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CHAPTER 1

Homology theory

1. Chain complexes

Definition 1.1. A chain complez is a sequence of abelian groups, (Cy,)nez, together with homomorphisms
d,: C, — C,_1 for n € Z, such that d,,_1 od,, = 0.

Let R be an associative ring with unit 1g. A chain complex of R-modules can analoguously be defined
as a sequence of R-modules (C),)nez with R-linear maps d,,: Cp, — C,,—1 with d,_1 od,, = 0.

Definition 1.2. e The d, are differentials or boundary operators.
e The x € C,, are called n-chains.
e Isz € C, and d,x = 0, then x is an n-cycle.

Zn(C) = {x € Cpldpz = 0}.
o If x € C, is of the form x = d,, 41y for some y € C, 11, then z is an n-boundary.
B, (C) := Im(dny1) = {dn+1y,y € Cny1}-

Note that the cycles and boundaries form subgroups of the chains. As d, o d,,41 = 0, we know that the
image of d, 11 is a subgroup of the kernel of d,, and thus

B,(C) C Z,(C).
We'll often drop the subscript n from the boundary maps and we’ll just write C, for the chain complex.
Definition 1.3. The abelian group H,(C) := Z,,(C)/B,(C) is the n-th homology group of the complex C..
Notation: We denote by [c] the equivalence class of a ¢ € Z,,(C).

If ¢, ¢ € O, satisfy that ¢ — ¢’ is a boundary, then ¢ is homologous to ¢/. That’s an equivalence relation.

Ezxamples:

1) Consider

0 otherwise

Cn:{z n=0,1

and let d; be the multiplication with NV € N, then

Z/NZ n=0

0 otherwise.

Hn(c) = {

2) Take C,, = Z for all n € Z and

h {idz n odd

0 n even.
What is the homology of this chain complex?

2’) Counsider C,, = Z for all n € Z again, but let all boundary maps be trivial. What is the homology of this
chain complex?



Definition 1.4. Let C, and D, be two chain complexes. A chain map f: C, — D, is a sequence of
homomorphisms f,,: C,, — D,, such that d2 o f,, = f,,_1 0 d¢ for all n, i.c., the diagram

dC
Cn *ﬂ> Cn—l
fnJ( J{fnl
dD
Dn *n> anl
commutes for all n.
Such an f sends cycles to cycles and boundaries to boundaries. We therefore obtain an induced map
Hn(f): Hn(C) = Hn(D)
via Hy(f)«[c] = [fnc].

There is a chain map from the chain complex mentioned in Example 1) to the chain complex D, that is
concentrated in degree zero and has Dy = Z/NZ. Note, that (fp). is an isomorphism on zeroth homology
groups.

Are there chain maps between the complexes from Examples 2) and 27)?

Lemma 1.5. If f: C. — D, and g: D. — E, are two chain maps, then H,(g) o H,(f) = Hy(go f) for all
n.

When do two chain maps induce the same map on homology?

Definition 1.6. A chain homotopy H between two chain maps f,g: C. — D, is a sequence of homomor-
phisms (H,,)nez with H,,: C,, — D, 11 such that for all n

d7?+1 oH,+H,_;0 dg = fn — 9n-

dSJrz dg+1 df dsfl
o CnJrl Cn Cnfl
Hyp 41 ,/ \ H, ,/ \ Hy 1 ( \
frgr | | gntr fu | Jon fao1| Jgn-a
ab Vi dP Vi 4P A )
n+2 D, .1 n+t1 D n s D,y n—1
o Uny n n—

If such an H exists, then f and g are (chain) homotopic: f ~ g.
We will later see geometrically defined examples of chain homotopies.

Proposition 1.7. (a) Being chain homotopic is an equivalence relation.
(b) If f and g are homotopic, then Hy,(f) = H,(g) for all n.

PRrROOF. (a) If H is a homotopy from f to g, then —H is a homotopy from g to f. Each f is homotopic
to itself with H = 0. If f is homotopic to g via H and g is homotopic to h via K, then f is homotopic to h
via H + K.

(b) We have for every cycle ¢ € Z,(C,):

Hy(f)le] = Hu(9)le] = [fac — gne] = [dy 1 © Hu(0)] + [Hn-1 0 dg (c)] = 0.
|
Definition 1.8. Let f: Ci — D, be a chain map. We call f a chain homotopy equivalence, if there is a

chain map ¢: D, — C, such that go f ~id¢, and f o g ~idp,. The chain complexes C, and D, are then
chain homotopically equivalent.

Note, that such chain complexes have isomorphic homology. However, chain complexes with isomorphic
homology do not have to be chain homotopically equivalent. (Can you find a counterexample?)
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Definition 1.9. If C, and C’ are chain complexes, then their direct sum, C, @ C2, is the chain complex
with
Ci®Cl)py=CrdCl,=C,xCl
with differential d = dg given by
dg(c, ) = (de,dc’).
Similarly, if (C’ij ), d)) jes is a family of chain complexes, then we can define their direct sum as follows:

B =Py

JjeJ jed
as abelian groups and the differential dg, is defined via the property that its restriction to the j-th summand
is d\9).

2. Singular homology

Let vg, ...,v, be n+ 1 points in R"*!. Consider the convex hull

K(’Uo,...,’l}n) = {zn:tﬂh‘ Ztl = ].,ti } 0}
=0

Definition 2.1. If the vectors v1 — vy, . .., v, —vg are linearly independent, then K (vy, ..., v,) is the simplex
generated by vg, ..., v,. We denote such a simplex by simp(vg, ..., vy).
Example. The standard topological n-simplex is A™ := simp(eq, ..., e,). Here, e; is the vector in R"*! that

has a 1 in coordinate ¢ + 1 and is zero in all other coordinates. The first examples are: A° is the point e,
Al is the line segment between ey and e;, A2 is a triangle in R? and A? is homeomorphic to a tetrahedron.
The coordinate description of the n-simplex is

A" ={(to,...,tn) R[> t; = 1,t; > 0}.

We consider A™ as A" C R*Tt c R*2 C ...

The boundary of Al consists of two copies of A%, the boundary of A? consists of three copies of Al. In
general, the boundary of A" consists of n 4+ 1 copies of A"1.

We need the following face maps for 0 < i < n

di = d?_li An_l — An, (to7 - 7tn—1) — (l‘,o7 oy tiz1,00t, . 7tn—1)~

The image of d;kl in A™ is the face that is opposite to e;. It is the simplex generated by eq, ..., €;—1, €41, ..

Draw the examples of the faces in Al and A?!
Lemma 2.2. Concerning the composition of face maps, the following rule holds:
A tod! P =dl T od! P, 0<j<i<n
Example: face maps for AY and composition into A2: dy o dy = dg o dy.
PROOF. Both expressions yield
AP o d P (to, o tno2) = (tos .o tjo1,0, 0,0, by, by ) = A NP (to, -y tna).

Let X be an arbitrary topological space, X # &.
Definition 2.3. A singular n-simplez in X is a continuous map «a: A™ — X.
Note, that « just has to be continuous, not smooth or anything!

Definition 2.4. Let S,(X) be the free abelian group generated by all singular n-simplices in X. We call
Sn(X) the n-th singular chain module of X.



Elements of S,,(X) are finite sums Ziel Aia; with A; = 0 for almost all ¢ € I and «;: A™ — X.

For all n > 0 there are non-trivial elements in S, (X), because we assumed that X # @&: we can always
take an o € X and the constant map ,,: A™ — X as a. By convention, we define S,,(@) = 0 for all n > 0.

If we want to define maps from S, (X) to some abelian group then it suffices to define such a map on
generators.

Ezample. What is So(X)? A continuous a: A® — X is determined by its value a(eg) =: 7, € X, which is a
point in X. A singular 0-simplex ), A;a; can thus be identified with the formal sum of points } 7, ; X\izq, .

Definition 2.5. We define 0;: S,,(X) — S,—1(X) on generators
dila) =aod! !
and call it the i-th face of «.
On S, (X) we therefore get 0;(3_; Ajo) = 325 Aj(ey 0 arh.
Lemma 2.6. The face maps on S, (X) satisfy
0j00;=0;-100;, 0<j<i<n
PROOF. The proof follows from the one of Lemma [2.2 O

Definition 2.7. We define the boundary operator on singular chains as 9: S,(X) — S,-1(X), 9 =

Yoo (—1)t0;.
Lemma 2.8. The map 0 is a boundary operator, i.e., 0o d = 0.

PRrROOF. We calculate

n—1 n

900 =D (-1)79;) 0 D _(-1)'0;) = D> (-1)""79; 0 0;

j=0 i=0
= Y (DHgea+ Y (-1
0<g<isn o<ig<ysn—1
= Y ()Mo 00+ Y. (-1)Mo00;=0.
0<j<i<n 0<i<j<n—1
O

We therefore obtain the singular chain complex, S.(X),
o 5 (X) L S () S L 51X S So(X) — 0.
We abbreviate Z,,(5.(X)) by Z,(X), Bn(S«(X)) by B,(X) and H,(S.(X)) by H,(X).
Definition 2.9. For a space X, H,(X) is the n-th singular homology group of X.

Note that Zy(X) = So(X).

As an example of a 1-cycle consider a 1-chain ¢ = o + 3 + v where a, 3,7: A! — X such that a(e;) =
B(eo), Ble1) = v(ep) and y(e1) = a(eg) and calculate that dc = 0.

We need to understand how continuous maps of topological spaces interact with singular chains and
singular homology.

Let f: X — Y be a continuous map.

