Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter Summer term 2013

Exercise sheet no 7

due: 31st of May 2013

25 (Moore spaces) Let G be an arbitrary finitely generated abelian group.

a) Construct a CW space M(G, n) whose reduced homology is concentrated in degree n with $\tilde{H}_n(M(G, n)) \cong G$. Can you extend the construction to the case where G is not necessarily finitely generated?

Such a space is called a *Moore space of type* (G, n).

b) How does M(G, n) look like if G is a finite cyclic group?

c) Do you recognize $M(\mathbb{Z}/2\mathbb{Z}, 1)$?

d) Let A_1, A_2, \ldots be a sequence of abelian groups. Construct a space X with $\tilde{H}_i(X) \cong A_i$.

26 (Künneth formula, special case) You've seen a proof of the (algebraic, homological) Künneth formula.

a) Give a simplified proof in the special case where the second chain complex is just C_G , *i.e.*, $(C_G)_n = G$ for n = 0 and $(C_G)_m = 0$ otherwise.

b) What is a non-natural splitting of the short exact sequence

$$0 \to H_n(C_*) \otimes G \longrightarrow H_n(C_* \otimes G) \longrightarrow \operatorname{Tor}(H_{n-1}(C_*), G) \to 0$$

in this case?

27 (right exactness)

a) Prove the right exactness of the tensor product.

b) Is the abelian group \mathbb{Q} free? Is the functor $A \mapsto A \otimes \mathbb{Q}$ exact?

28 (boomerang?) Let A be a finitely generated abelian torsion group. Can you identify $\operatorname{Hom}(A, \mathbb{Q}/\mathbb{Z})$ and/or $\operatorname{Tor}(A, \mathbb{Q}/\mathbb{Z})$ with A?