Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter Summer term 2013

Exercise sheet no 10 due: 21st of June 2013

- 37 (orientation covering) Let M be an n-dimensional topological manifold.
- a) Prove that there is an oriented manifold \hat{M} and a 2-fold covering $p: \hat{M} \to M$ called the orientation covering.
- b) Are the following statements equivalent? 1. M is orientable. 2. The orientation covering is a trivial covering, i.e., $\hat{M} \cong M \times \mathbb{Z}/2\mathbb{Z}$ as spaces over M.
 - c) Assume that M is finite dimensional, path connected with $\pi_1(M) = 1$. Is M orientable?
- **38** (cut-and-paste) Assume $g \ge 2$ and let E_{2g} be a regular 2g-gon with vertices z_1, \ldots, z_{2g} . We glue the edges according to

$$(1-t)z_{2j-1} + tz_{2j} \sim (1-t)z_{2j} + tz_{2j+1}.$$

Here, you should interpret the indices mod 2g. Is the quotient E_{2g}/\sim orientable? What is a suitable definition for g=1?

- **39** (*R*-orientations) Let *R* be a commutative ring with unit and let *M* be a connected *m*-dimensional manifold together with an *R*-orientation. Show that the group of units of *R*, R^{\times} , acts free and transitively on the set of all *R*-orientations of *M*. For $R = \mathbb{Z}$ this should look familiar.
- 40 (manifolds with boundary) Let

$$\mathbb{R}^m_- := \{(x_1, \dots, x_m), x_i \in \mathbb{R}, x_1 \leq 0\}$$

be an m-dimensional half-space. Its topological boundary is

$$\partial \mathbb{R}^m_- = \{(x_1, \dots, x_m), x_i \in \mathbb{R}, x_1 = 0\}.$$

An m-dimensional topological manifold with boundary, M with ∂M , is a hausdorff space with a countable basis of its topology together with homeomorphisms $h_i \colon U_i \to V_i$. Here $U_i \subset M$ and $V_i \subset \mathbb{R}^m_-$ are open and the U_i 's cover M.

An $x \in M$ is a boundary point of M if there is a homeomorphism $h \colon U \to V$ with U open in \mathbb{R}^m_- , $x \in U$ and h(x) in $\partial \mathbb{R}^m_-$. The set of boundary points of M is denoted by ∂M .

What is ∂M in the following examples:

- a) $\partial(\mathbb{D}^2 \times \mathbb{S}^1)$,
- b) $\partial(\mathbb{D}^2 \times \mathbb{D}^2)$,
- c) $\partial([0,1])$ and
- d) $\partial((\mathbb{S}^1 \times \mathbb{S}^1) \setminus \mathring{\mathbb{D}}^2_{\epsilon})$, where $\mathring{\mathbb{D}}^2_{\epsilon}$ is a an open 2-disk, that is suitably embedded into the torus.

Can you find a general formula for $\partial(M \times N)$ if M and N are manifolds with boundary?