Definition 2.10. The map f, = S, (f): Sn(X) — Sp(Y) is defined on generators av: A™ — X as
fn(oz):foa:A”&XLY.
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Lemma 2.11. For any continuous f: X — Y we have

S(X) — L 8,(Y)

axl l@‘/
fn-1

Sn_l(X) —_— Sn_l(Y),
ie., (fn)n is a chain map and hence induces a map H,(f): Hy(X) — H,(Y).

ProOOF. By definition
0" (fula)) = Z(*l)i(f oa)od; = Z(*l)if o(aod;) = fu1(0%a).
i=0 i=0
|

Of course, the identity map on X induces the identity map on H,(X) for all n > 0 and if we have a
composition of continuous maps

x Ly 47
then S, (go f) = Sn(g) o Sn(f) and H,(go f) = H,(g9) o Hu(f). In categorical language, this says precisely
that S, (—) and H,(—) are functors from the category of topological spaces and continuous maps into the
category of abelian groups. Taking all S, (—) together turns S,(—) into a functor from topological spaces

and continuous maps into the category of chain complexes with chain maps as morphisms.
One implication of Lemma [2.11]is that homeomorphic spaces have isomorphic homology groups:

X=Y = H,(X)=H,(Y) foralln > 0.
Our first (not too exciting) calculation is the following:
Proposition 2.12. The homology groups of a one-point space pt are trivial but in degree zero,

0, ifn>0

Ha(pt) = {Z ifn =0,

PRrROOF. For every n > 0 there is precisely one continuous map a: A™ — pt, namely the constant map.
We denote this map by k,. Then the boundary of k,, is

al‘{n = Z(—l)z,‘ﬂjn () dl = Z(_l)lﬁnfl _ {K:n—la n even

= = 0, n odd.
For all n we have S, (pt) & Z generated by &, and therefore the singular chain complex looks as follows:

. 8=0 Z@Zidz 0=0_

Z Z.

3. HO and H 1
Before we calculate anything, we define a map.

Proposition 3.1. For any topological space X there is a homomorphism e: Hy(X) — Z with € # 0 for
X #0.

PROOF. If X # @, then we define e(a) = 1 for any a: A? — X, thus e(3, ., hias) = 3,0, A on Sp(X).
As only finitely many \; are non-trivial, this is in fact a finite sum.

We have to show that this map is well-defined on homology, i.e., that it vanishes on boundaries. One
possibility is to see that € can be interpreted as the map on singular chains that is induced by the projection
map of X to a one-point space.



One can also show the claim directly: Let So(X) > ¢ = 9b be a boundary and write b =), ; v;; with
Bi: A — X. Then we get

=0 vifi=> vi(Biody—Biod) =Y wiBiody— Y viBiod

iel i€l i€l iel
and hence
e(c) = e(0b) = ZV" - ZV" = 0.
iel iel

O

We said that Sy(@) is zero, so Ho(2&) = 0 and in this case we define € to be the zero map.
If X # &, then any a: A — X can be identified with its image point, so the map ¢ on Sp(X) counts
points in X with multiplicities.

Proposition 3.2. If X is a path-connected, non-empty space, then €: Hy(X) = Z.

PRrROOF. As X is non-empty, there is a point € X and the constant map k., with value x is an element
in So(X) with €(k;) = 1. Therefore ¢ is surjective. For any other point y € X there is a continuous path
w: [0,1] = X with w(0) = z and w(1) = y. We define a,: A — X as

Ozw(toﬂfl) = w(l — t()).
Then
8(0@,) = 30(Oéw) - al(aw) = aw(el) - aw(eO) = OLW(O, 1) - aw(lvo) = Ky — Ry,

and the two generators x, Ky are homologous. This shows that ¢ is injective. (]

Corollary 3.3. If X is of the form X = | |,.; X; such that the X; are non-empty and path-connected, then
Hy(X) =Pz
iel
In this case, the zeroth homology group of X is the free abelian group generated by the path-components.

PROOF. The singular chain complex of X splits as the direct sum of chain complexes of the Xj;:
Sn(X) = @ S (Xi)
il
for all n. Boundary summands 0; stay in a component, in particular,
0: S1(X) = @D S1(X:) — P So(Xi) = So(X)
iel i€l
is the direct sum of the boundary operators 9: S1(X;) — So(X;) and the claim follows. O

Next, we want to relate H; to the fundamental group. Let X be path-connected and x € X.

Lemma 3.4. Let wi,ws,w be paths in X.

(a) Constant paths are null-homologous.

(b) If wi(1) = w2(0), then wy * we — w1 — wa s a boundary. Here wy * wo is the concatenation of wy
followed by wo.

(¢) If w1(0) = wa(0), w1 (1) = wa(1l) and if wy is homotopic to we relative to {0,1}, then wy and wy are
homologous as singular 1-chains.

(d) Any 1-chain of the form @ * w is a boundary. Here, &(t) := w(1l —t).

Proor. For a), consider the constant singular 2-simplex «(tg,t1,t2) =  and ¢,, the constant path on
z. Then O = ¢, — ¢ + ¢ = Cp.
For b), we define a singular 2-simplex 3: A2 — X as follows.
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€2
W1 * Wo W

€o w1 €1

We define 8 on the boundary components of A2 as indicated and prolong it constantly along the sloped
inner lines. Then
OB =PBody—Bodi + Body=wy— wi *ws+ wi.

For c): Let H: [0,1] x [0,1] = X a homotopy from wy to ws. As we have that H(0,t) = w1(0) = w2(0),
we can factor H over the quotient [0,1] x [0,1]/{0} x [0,1] & A% with induced map h: A? — X. Then

Oh=hody—hod;+ hods.

The first summand is null-homologous, because it’s constant (with value wy(1) = wa(1)), the second one is
wo and the last is wy, thus w; — we is null-homologous.
For d): Consider v: A2 — X as indicated below.

€2

€o w €1

O

Definition 3.5. Let h: 7m1(X,2) — H;(X) be the map, that sends the homotopy class of a closed path w,
[W]x,, to its homology class [w] = [w]g,. This map is called Hurewicz-homomorphism.

Witold Hurewicz: 1904-1956.
Lemma [3.4] ensures that h is well-defined and

h([wi]fwa]) = A([wr * wal) = [wi] + [wo] = A([wr]) + R([wo])

thus h is a homomorphism.
Note that for a closed path w we have that [0] = —[w] in Hq(X).

Definition 3.6. Let G be an arbitrary group, then its abelianization, G, is G/|G, G].

Recall that [G, G] is the commutator subgroup of G. That is the smallest subgroup of G containing all
commutators ghg~'h~ !, g,h € G.

Proposition 3.7. The Hurewicz homomorphism factors over the abelianization of (X, x) and induces an
isomorphism
7T1(X,$)ab = Hl(X)

for all path-connected X .

>

m (X, x) H(X)

» ~
l hab

(X, x)ap = m (X, 2)/[m1 (X, 2), 71 (X, z)]
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Proor. We will construct an inverse to h,y. For any y € X we choose a path u, from z toy. Fory =2
we take u, to be the constant path on x. Let a be an arbitrary singular 1-simplex and y; = «a(e;). Define
¢: S1(X) = 71 (X, z)ap on generators as ¢(a) = [uy, * a* Uy, | and extend ¢ linearly to all of Sy (X), keeping
in mind that the composition in m; is written multiplicatively.

We have to show that ¢ is trivial on boundaries, so let 3: A? — X. Then

$(0B) = ¢p(Body—Bodi+ Body) =¢(Body)p(Bodi) ' ¢(Body).
Abbreviating g o d; with «; we get as a result
[Uy, * O * Ty, |[Uy, * O * ﬂyz]_l[uy0 * Qg % Uy, | = [Uyy * O k Uy, * Uy, * Qg * Uy, ¥ Uy, * A1 * Uy, .

Here, we've used that the image of ¢ is abelian. We can reduce @, * uy, and 4, * u,, and are left with
[uy0 * Qug % Qg % O * ﬁyo} but as * ag * @y is the closed path tracing the boundary of 8 and therefore it is
null-homotopic in X. Thus ¢(98) = 0 and ¢ passes to a map

¢Z Hl(X) — 7T1(X,.’E)ab.
The composition ¢ o h,;, evaluated on the class of a closed path w gives
¢o hab[w]wl = ¢[W]H1 = [ux * WX aﬁb‘]ﬂ'l'
But we chose u, to be constant, thus ¢ o h,;, = id.

If ¢ = 3 Ao is a cycle, then h,p o ¢(c) is of the form [¢ + Dy.] where the Dy.-part comes from the
contributions of the w,,. The fact that d(c) = 0, implies that the summands in Dy, cancel off and thus

habo¢:idH1(X)~ O

Note, that abelianization doesn’t change anything for abelian groups, i.e., whenever we have an abelian
fundamental group, we know that H;(X) = 71 (X, ).

Corollary 3.8. Knowledge of m1 gives
Hy(S") =0, forn>1, H(S'")2Z,
Hi(S' x...xShH=z",
| ———

n

H(S'VvSY= (Z+2)w =2 Z@Z,

H®Py = yn=1
! - \z/2z, forn>1.

4. Homotopy invariance

We want to show that two continuous maps that are homotopic induce identical maps on the level of
homology groups.

