex and that $p \colon \tilde{X} \to X$ is an n-sheeted covering.
 - (1) Show that \tilde{X} is also a finite CW complex and that $\chi(\tilde{X}) = n\chi(X)$.
 - (2) What can you say about finite coverings of the form $p: \mathbb{S}^{2n} \to X$ with X a finite CW complex. How many sheets can they have?
- **3** (Non-orientable surfaces) For $g \ge 2$ consider a regular 2g-gon $P_{2g} \subset \mathbb{R}^2$ with vertices z_1, \ldots, z_{2g} . We identify edges according to

$$(1-t)z_{2j-1} + tz_{2j} \sim tz_{2j+1} + (1-t)z_{2j}$$

(here the indices are to be read mod 2g) and call the quotient $N_g = P_{2g}/\sim$ the closed non-orientable surface of genus g. What is N_2 ? Calculate the homology of N_{2g} using the cellular chain complex.

4 (Right-exactness) Show that for every short exact sequence

$$0 \to A \to B \to C \to 0$$

of abelian groups and any abelian group D, the sequence

$$A \otimes D \to B \otimes D \to C \otimes D \to 0$$

is exact.

Prove that for a split-exact sequence $0 \to A \to B \to C \to 0$, the sequence

$$0 \to A \otimes D \to B \otimes D \to C \otimes D \to 0$$

is exact.