Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter

Summer term 2015

Exercise sheet no 13

For the exercise classes on the 1st and 8th of July 2015

49 (Cup pairing)

a) What are the cup pairings on \mathbb{S}^4 , $\mathbb{S}^2 \times \mathbb{S}^2$ and $\mathbb{C}P^2$?

b) What can you say about the symmetry of the cup pairing if the dimension of the manifold is 4n or 4n+2?

50 (Inverse limits)

a) Consider the short exact sequence of inverse systems

 $0 \to \{p^i \mathbb{Z}\} \to \{\mathbb{Z}\} \to \{\mathbb{Z}/p^i \mathbb{Z}\} \to 0.$

Determine the inverse limits and the lim¹-terms.

b) Let $\{A_i\}_{i \in \mathbb{N}_0}$ be an inverse system of abelian groups such that the structure maps $A_{i+1} \to A_i$ are monomorphisms. Define a topology on $A = A_0$ by declaring the sets $\{a + A_i\}$ to be open for $a \in A$ and $i \ge 0$. (Of course, here the A_i are viewed as subsets of A via the monomorphisms.) Show that the inverse limit of the A_i is trivial if A is Hausdorff. When does the lim¹-term vanish?

c) Show that the inverse limit of the inverse system $\{k[x]/x^n\}_{n\geq 1}$ is isomorphic to the formal power series ring k[[x]]. Here, k is a commutative ring with unit.

51 (Complements in spheres) Consider the *m*-sphere \mathbb{S}^m for $m \ge 2$ and a subset $K \subset \mathbb{S}^m$. Prove the following facts:

a) If $K \cong \mathbb{D}^k$, then $\tilde{H}_k(\mathbb{S}^m \setminus K) \cong 0$ for all $k \ge 0$.

b) In particular, for $K \cong \mathbb{D}^k$ the complement $\mathbb{S}^m \setminus K$ is path-connected for all $k \ge 0$.

c) If $K \cong \mathbb{S}^k$, then $k \leq m$ and

$$\tilde{H}_p(\mathbb{S}^m \setminus K) \cong \tilde{H}_p(\mathbb{S}^m \setminus \mathbb{S}^k) \cong \tilde{H}_p(\mathbb{S}^{m-k-1})$$

and you know these groups.

d) In particular, $\mathbb{S}^m \setminus \mathbb{S}^k$ is pathconnected if and only if $k \neq m-1$. How many pathcomponents does $\mathbb{S}^m \setminus \mathbb{S}^{m-1}$ always have?

52 (Jordan Separation Theorem) Use 47 to prove the Jordan Separation Theorem: If $K \subset \mathbb{S}^m$ $(m \ge 2)$ with $K \cong \mathbb{S}^{m-1}$, then $\mathbb{S}^m \setminus K$ has two components and both have K as boundary.