Heuristics: If a: A™ — X is a singular n-simplex and if f, g are homotopic maps from X to Y, then
the homotopy from f o« to g o a starts on A™ x [0,1]. We want to translate this geometric homotopy into
a chain homotopy on the singular chain complex. To that end we have to cut the prism A™ x [0,1] into
(n + 1)-simplices. In low dimensions this is easy:

A® x [0,1] is homeomorphic to A, Al x [0,1] = [0,1]? and this can be cut into two copies of A% and
A% x [0,1] is a 3-dimensional prism and that can be glued together from three tetrahedrons, e.g., like
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As you might guess now, we use n + 1 copies of A" to build A™ x [0, 1].
Definition 4.1. For i = 0,...,n define p;: A"Tt — A" x [0, 1] as
Di(toy .- ytny1) = ((toy -« s tic1, ti + tig1,tivoy oo ybng1)sbivr + oo F lpp1) € A" X [0, 1}.
On the standard basis vectors e we obtain
(ex,0), for 0 < k <4,
piler) = {(ekl, 1), for k >i.
We obtain chain maps P;: S, (X) = Sp+1(X x [0,1]) via P;(a) = (a x id) o p;:
AT P AR 10,1] 225 X x [0, 1)
For k =0,1 let ji: X — X x [0,1] be the inclusion = — (z, k).
Lemma 4.2. The maps P; satisfy the following relations
(a) doo Py = Sn(j1),

(b) Ong10Pp = Sn(jo),
(¢c) io P, =0;0P;_1 for 1 <i< n.
(d)

5 op — {Pioajl, fori<j—2
j i =

J
j+1.

<

Pi—l O@j, fOT’i 2

PROOF. For the first two points, we note that on A™ we have
poodo(to, .- tn) =po(0,t0, . tn) = (o, - tn), D _ti) = (o, - tn), 1) = ji(to, .. tn)

and
Pn © dn+1(t0, e ,tn) = pn(to, e 7tn70) = ((to, e ,tn), 0) = jo(to, . ,tn).
For c), one checks that p; o d; = p;—1 o d; on A™: both give ((tg,...,t
For d) in the case ¢ > j + 1, consider the following diagram

Antl — 2 A [0, 1]

/

An
Pi—1
dj xid
A1 % [0,1] 255 A7 x [0, 1]

Checking coordinates one sees that this diagram commutes. The remaining case follows from a similar
observation. |
Definition 4.3. We define P: S, (X) = S,41(X x [0,1]) as P =Y (—=1)'P;.

Lemma 4.4. The map P is a chain homotopy between (Sy(jo))n and (Sn(ji))n, i€, 0o P+ Pod =
Sn(d1) = Sn(Jo)-

PROOF. We take an a: A™ — X and calculate

n n+l n—1 n
BPa + Paa = Z Z(—l)”j@jpia + Z Z(—l)H_]Pza]OZ
=0 j=0 =0 j=0

If we single out the terms involving the pairs of indices (0,0) and (n,n+ 1) in the first sum, we are left with
1

n— n

Sn (1) (@) = Sn (o) (a) + > (-1)"™70;P0 + (- Pd;a.
(4,4)#(0,0), (n,n+1) i=0 j=0
Using Lemma [4.2] we see that only the first two summands survive. O
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So, finally we can prove the main result of this section:

Theorem 4.5. (Homotopy invariance)
If f,g: X =Y are homotopic maps, then they induce the same map on homology.

PrOOF. Let H: X x [0,1] — Y be a homotopy from f to g, i.e., Ho jo = f and H o j; = g. Set
K, = Sp41(H) o P. We claim that (K,,), is a chain homotopy between (S, (f))» and (S,(g))n. Note that
H induces a chain map (S, (H)),. Therefore we get

00S,11(H)oP+S,(H)oPod=S8,(H)odoP+ S, (H)oPod
Sp(H)o (0o P+ Pod)

(

(

H) o (Sn(j1) = Snljo)) = Sn(H 0 j1) — Sn(H o jo)
g) = Sn(f)-

Hence these two maps are chain homotopic and H,(g) = H,(f) for all n. O

Sp,
Sh

Corollary 4.6. If two spaces X,Y are homotopy equivalent, then H.(X) = H.(Y). In particular, if X is
contractible, then

Z, forx=20

0, otherwise.

H*(X)g{

Ezxamples. As R™ is contractible for all n, the above corollary gives that its homology is trivial but in
degree zero where it consists of the integers.

As the Mébius strip is homotopy equivalent to S', we know that their homology groups are isomorphic.

If you know about vector bundles: the zero section of a vector bundle induces a homotopy equivalence
between the base and the total space, hence these two have isomorphic homology groups.

5. The long exact sequence in homology

A typical situation is that there is a subspace A of a topological space X and you might know something
about A or X and want to calculate the homology of the other space using that partial information.

But before we can move on to topological applications we need some techniques about chain complexes.
We need to know that a short exact sequence of chain complexes gives rise to a long exact sequence in
homology.

Definition 5.1. Let A, B, C be abelian groups and
LA AN,
a sequence of homomorphisms. Then this sequence is ezact, if the image of f is the kernel of g.

Definition 5.2. If

fi fi—1
A; Ai

is a sequence of homomorphisms of abelian groups (indexed over the integers), then this sequence is called
(long) exact, if it is exact at every A;, i.e., the image of f;y; is the kernel of f; for all i.
A sequence of the form

fi+1

is called a short exact sequence.

Ezxamples. The sequence
2.

0 Z 72—"57./27, 0

is a short exact sequence.
If t: U — A is a monomorphism, then 0——U—-—A is exact. Similarly, an epimorphism o: B — Q

. . 0 . . .
gives rise to an exact sequence B———@Q——0 and an isomorphism ¢: A = A’ sits in an exact sequence

0 A 0.
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A sequence

0 A9 0 0

is exact iff f is injective, the image of f is the kernel of g and g is an epimorphism. Another equivalent
description is to view a sequence as above as a chain complex with vanishing homology groups. Homology

measures the deviation from exactness.

Definition 5.3. If A,, B,,C, are chain complexes and f,: A, — By, g: B, — C, are chain maps, then we
call the sequence
fx G
A,——B,——C,

ezact, if the image of f, is the kernel of g, for all n € Z.

Thus such an exact sequence of chain complexes is a commuting double ladder

d d d
fr+1 In+1

An+1 — Bn+1 Cn,+1

d d d

d d d
fn-1 In—1
Anfl — >Bn71 > Cn+1
d d d
in which every row is exact.
Ezxample. Let p be a prime, then
0 0 0
d
7—"—7—"—0
p p2

has exact rows and columns, in particular it is an exact sequence of chain complexes. Here, m denotes varying
canonical projection maps.
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Proposition 5.4. If 0 A, B, C, 0 is a short exact sequence of chain complezes, then
there exists a homomorphism §: H,(C.) — H,_1(Ay) for all n € Z which is natural, i.e., if
0—— A, —5 B, 15—
C &
0 A -Lap o 0

is a commutative diagram in which the rows are exact then Hyp_1(ca) 0§ =6 o Hy(7),
Ho(C.) — Hoa(Ay)
Ho () Hp—1(e)
Ho(CL) — Hyr (AL)

The method of proof is an instance of a diagram chase. The homomorphism § is called connecting
homomorphism.

PrOOF. We show the existence of a § first and then prove that the constructed map satisfies the natu-
rality condition.

a) Definition of ¢:

Is ¢ € C,, with d(¢) = 0, then we choose a b € B,, with g,b = c¢. This is possible because g, is surjective.
We know that dg,b = dc = 0 = g,,_1db thus db is in the kernel of g, _1, hence it is in the image of f,,_1.
Thus there is an a € A, _1 with f,_1a = db. We have that f,_osda = df,_1a = ddb = 0 and as f,_o is
injective, this shows that a is a cycle.

We define 4[] := [a].

B,>b—2 scecC,

A1 sar = dve B, 4

In order to check that ¢§ is well-defined, we assume that there are b and ¥ with g,b = g,b" = c¢. Then
gn(b—1b") =0 and thus there is an @ € A,, with f,a =b— V. Define o’ as a — da. Then
fro1@' = fan_1a — fan_1da = db — db+ db’ = db’

because f,_1da = db—db'. As f,_1 is injective, we get that a’ is uniquely determined with this property.
As a is homologous to a’ we get that [a] = [a'] = d][c], thus the latter is independent of the choice of b.

In addition, we have to make sure that the value stays the same if we add a boundary term to ¢, i.e.,
take ¢’ = ¢+ dé for some ¢ € C,, 1. Choose preimages of ¢, ¢ under g, and g,.1, i.e., b and b with gnb=c
and g,1b = & Then the element b’ = b+ db has boundary db’ = db and thus both choices will result in the
same a.

Therefore 6: H,(C\) = Hp—1(As) is well-defined.

b) We have to show that J is natural with respect to maps of short exact sequences.

Let ¢ € Z,(C.), then §[c] = [a] for a b € B,, with ¢,b = ¢ and an a € A,,_; with f,,_1a = db. Therefore,
Hyo1(0)(3]c]) = [n—1(a)]

On the other hand, we have

froi(an—1a) = Bn1(fu1a) = Bn_1(db) = dBnb
and
Q;z(ﬂnb) = Yngnb = nc
and we can conclude that by the construction of §
[ ()] = [an-1(a)]
and this shows ¢ o H,,(y) = H,—1(a) 0 6. O

14



With this auxiliary result at hand we can now prove the main result in this section:

Proposition 5.5. For any short exact sequence
0——A,— B, 20— 0
of chain compleres we obtain a long exact sequence of homology groups

Hp Hy H, _
D g By (00—, (a0 )

L —H, (A

PROOF. a) Exactness at the spot H, (B.):

We have H,,(g) o Hy(f)[a] = [gn(frn(a))] = 0 because the composition of g, and f,, is zero. This proves
that the image of H,(f) is contained in the kernel of H,(g).

