Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter Summer term 2015

For the exercise classes on the 20th of May and 3rd of June 2015

25 (Moore spaces) Let G be an arbitrary finitely generated abelian group.

a) Construct a CW space M(G, n) whose reduced homology is concentrated in degree n with $\tilde{H}_n(M(G, n)) \cong G$. Can you extend the construction to the case where G is not necessarily finitely generated?

Such a space is called a *Moore space of type* (G, n).

- b) How does M(G, n) look like if G is a finite cyclic group?
- c) Do you recognize $M(\mathbb{Z}/2\mathbb{Z}, 1)$?

d) Let A_1, A_2, \ldots be a sequence of abelian groups. Construct a space X with $\tilde{H}_i(X) \cong A_i$.

26 (Euler characteristic II)

Exercise sheet no 7

(1) Let X be a finite CW complex and let $c_n(X)$ denote the number of n-cells of X. Prove that

$$\chi(X) = \sum_{n \ge 0} (-1)^n c_n(X).$$

- (2) For finite CW complexes X and Y, show that $\chi(X \times Y) = \chi(X)\chi(Y)$.
- (3) For a finite CW complex X and $p: \tilde{X} \to X$ an n-sheeted covering space, show that $\chi(\tilde{X}) = n\chi(X)$.

27 (Distorted dice!) Let $W = \{(x, y, z) | |x|, |y|, |z| \leq 1\}$ be the standard 3-cube. We identify opposite faces according to $(x, y, 1) \sim (-y, x, -1), (x, 1, z) \sim (-z, -1, x)$ and $(1, y, z) \sim (-1, -z, y)$. What are the homology groups of W/\sim ?

28 (Cellular homology – odds and ends) Let X be a CW complex.

- Can $H_n(X^n)$ have torsion or is $H_n(X^n)$ always free abelian?
- Calculate the homology of $\mathbb{S}^n\times\mathbb{S}^m$ for $n,m\geqslant 2$ using cellular chains.
- If X has k n-cells, then $H_n(X)$ is generated by at most k elements.
- For $g \ge 2$ consider a regular 2g-gon $P_{2g} \subset \mathbb{R}^2$ with vertices z_1, \ldots, z_{2g} . We identify edges according to

$$(1-t)z_{2j-1} + tz_{2j} \sim tz_{2j+1} + (1-t)z_{2j}$$

(here the indices are to be read mod 2g of course) and call the quotient $N_g = P_{2g}/\sim$ the closed nonorientable surface of genus g. What is N_2 ? Calculate the homology of N_{2g} using the cellular chain complex.