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49 (Cup pairing)
a) What are the cup pairings on S4, S2 × S2 and CP 2?
b) What can you say about the symmetry of the cup pairing if the dimension of the manifold is 4n or 4n+2?

50 (Inverse limits)
a) Consider the short exact sequence of inverse systems

0→ {piZ} → {Z} → {Z/piZ} → 0.

Determine the inverse limits and the lim1-terms.
b) Let {Ai}i∈N0

be an inverse system of abelian groups such that the structure maps Ai+1 → Ai are monomor-
phisms. Define a topology on A = A0 by declaring the sets {a+Ai} to be open for a ∈ A and i > 0. (Of course,
here the Ai are viewed as subsets of A via the monomorphisms.) Show that the inverse limit of the Ai is trivial
if A is Hausdorff. When does the lim1-term vanish?

c) Show that the inverse limit of the inverse system {k[x]/xn}n>1 is isomorphic to the formal power series
ring k[[x]]. Here, k is a commutative ring with unit.

51 (Complements in spheres) Consider the m-sphere Sm for m > 2 and a subset K ⊂ Sm. Prove the following
facts:

a) If K ∼= Dk, then H̃k(Sm \K) ∼= 0 for all k > 0.
b) In particular, for K ∼= Dk the complement Sm \K is path-connected for all k > 0.
c) If K ∼= Sk, then k 6 m and

H̃p(Sm \K) ∼= H̃p(Sm \ Sk) ∼= H̃p(Sm−k−1)

and you know these groups.
d) In particular, Sm\Sk is pathconnected if and only if k 6= m−1. How many pathcomponents does Sm\Sm−1

always have?

52 (Jordan Separation Theorem) Use 47 to prove the Jordan Separation Theorem: If K ⊂ Sm (m > 2) with
K ∼= Sm−1, then Sm \K has two components and both have K as boundary.
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