For the converse, let [b] € H,(B,) with [g,b] = 0. Then there is a ¢ € Cy,41 with dc = gpb. As gp41 is
surjective, we find a b’ € B, 11 with g,110" = ¢. Hence

gn(b—db') = gub — dgn 10 = dc—dc=0.

Exactness gives an a € A, with f,a = b — db' and da = 0 and therefore f,a is homologous to b and
H,(f)[a] = [b] thus the kernel of H,(g) is contained in the image of H,(f).

b) Exactness at the spot H,(C.):

Let b € H,(B.), then 6[g,b] = 0 because b is a cycle, so 0 is the only preimage under f,_1 of db = 0.
Therefore the image of H,(g) is contained in the kernel of 4.

Now assume that d[c] = 0, thus in the construction of 4, the a is a boundary, a = da’. Then for a
preimage of ¢ under g,, b, we have by the definition of a

d(b— fua') = db— dfpa’ = db — fu_ra =0.

Thus b — fra’ is a cycle and ¢,,(b — fna’) = gnb — gnfnad’ = gnb — 0 = g,b = ¢, so we found a preimage for
[c] and the kernel of § is contained in the image of H,(g).

c) Exactness at H,,_1(A,):

Let ¢ be a cycle in Z,,(C,). Again, we choose a preimage b of ¢ under g,, and an a with f,_1(a) = db.
Then H,_1(f)d[c] = [fn-1(a)] = [db] = 0. Thus the image of ¢ is contained in the kernel of H,,_1(f).

If a € Z,_1(As) with H,_1(f)[a] = 0. Then f,_1a = db for some b € B,,. Take ¢ = g,b. Then by
definition d[c] = [a]. O

6. The long exact sequence of a pair of spaces

Let X be a topological space and A C X a subspace of X. Consider the inclusion map i: A — X,
i(a) = a. We obtain an induced map S, (7): S,(A) — S,(X), but we know that the inclusion of spaces
doesn’t have to yield a monomorphism on homology groups. For instance, we can include A = S! into
X =D2

We consider pairs of spaces (X, A).

Definition 6.1. The relative chain complex of (X, A) is
S(X,A) = 5.(X)/S.(4).

Alternatively, S, (X, A) is isomorphic to the free abelian group generated by all n-simplices 5: A™ — X
whose image is not completely contained in A, i.e., B(A™) N (X\A) # @.

Definition 6.2. e Elements in S, (X, A) are called relative chains in (X, A)
e Cycles in S, (X, A) are chains ¢ with 9% (c) whose generators have image in A. These are relative
cycles.

e Boundaries in S, (X, A) are chains ¢ in X such that ¢ = 9¥b+ a where a is a chain in A.

The following facts are immediate from the definition:
(a) Sp(X,2) =S, (X).

(b) Sp(X,X)=0.

(c) Su(X UX',X') 2 S, (X).
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Definition 6.3. The relative homology groups of (X, A) are

Hy(X, A) := Hy,(5.(X, A)).
Theorem 6.4. For any pair of topological spaces A C X we obtain a long exact sequence
(i Hyp (i
O (A i (X) s H (X, A) =S H oy (A) Y

For a map of spaces f: X — Y with f(A) C B CY, we get an induced map of long exact sequences
H,, (i)

S (A O B (X) s B (X A) — s H o (A) 2

JHn(flA) JHn(f) lHn(f) lHnl(flA)

-+——H,(B)—— H,(Y) —— H,(Y,B)—— H,_1(B) —— - -~
s H, (i) 5 Hp_1(3)

A map f: X - Y with f(4) C B is denoted by f: (X,A) — (Y, B).
PROOF. By definition of S, (X, A) the sequence

0——5.(A) =5 (X)—T5. (X, A)——0

is an exact sequence of chain complexes and by Proposition we obtain the first claim.
For a map f as above the following diagram

0 —— S, (A) = 6 (X) — s §,(X, A) —— 0

lsn(flA) J{Sn(f) lsn(f)/sn(fA)

0—— Sn(B) % 5. (V) — "5 §,(Y, B) —— 0

commutes. O

Ezample. Let A =S""! and X = D", then we know that H;(i) is not injective for j > 0. From the long
exact sequence we get that 6: H;(D", S 1) =2 H;_;(S"™!) for j > 1 and n > 1.

Proposition 6.5. Ifi: A — X is a weak retract, i.e., if there is an r: X — A with r oi ~ id 4, then
H,(X)2H,(A)®H,(X,A), 0<n.

PROOF. From the assumption we get that H,(r)o H,(i) = Hy(ida) = idg, a) for all n and hence H,(7)

is injective for all n. This implies that 0 — H,,(A) 9 H,(X) is exact. Injectivity of H,,_;(i) yields that

the image of §: H, (X, A) — H,_1(A) is trivial. Therefore we get short exact sequences
H, ()

0— H,(A) = H,(X) > H,(X,A) =0
for all n. As H,(r) is a left-inverse for H,, (i) we obtain a splitting
H,(X) = Hp(A) © Ho(X, A)
because we map [c] € H,(X) to ([rc], m.[c]) with inverse
Hy(A) ® Hn(X, A) 5 ([a], [b]) = Hn(i)[a] + [a'] = H(ior)[a’] € Hn(X)

for any [a'] € H,(X) with m.[a ] = [b]. The second map is well-defined: if [a”] is another element with
m«[a’'] = [b], then [a' — a”] is of the form H,(i)[a] because this element is in the kernel of 7, and hence
[a" —a"] — H,(ir)[a’ — a"] is trivial. O

Proposition 6.6. For any @ # A C X such that A C X is a deformation retract, then
H,(i): H,(A) 2 H,(X), H,(X,A) =0, 0<n.

PROOF. Recall, that i: A < X is a deformation retract, if there is a homotopy R: X x [0,1] — X such
that
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(a) R(z,0) =z forall z € X,
(b) R(z,1) € A for all z € X, and
(¢) R(a,1) =a for all a € A.

In particular, R is a homotopy from idx to i o 7 where r = R(—,1): X — A. Condition (c) can be
rewritten as r oi = id 4, i.e., r is a retraction, and thus A and X are homotopically equivalent and H, () is
an isomorphism for all n > 0. ]

Definition 6.7. If X has two subspaces A, B C X, then (X, A, B) is called a triple, if B C A C X.

Any triple gives rise to three pairs of spaces (X, A), (X, B) and (A, B) and accordingly we have three
long exact sequence in homology. But there is another one.

Proposition 6.8. For any triple (X, A, B) there is a natural long exact sequence
...——H, (A B)——H,(X,B)——H,(X,A)—2>H,_1(A, B)—. ..

This sequence is part of the following braided commutative diagram displaying four long exact sequences

|
|

Hn+1(X7A) Hn(AaB) Hn—l(B)
y < \HH(A) \Hn(X, B) > .
H,(B) \HH(X) \Hn(X, A)

In particular, the connecting homomorphism §: H, (X, A) — H,_1(A, B) is the composite § = B

§(XA)

ProoF. Consider the sequence
0——5,(A)/Sn(B)——5,(X)/Sn(B)——Sn(X) /S, (A)——0.
This sequence is exact, because S, (B) C S, (A) C S, (X). O

7. Excision

The aim is to simplify relative homology groups. Let A C X be a subspace. Then it is easy to see that
H.(X, A) is not isomorphic to H,(X\A): Consider the figure eight as X and A as the point connecting the
two copies of S!, then Hy(X, A) is trivial, but Ho(X\A) 2 Z & Z.

So if we want to simplify H,.(X, A) by excising something, then we have to be more careful. The first
step towards that is to make singular simplices ’smaller’. The technique is called barycentric subdivision
and is a tool that’s frequently used.

First, we construct cones. Let v € AP and let ao: A™ — AP be a singular n-simplex in AP.
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Definition 7.1. The cone of a with respect to v is K,(a): A"Tt — AP,

t tn
(t()a atn+1) N (1 _tn+1)a(17t[jL+la~--a 17tn+1) +tnt1v, tpyr <1,
v, t7z+1 =1

This map is well-defined and continuous. On the standard basis vectors K, gives K,(e;) = a(e;) for
0<i<nbut Ky(ent1) =v. Extending K, linearly gives a map

K,: Sn(Ap) - Sn—&-l(Ap)'
Lemma 7.2. The map K, satisfies
o 0K ,(c) =¢e(c).ky — ¢ for ¢ € So(AP), ky(eg) = v and e the augmentation.
e Forn >0 we have that 0o K, — K, 09 = (—1)""id.
PROOF. For a singular O-simplex a: AY — AP we know that e(a) = 1 and we calculate
K, (a)(eo) = Ky(a) o do(en) — Ky(a) o di(en) = Ky(a)(e1) — Ko(a)(eo) = v — afeo).

For n > 0 we have to calculate 9;K,(a) and it is straightforward to see that d,+1K,(a) = « and
0i(Ky(a)) = Ky(0;) for all i <mn+ 1. O
Definition 7.3. For a: A™ — AP let v(a) = v := n%rl Soioaleq). The barycentric subdivision B: Sp(Ap) —
Sp(A,) is defined inductively as B(a) = a for a € Sp(A,) and B(a) = (—-1)"K,(B(da)) for n > 0.

For n > 1 this yields B(a) = Y1 ((—1)"" K, (B(d;c)).
If we take n = p and a = idan, then for small n this looks as follows: You cannot subdivide a point any

further. For n =1 we get \

N

And for n = 2 we get (up to tilting)

Lemma 7.4. The barycentric subdivision is a chain map.

PrOOF. We have to show that 9B = BJ. If « is a singular zero chain, then 0Ba = da = 0 and
Boa = B(0) = 0.
Let n =1. Then
O0Ba = —0K,B(dya) + 0K, B(01x).

But the boundary terms are zero chains and there B is the identity so we get
—0K,(0pa) + 0K, (0100) = —ky + Opax + Ky — 010 = Oax = BOa.

(Note, that the v is v(a), not a v(d;).)
We prove the claim inductively, so let a € S,,(AP). Then

0Ba =(—1)"0K,(Bda)
=(-1)"((-1)"Bda + K,0Bd«)
=Bda + (—-1)"K,Bdda = Bda.

Here, the first equality is by definition, the second one follows by Lemma and then we use the induction
hypothesis and the fact that 00 = 0. ]
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Our aim is to show that B doesn’t change anything on the level of homology groups and to that end we
prove that it is chain homotopic to the identity.
We construct iy, : Sy, (AP) — S,,11(AP) again inductively as

do(@) =0, Yu(a) = (-1)"" K, (Ba — a — n_10a)
with v = =5 37 afes).
Lemma 7.5. The sequence (¢r,)n is a chain homotopy from B to the identity.

PrOOF. For n = 0 we have 019 = 0 and this agrees with B — id in that degree.
For n =1, we get

o1 + 1pd = 01 = (KB — K, — K,1pg0) = 0K, B — 0K,,.

with Lemma we can transform the latter to B + K,0B — 0K, and as B is a chain map, this is B +
K,B0 — 0K,. In chain degree one B9 agrees with J, thus this reduces to

B+ K,0-0K,=B- (0K, — K,0) =B —id.
So, finally we can do the inductive step:
Opn =(=1)" T OK, (B —id — ¢, _10)

=(-1)""OK,B — (-1)""OK, — (=1)"" 0K 1,10

=(-D)"Y((-1)""'B + K,0B)
— (—1)" I ((~1)"id + K,0)
= (D" 10 + KyOtpn10)

=B —id — 9,,—10 + remaining terms

The equation
K010 4+ Kythn—20° = K,BO — K,0
from the inductive assumption ensures that these terms give zero. ([l

Definition 7.6. A singular n-simplex a: A™ — AP is called affine, if
a(z tiei) = Z tia(ei).
i=0 i=0

We abbreviate a(e;) with v;, so a(zzl:o tie;) = Z?:o t;v; and we call the v;’s the vertices of .
Definition 7.7. Let A be a subset of a metric space (X, d). The diameter of A is
sup{d(z,y)|z,y € A}
and we denote it by diam(A).

Accordingly, the diameter of an affine n-simplex o in AP is the diameter of its image, and we abbreviate
that with diam(«).

Lemma 7.8. For any affine a every simplex in the chain Ba has diameter < niﬂdiam(oz).

Either you believe this lemma, or you prove it, or you check Bredon, Proof of Lemma 13.7 (p. 226).
Each simplex in Ba is again affine; this allows us to iterate the application of B and get smaller and

smaller diameter. Thus, the k-fold iteration, B¥(a), has diameter at most (nLH)k diam(«).
In the following we use the easy but powerful trick to express « as
a=aocidar =S, (a)(idan).
This allows us to use the barycentric subdivision for general spaces.
Definition 7.9. (a) We define B:X: S,(X) — S, (X) as

BX(a) := S,(a) o B(idan).
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(b) Similarly, ;X : S, (X) — Spi1(X) is
U (@) == Spr1(@) 0 ¢y (idan).
Lemma 7.10. The maps BX are natural in X and are homotopic to the identity on S, (X).
PrOOF. Let f: X — Y be a continuous map. We have
Sn(£)By (o) =S (f) © Sn(a) o Blidan)
=S5,(f oa)o B(idan)
—BY(foa).
The calculation for v, +¥;X 10 = B —idg, (x) should be routine by now. O

Now we consider singular n-chains that are spanned by ’small’ singular n-simplices.

Definition 7.11. Let & = {U;,i € I} be an open covering of X. Then S¥(X) is the free abelian group
generated by all a: A™ — X such that the image of A™ under « is contained in one of the U; € 4.

Note that SH(X) is an abelian subgroup of S,(X). As we will see now, these chains suffice to detect
everything in singular homology.

Lemma 7.12. Every chain in S,(X) is homologous to a chain in S¥(X).
PROOF. Let a = Z;n:1 Aja; € Sp(X) and let L; for 1 < j < m be the Lebesgue numbers for the

k
coverings {aj_l(Ui),i € I} of A™. Choose a k, such that (L) < L1,...,Ly,. Then B*a; up to B*a,,

n+1
are all in S¥(X). Therefore
B*a) =) X\B*(a;) =1 a’ € S}(X).
j=1

As B is homotopic to the identity we have

a~DBan~...~Bfa=d.

With this we get the main result of this section:

Theorem 7.13. Let W C A C X such that W C A. Then the inclusion i: (X\W, A\W) < (X, A) induces
an isomorphism

Hy(i): Ho(X\W, A\W) = H,,(X, A)
for alln > 0.

ProOF. We first prove that H,(i) is surjective, so let ¢ € S, (X, A) be a relative cycle, i.e., let dc €
S,_1(A). There is a k such that ¢/ := BFc is a chain in S¥(X) for the open covering 4 = {4, X\W} =:
{U,V'}. We decompose ¢’ as ¢/ = ¢V +¢" with ¢V and ¢V being elements in the corresponding chain complex.
(This decomposition is not unique.)

We know that the boundary of ¢’ is ¢’ = dB¥c = B¥dc and by assumption this is a chain in S,,_;(A4).
But 9¢’ = 0cV + dcY with ¢V € S,,_1(U) C S,—1(A). Thus, dc¥ € S,,_1(A), in fact, ¥ € S,,_1(A\W)
and therefore ¢V is a relative cycle in S, (X\W, A\W). This shows that H,(i)[c"] = [c] € H,(X, A) because
[c] = [cV + ] = [V] in H,(X, A).

The injectivity of H,(7) is shown as follows. Assume that there is a ¢ € S, (X\W) with dc € S,_1(A\W)
and assume H,(i)[c] = 0, i.e., ¢ is of the form ¢ = 0b+ o with b € S,,11(X) and @’ € S,,(A) and write b as
bY + bV with bU € Sn+1(U) - Sn+1(A) and bY € Sn+1(V) C Sn+1(X\W) Then

c=0bY + oY +d.
But 9bY and a’ are elements in S,,(A\W) and hence ¢ = 9bY € S, (X\W, A\W). O
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8. Mayer-Vietoris sequence

We consider the following situation: there are subspaces X7, Xo C X such that X; and X5 are open in
X and such that X = X; U X5. We consider the open covering il = {X;, Xo}. We need the following maps:

X1
2N
X1NXo X.
Xo
Note that by definition, the sequence
(8.1) 08, (X1 N X2) 2248 (X)) @ S, (Xa)—— SH4(X)——0

is exact. Here, the second map is
(a1, a2) = K1) — k2(a2).

Theorem 8.1. (The Mayer-Vietoris sequence)
There is a long exact sequence

D H L (X N X)) —— Hy (X1) & Hy(Xs) —— Hpy (X)—25 Hpy 1 (X1 N Xo)—. ..
ProOOF. The proof follows from Lemma because HX(X) = H,(X). O

As an application, we calculate the homology groups of spheres. Let X = S™ and let X* := S™\{Fe,41}-
The subspaces X and X ~ are contractible and therefore H,.(X*) = 0 for all positive .
The Mayer-Vietoris sequence is as follows

S H (XN X)) —— Ho (X 1) @ Hy (X ™) —— H (S™) —2 5 H, (XN X )——. .
For positive n we can deduce
H,(S™) =2 H, (XTNX")=H, (S™1).

The first map is the connecting homomorphism and the second map is H,,_1(i): H,_1(S™!) — H, (XN
X~) where i is the inclusion of S™~! into X N X~ and this inclusion is a homotopy equivalence. Thus
define D := H,,_1(i)~! 0 6. This D is an isomorphism for all n > 2.
We have to controll what is going on in small degrees and dimensions.
In order to compute H;(S™) for m > 1, we have to understand the map
Z>~Ho(XTNX")— Ho(X1) ® Hy(X2) X Z DL
Let 1 be a base point of X* N X~. Then the map on Hy is

[1] = ([1], [1]).
This map is injective and therefore the connecting homomorphism §: H;(S™) — Ho(X+ N X ™) is trivial
and we obtain that
Hy(S™) =20, m>1.

(Of course, we knew this from the Hurewicz isomorphism.)
Next, we consider the case of n = 1 = m. In this case the intersection X+ N X~ splits into two
components. We choose a Py € X and a P_ € X . Then, for Hy(i1,i2) we have

Ho(X ™) @ Ho(X ™) 3 (Ho(i1)[Py], Ho(i2)[P-]) ~ ([e2], [—e2]).

Thus [Py] — ([e2],0) and [P_] — (0,[—ez]) and the difference [Py] — [P_] € Ho(X ™ N X ™) generates the
kernel of Hy(k1) — Ho(ka2):

(Ho(k1) = Ho(r2))([e2]; [e2]) = 0.
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Consider the exact sequence

5 (Ho(i1),Ho(i2))

0—— H S' — 5 Ho(X+t 1 X7) Ho(X*) @ Ho(X™)— HoS!
which gives

0——HS' 707 Za7Z Z.
where [Py] — [P-] — ([e2],[e2]) — 0. The image of (Hy(i1), Ho(i2)) is isomorphic to the kernel of the
difference of Hy(k1) and Hp(k2) and this is isomorphic to the free abelian group generated by ([es], [e2])
which is Z. Therefore

0 HS'— 707 z 0

is short exact and H1S* & Z. (We already knew this from the Hurewicz isomorphism.)
For 0 < n < m we get

HyS™— 5 H,  S™ 1= = H (Smrt) & gy (Smon,

and the latter is trivial.
Similarly, for 0 < m < n we have

H,S™—=5H, 1 S™ 1= — = H, i1 (SY) 20.

The last claim follows directly by another simple Mayer-Vietoris argument.
The remaining case 0 < m = n gives something non-trivial

H,S"—=H, S" 11— . — =31 (SY) = Z.
We can summarize the result as follows.

Proposition 8.2.
Z®&Z, n=m=0,

H,(S™) = 7, n=0,m>0,
" )z, n=m >0,
0, otherwise.

Definition 8.3. Let pg := [Py] — [P_] € Ho(XT N X~) = Hy(S°) and let py € Hy(S') = 71 (S) be given
by the degree one map (aka the class of the identity on S!, aka the class of the loop t — €27).
Define the higher p,, via Dy = pi—1. Then p, is called the fundamental class in H,(S™).

In order to obtain a relative version of the Mayer-Vietoris sequence, we need a tool from homological
algebra.

Lemma 8.4. (The five-lemma)

Let
Ay — Ay —25 Ay — Ay — A;
fll f2l fsl f4l fsl
B, B1 By B2 Bs Bs By Ba Bs

be a commutative diagram of exact sequences. If f1, fa, f4, f5 are isomorphisms, then so is fs.

PROOF. Again, we are chasing diagrams.

In order to prove that f3 is injective, assume that there is an a € A3 with fsa = 0. Then B3f3a =
faaza = 0, as well. But fy is injective, thus aza = 0. Exactness of the top row gives, that there is an a’ € Ag
with asa’ = a. This implies

faaoa' = fza=0=f;fod.
Exactness of the bottom row gives us a b € By with 816 = faa’, but f; is an isomorphism so we can lift b to
a1 € Ay with fia; = 0.
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Thus foaia; = $1b = fod' and as fo is injective, this implies that aja; = /. So finally we get that
a = asa’ = asaar, but the latter is zero, thus a = 0.

For the surjectivity of f3 assume b € Bs is given. Move b over to By via (3 and set a := f; ' 83b. (Note
here, that if 30 = 0 we actually get a shortcut: Then there is a by € By with S2by = b and thus an as € A,
with f2a2 = b2. Then fgoégag = ﬂgbg = b)

Consider fsaga. This is equal to B4/3b and hence trivial. Therefore aya = 0 and thus there is an a’ € A3
with aga’ = a. Then b — f3a’ is in the kernel of 33 because

B3(b — fza') = B3b — faaza’ = Bsb — faa = 0.
Hence we get a by € By with fSobs = b — f3a’. Define ay as f{l(bg), so a’ + asas is in A3 and
f3(a’ + azag) = fza' + Bafaas = fza' + Paby = fza' +b— fza' =b.
|
We now consider a relative situation, so let X be a topological space with A, B C X open in AU B and

set 4 := {A, B}. This is an open covering of AU B. The following diagram of exact sequences combines
absolute chains with relative ones:

0
0 0 0 Sn(AU B)
/
00— S (AN B) ——— 9, (A) & 5,(B) ——— S (AU B) ——— 0 Sn(X)
0 Sp(X) —— 2 5 S (X) @ Sp(X) —I 5 (X)) T—0 S,(X,AUB)
P

00— Sp(X, AN B) — S, (X, A) & Sp(X, B) — S,,(X)/SH(AUB) —— 0 0

0 0 0

Here, 9 is induced by the inclusion ¢: S2(A U B) — S,(A U B), A denotes the diagonal map and diff the
difference map. It is clear that the first two rows are exact. That the third row is exact follows by a version
of the nine-lemma or a direct diagram chase.

Consider the two right-most non-trivial columns in this diagram. Each gives a long exact sequence in
homology and we focus on five terms.

Hyp(SH (AU B)) —— Hy(X) —— H, (S (X)/SY (AU B)) — Hy,_1(SY (AU B)) —— H,_1(X)
Hnml Hnuml Hnlml
(X)

Hy(AUB) —— Hy(X) ——— H\(X,AUB) —>—  H, 1(AUB) —— H,_(X)

Then by the five-lemma, as H,(¢) and H,_1(¢) are isomorphisms, so is H,(¢)). This observation together
with the bottom non-trivial exact row proves the following.

Theorem 8.5. (Relative Mayer-Vietoris sequence)
If A, B C X are open in AU B, then the following sequence is exact:

o~ H, (X, AN B)——H,(X,A) ® H,(X, B)——H,(X,AU B)——
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9. Reduced homology and suspension

For any path-connected space we have that the zeroth homology is isomorphic to the integers, so somehow
this copy of Z is superfluous information and we want to get rid of it in a civilized manner. Let P denote
the one-point topological space. Then for any space X there is a continuous map €: X — P.

Definition 9.1. We define H,, (X) := ker(H,(¢): Hn,(X) — H,(P)) and call it the reduced n-th homology
group of the space X.

e Note that H,(X) 2 H,(X) for all positive n.
e If X is path-connected, then Hy(X) = 0.
e For any choice of a base point z € X we get

Hy(X) © Hy({z}) = Ho(X)
because H,(P) = H, ({z}) and the composition
{z} = X — {z}

is the identity. Therefore, H, (X) = H, (X, {z}) because the retraction r: X — {z} splits the exact
sequence
o Hy({z}) = Ho(X) = Hy (X, {z}) — ...

e We can prolong the singular chain complex S, (X) and consider S, (X):
= 51(X) = Se(X) = 7Z 0.
where e(a) = 1 for every singular 0-simplex «. This is precisely the augmentation we considered
before. Then for all n > 0, N B
H.(X) 2 H.(5.(X)).
As every continuous map f: X — Y induces a chain map S, (f): S.(X) = S.(Y) and as e¥ 0 Sp(f) = X
we obtain the following result.

Lemma 9.2. The assignment X — H,(S.(X)) is a functor, i.e., for a continuous f: X — Y we get an

induced map H,(S.(f)): Ho(S«(X)) = H.(S«(Y)) such that the identity on X induces the identity and
composition of maps is respected.

Similarly, H,.(—) is a functor.
Definition 9.3. For @ # A C X we define
H,(X,A):= H,(X,A).

As we identified reduced homology groups with relative homology groups we obtain a reduced version
of the Mayer-Vietoris sequence. A similar remark applies to the long exact sequence for a pair of spaces.

Proposition 9.4. For each pair of spaces, there is a long exact sequence
oo —— Hy(A) —— Hy(X) —— Hp (X, A) —— Hy 1 (A) —
and a reduced Mayer-Vietoris sequence.

FEzxamples.

1) Recall that we can express RP? as the quotient space of S? modulo antipodal points or as a quotient
of D%

RP?2=S§%/4+id=D?/z ~ —z for z € S'.
We use the latter definition and set X = RP?, A = X\{[0,0]} (which is an open Mobius strip and hence
homotopically equivalent to S') and B = D?. Then
AN B=D*{[0,0]} ~S".

Thus we know that H;(A4) = Z, H1(B) =2 0 and HyA = H,B = 0. We choose generators for Hy(A) and
H,(AN B) as follows.
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Cy

Let a be the path that runs along the outer circle in mathematical positive direction half around starting
from the point (1,0). Let b be the loop that runs along the inner circle in mathematical positive direction.
Then the inclusion i4ng: AN B — A induces

Hy(iang)[b] = 2[a).
This suffices to compute H,(RP?) up to degree two because the long exact sequence is
HyA& HyB=0— Hy(X) = H(ANB) 2 Z — Hy(A) 2 Z — Hy(X) — Ho(AN B) = 0.
On the two copies of the integers, the map is given as above and thus we obtain:

Hy(RP?) = ker(2-: Z — Z) = 0,
H,(RP?) = coker(2-: Z — 7) = 7./27,
Hy(RP?) = 7.
The higher homology groups are trivial, because there H,,(RP?) is located in a long exact sequence between
trivial groups.
2) We can now calculate the homology groups of bouquets of spaces in terms of the homology groups of

the single spaces, at least in good cases. Let (X;);cs be a family of topological spaces with chosen basepoints
z; € X;. Consider
xX=\/X.

iel
If the inclusion of z; into X; is pathological, then we cannot apply the Mayer-Vietoris sequence. However,
we get the following:

Proposition 9.5. If there are neighbourhoods U; of x; € X; together with a deformation of U; to {x;}, then
we have for any finite E C I

H,(\/ X) = P Ha(X).
i€l i€l

In the situation above we say that the X; are well-pointed with respect to x;.

PROOF. First we consider the case of two bouquet summands. We have X; V Uy U U; V X5 as an open
covering of X; V Xs. The Mayer-Vietoris sequence then gives that H,(X) =& H,(X; VUsy) ® H,(U1 V X3)
for n > 0. For Hy we get the exact sequence

0— ﬁo(Xl \Y UQ) D ﬁo(Ul \/Xg) — HO(X) — 0.

By induction we obtain the case of finitely many bouquet summands. O

We also get
H,(\/ X;) = P Ha(X:)
il iel
but for this one needs a colimit argument. We postpone that for a while.
We can extend such results to the full relative case. Let A C X be a closed subspace and assume that

A is a deformation retract of an open neighbourhood A C U. Let w: X — X/A be the canonical projection
and b = {A} the image of A. Then X/A is well-pointed with respect to b.

Proposition 9.6. In the situation above

Ho(X,A) 2= Hy(X/A), 0<n.
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PROOF. The canonical projection, m, induces a homeomorphism (X\A,U\A) = (X/A\{b}, 7(U)\{b}).
Consider the following diagram:

Hy(X,A) — = H (X, U) +————— H,(X\A,U\A)

\LHTL () NJ/HTL(W)

Ho(X/A,b) —= Hu(X/A,7(U)) «—— Hy(X/A\{b}, m(U)\{b})

The upper and lower left arrows are isomorphisms because A is a deformation retract of U, the isomorphism
in the upper right is a consequence of excision, because A = A C U and the lower right one follows from
excision as well. (Il

Theorem 9.7. (Suspension isomorphism) If A C X is as above, then

H,(XX,%A) = H, 1(X,A), foralln>0.
PrOOF. Consider the inclusion of pairs (X,A4) C (CX,CA) C (X£X,¥XA) and the resulting triple
(CX,X UCA,CA). We obtain the corresponding long exact sequence on homology groups
o ——H,(CX,CA)——H,(CX,CAUX)—25H, (X UCA,CA)—>. ..

By Propositionwe get that H,,(CX, CAUX) = ﬁn(QX/CAUX) and H, (XUCA,CA) = H, (XU
CA/CA) and the latter is isomorphic to H,,_1(X/A) = H,,_1(X, A). Similarly, as CX/CAUX ~ Y X/Y A,
we get ~ ~ _

H,(CX,CAUX) = H,(CX/CAUX) = H,(SX/SA) = H,(£X, SA).

XUCA/CA = X/A:

CA

CX/CAUX = $X/SA:

YA

O

Note, that the corresponding statement is terribly wrong for homotopy groups. We have ©S? = S3, but
73(S?) = Z, whereas m4(S*) = Z/27, so homotopy groups (unlike homology groups) don’t satisfy such an
easy form of a suspension isomorphism. There is a Freundenthal suspension theorem for homotopy groups,
but that’s more complicated. For the above case it yields:

7Tl+3(83) = 7T1+4(S4) == 7T'f
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where 77 denotes the first stable homotopy group of the sphere.

10. Mapping degree

Recall that we defined fundamental classes j,, € H,,(S™) for all n > 0. Let f: S® — S" be any continuous
map.

Definition 10.1. The map f induces a homomorphism

Hy(f): Hy(S") = Hn(S")
and therefore we get

Hn(f)ﬂn = grad(f)pn
with grad(f) € Z. We call this integer the degree of f.

In the case n = 1 we can relate this notion of a mapping degree to the one defined via the fundamental
group of the 1-sphere: if we represent the generator of m1(S', 1) as the class given by the loop

w: [0,1] — S, ts 2™

then the abelianized Hurewicz, hap: m1(St, 1) — H1(SY), sends the class of w precisely to p1 and therefore
the naturality of hgp

771(81,1) 7T1(Sl,1)
habJ/ lhab
Hl(Sl) H1(f) Hl(Sl)

shows that
grad () = Hy ()i = hao (w1 (F)[w]) = han(klw]) = ks

where k is the degree of f defined via the fundamental group. Thus both notions coincide for n = 1.

As we know that the connecting homomorphism induces an isomorphism between H, (D",S"~!) and
H,_1(S" 1), we can consider degrees of maps f: (D", S" 1) — (D", S"1) by defining fi,, := 6 'jt,,. Then
H,(f)(fin) := grad(f) i, gives a well-defined integer grad(f) € Z.

The degree of self-maps of S™ satisfies the following properties:

Proposition 10.2. (a) If f is homotopic to g, then grad(f) = grad(g).
(b) The degree of the identity on S™ is one.
(¢) The degree is multiplicative, i.e., grad(g o f) = grad(g)grad(f).
(d) If f is not surjective, then grad(f) = 0.

PROOF. The first three properties follow directly from the definition of the degree. If f is not surjective,
then it is homotopic to a constant map and this has degree zero. (Il

It is true that the group of (pointed) homotopy classes of self-maps of S™ is isomorphic to Z and thus
the first property can be upgraded to an ’if and only if’, but we won’t prove that here.

Recall that ¥S"™ = S+ If f: S* — S" is continuous, then X(f): ¥S" — XS" is given as ¥S" 3 [z, t] —
[f (), 1].

Lemma 10.3. Suspensions leave the degree invariant, i.e., for f: S™ — S™ we have
grad(3(f)) = grad(f).
In particular, for every k € Z there is an f: S™ — S™ with grad(f) = k.
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PROOF. The suspension isomorphism of Theorem [0.7]is induced by a connecting homomorphism. Using
the isomorphism H,,1(S"*1) = H, 1(XS"), the connecting homomorphism sends fi,+1 € Hy,41(S" ) to
+pn € Hy(S™). But then the commutativity of

) n > >~
Hypr (S™) — H, 1 (587 =25, (587) 2 H, 0 (57

% lé
- Hy (f) ~
H, (S") ———— Hn(S")
ensures that tgrad(f)u, = grad(Xf)u, with the same sign. O

For the degree of a self-map of S' one has an additivity relation. We can generalize this to higher
dimensions. Consider the pinch map T: S* — S"/S"~! ~ §" VS™ and the fold map F: S*VS"™ — S". Here,

F is induced by the identity of S™.
Q T 8 F Q
— —

Proposition 10.4. For f,g: S™ — S™ we have
grad(F o (f Vg)oT) = grad(f) + grad(g).

ProOOF. The map H, (T') sends piy, t0 (tin, pin) € H,S"® H,S" =~ f[n(S" VS™). Under this isomorphism,

the map Hy(f V g) corresponds 0 (jin, fin) — (Ho(f)tins Hy(g)jtn) and this yields (grad(f)pin, grad(g)pn)
which under the fold map is sent to the sum. O

We use the mapping degree to show some geometric properties of self-maps of spheres.

Proposition 10.5. Let f("): S — S" be the map

(Toy @1,y Ty) > (—Z0y X1, - ooy X))
Then f™ has degree —1.
PROOF. We prove the claim by induction. pg was the difference class [+1] — [—1], and
FOQ] ~ [1]) = [1] ~ [+1] = .

We defined p,, in such a way that Du,, = pn—1. Therefore, as D is natural,
Hn(f(n)):un = Hn(f(n))D_llun—l = D_lHn—l(f(n_l))Hn—l = D_l(_ﬂn—l) = —Hn-

(Il

Corollary 10.6. The antipodal map A: S™ — S", A(x) = —x, has degree (—1)"T1.
PROOF. Let fi(n) : S™ — S™ be the map (xg,...,Zn) = (Toy- .., Tim1, —Tiy Tit1, ..., Tn). As in Proposi-
tion one shows that the degree of fi(n) is —1. As A= 7(,,") 0...0 fon), the claim follows. O

In particular, the antipodal map cannot be homotopic to the identity as long as n is even!
Proposition 10.7. For f,g: S" — S™ with f(z) # g(z) for all x € S,
grad(f) = (~=1)"*'grad(g).
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PRrROOF. If f(x) # —g(z), then f(z) and —g(z) span a two-dimensional subspace and
(1—t)f(z) —tg(x)
H =
O = 0= 056~ tgtal

connects f to —g = Aog. For f(z) = —g(x) we have that H(z,t) is f(z) for all ¢, thus in any case f is
homotopic to Ao g. ]

Corollary 10.8. For any f: S™ — S™ with grad(f) = 0 there is an x4 € S™ with f(x4) = x4 and an x_
with f(z_) = —x_.

PrOOF. If f(z) # x for all z, then grad(f) = grad(A4) # 0. If f(z) # —x for all x, then grad(f) =
(—1)"*lgrad(A) # 0. O

Corollary 10.9. If n is even, then there is an x € S™ with f(x) =z or f(z) = —x.
Finally, we can say the following about hairstyles of hedge-hogs of arbitrary even dimension:
Proposition 10.10. Any tangential vector field on S?* is trivial in at least one point.

PROOF. Recall that we can describe the tangent space at a point x € S?* as
To(S*) = {y € R**!|(z,y) = 0}
Assume V is a tangential vector field which does not vanish, i.e., V() # 0 for all 2 € S?* and V (x) € T,.(S*)
for all z.
Define f(z) := % Assume f(z) = z, hence V(x) = ||V (z)||z. But this means that V(z) points

into the direction of 2 and thus it cannot be tangential. Similarly, f(x) = —z yields the same contradiction.
Thus such a V' cannot exist. O

11. CW complexes

Definition 11.1. Let X be a topological space. Then X is called an n-cell, if X is homeomorphic to R™.
The number n is then the dimension of the cell.

Ezamples. Every point is a zero cell and Dn > Rn S™M\N are n-cells.
Note that an n-cell cannot be an m-cell for n # m, because R™ 2 R™ for n # m.

Definition 11.2. A cell decomposition of a space X is a decomposition of X into subspaces, each of which
is a cell of some dimension, i.e.,
X=|]xX: X;=Rr"
iel
Here, this decomposition is meant as a set, not as a topological space.

Examples. A 3-dimensional cube has a cell decomposition into 8 points, 12 open edges, and 6 open faces.
The standard 3-simplex can be decomposed into 4 zero-cells, 6 1-cells, 4 2-cells, and a 3-cell.
The n-dimensional sphere (for n > 0) has a cell decomposition into the north pole and its complement.

Definition 11.3. A topological hausdorff space X together with a cell decomposition is called a CW complex,
if it satisfies the following conditions:
(a) Ij‘or every n-cell ¢ C X there is a continuous map ®,: D™ — X such that the restriction of ®, to
D™ is a homeomorphism
P,
and ®, maps S”! to the union of cells of dimension at most n — 1.

(b) For every n-cell o, the closure & C X has a non-trivial intersection with only finitely many cells of
X

(¢) A subset A C X is closed if and only if AN & is closed for all cells ¢ in X.

lﬁmani)O'

e The map P, as in (a) is called the characteristic map of the cell o. Tts restriction ®,|gn-1 is called
attaching map.
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e Property (b) is the closure finite condition: the closure of every cell is contained in finitely many
cells. That’s the ’C’” in CW.

e Property (c) tells us that X has the weak topology. That’s the "W’.

o If X is a CW complex with only finitely many cells, then we call X finite.

Definition 11.4. o We set X" := Uacx,dim(a)gn o and call it the n-skeleton of X.
e If we have X = X™, but X"~ ! C X, then we say that X is n-dimensional, i.e., dim(X) = n.
e A subset Y C X of a CW complex X is called a subcomplex (sub-CW complex), if it has a cell
decomposition by cells in X and if for any cell ¢ C Y we also have ¢ C Y.
e For any subcomplex Y C X, (X,Y) is a CW-pair.

Note, that any subcomplex of a CW complex is again a CW complex: the characteristic maps ®, for
Y are the same as for X. We obtain that Y is closed in X because of the second requirement and this
guarantees that Y has the weak topology. If ¢ C X and ¢ C Y, then 6 C Y. As Y is closed, this says that
Y satisfies condition (b) of a CW complex.

Ezamples The unit interval [0,1] has a CW structure with two zero cells and one 1-cell. But for instance

the decomposition o) = {0}, o) = {+},k > 0 and o} = (k%rl, 1) does not give a CW structure on [0, 1].

Consider the following A C [0, 1]
1/1 1
A=<= -4+ — .
{2 (k+k+1) |kEN}

Then AN &}, is precisely the point 3(+ -+ ﬁ) and this is closed, but A isn’t.
We want to understand the topology of CW complexes. Note that cells don’t have to be open in X: if
X is a CW complex and o is an n-cell, then o is open in the n-skeleton of X, X™ and X™ is closed in X.
Of course, as a set we have X = J,,5, X" From the condition that A is closed in X if and only if the
intersection of A with & is closed for any cell o we see that A is closed in X if and only if AN X" is closed
for all n > 0. This is an instance of a direct limit topology on X and this is denoted by

X =lim X™.
—

Such a direct limit has the following universal property: for any system of maps (f,: X™ — Z),>0 such that
frn+1lxn = fn there is a uniquely determined continuous map f: X — Z such that f|x» = f,.

Note that CW structures on a fixed topological space are not unique. For instance you can consider S?
with the CW structure coming from the cell decomposition S? = S\ N LU N. Then the zero skeleton of S?
only consists of the north pole N and this agrees with the 1-skeleton, but the 2-skeleton is equal to S2.

But of course there are many other CW structures. Take your favorite dice, i.e., a tetrahedron, a cube,
an octahedron, a dodecahedron, an icosahedron or something less regular like a rhombic dodecahedron.
Imagine these dice are hollow and project them to S2. Then you get different CW structures on S? that way.

Definition 11.5. Let X and Y be CW complexes. A continuous map f: X — Y is called cellular, if
f(X™) CcY™ foralln > 0.

The category of CW complexes together with cellular maps is rather flexible. Most of the classical
constructions don’t lead out of it, but one has to be careful with respect to products:

Proposition 11.6. If X and Y are CW complezes then X XY is a CW complex if one of the factors is
locally compact.

PRrROOF. As products of cells are cells, X x Y inherits a cell decomposition from its factors. We need
to ensure that X x Y carries the weak topology. For this we prove a slightly more general auxiliary fact: if
X, Y and Z are topological spaces satisfying the Hausdorff condition and if 7: X — Y gives Y the quotient
topology, and if Z is locally compact, then

axid: X xZ =Y xZ

gives Y x Z the quotient topology. For this we show that ¥ x Z has the universal property of a quotient
space, so if g: Y x Z — W is a map of sets and assume that the composition g o (7 x id) is continuous. As
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Z is locally compact and as all spaces are hausdorff, there is a homeomorphism
C(XxZ,W)=2C(X,C(Z,W))

of topological spaces. (Here for two spaces U,V, C(U,V) is the set of all continuous maps from U to
V and the topology of C(U,V) is generated (under finite intersections and arbitrary unions) by the sets
V(K,0):={f e CUV)|f(K) C O} for compact K C U and open O C V.)

Under this adjunction g o (7 X id) corresponds to the composite

g X y—2s0(z,w).
As g is continuous and as Y carries the quotient topology we get that g is continuous and hence g is

continuous, too.
With the help of this result we consider the characteristic maps of X and Y,

$,: D" — X,0 acelin X
U, :D™ = Y,7acelinY.
Then we can use these maps to write X x Y as a target of a map

®x W (| D) x (| |D™) = X x V-

We have to show that X x Y carries the quotient topology with respect to this map. We know that each
D" is locally compact, thus so is the disjoint union of open discs. The map idl_| B X U gives (|| ]D)") XY
the quotient topology and by assumption Y is locally compact and therefore ® x idy induces the quotient
topology on X x Y. |

Lemma 11.7. If D is a subset of a CW complex X and D intersects each cell in at most one point, then
D is discrete.

PROOF. Let S be an arbitrary subset of D. We show that S is closed. We know that S N & is finite,
because & is covered by finitely many cells. Therefore S N & is closed in &, because X is hausdorff (and
therefore T7). But then the weak topology guarantees that S is closed. (]

Corollary 11.8. Let X be a CW complex.

(a) Every compact subset K C X is contained in a finite union of cells.

(b) The space X is compact if and only if it is a finite CW complez.

(¢) The space X is locally compact if and only if it is locally finite, i.e., every point has a neighborhood
that is contained in finitely many cells.

PROOF. It is easy to see that (a) implies (b) and that (b) implies (c¢). Thus we only prove (a): consider
the intersections K No and choose a point p,, in every non-empty intersection. Then D := {p,|o a cell in X}
is discrete. It is also compact and therefore finite. O

Corollary 11.9. If f: K — X is a continuous map from a compact space K to a CW complex X, then the
image of K under f is contained in a finite skeleton.

For the proof just note that f(K) is compact in X.

Proposition 11.10. Let A be a subcomplex of a CW complex X. Then X x {0} U A x [0,1] is a strong
deformation retract of X x [0,1].

PROOF. For r: D" x [0,1] — D" x {0} US"~! x [0, 1] we can choose the standard retraction of a cylinder
onto its bottom and sides.

As X™ x [0,1] is built out of X™ x {0} U (X"~ U A™) x [0,1] by gluing in copies of D" x [0,1] along
D" x {0} US"! x [0,1] we get that X™ x [0, 1] is a deformation retract of X™ x {0} U (X"~tU A") x [0, 1].
We can parametrize the retracting homotopy in such a way that it takes place in the time interval [QH%, 2%]
Using the direct limit topology on X, we obtain a deformation of X x I to X x {0} U A x [0,1]. O
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The property in Proposition implies the so-called homotopy extension property, (HEP): If g: X —
Y isamap and H: A x [0,1] — Y is a homotopy such that H|4 o} = g, then there is an extension of H to
X % [0, 1], compatible with g and H. This identifies A — X as a so-called cofibration.

In the following we just collect some facts about the topology of CW complexes, that I won’t prove:

Lemma 11.11. e For any subcomplexr A C X there is an open neighborhood U of A in X together
with a strong deformation retraction to A. In particular, each skeleton X™ there is an open neigh-
borhood U in X (and as well in X"*1) of X™ such that X" is a strong deformation retract of
U.

o Every CW complex is paracompact, locally path-connected and locally contractible.
o FEvery CW complex is semi-locally 1-connected, hence possesses a universal covering space.

Lemma 11.12. For any CW complex X we get for the skeleta:
(2) O
XM\x"t= || o= || D~

o an n-cell o an n-cell

(b)
xr/xrte \/ s
o an n-cell

PRrROOF. The first claim follows directly from the definition of a CW complex. For the second claim note
that the characteristic maps send the boundary D" to the n — 1-skeleton and hence for every n-cell we get
a copy of S™ in the quotient. O

Ezample Consider the hollow cube W2, Then W2/W! = \/%_ §2.

i=1
12. Cellular homology
In the following, X will always be a CW complex.
Lemma 12.1. For allg#mn>1, Hy (X", X"1)=0.
ProoF. Using the identification of relative homology and reduced homology of the quotient gives

Hy(X", X" = Hy(X" /X" )= @ Hy(s").

o an n-cell

Lemma 12.2. Consider the inclusion i,: X" — X.
(a) The induced map H,(iy): Hpo(X"™) — H,(X) is surjective.
(b) On the (n + 1)-skeleton we get an isomorphism
Hy(ipy1): Ho (X)) = H,(X).
PrRoor. We can factor i,, as

in

Xn X

In+1
5]
- In+3
tn42

1 +2 3
xn X X

a2

The map Hy(aq): Hy(X™) — Hy(X™1) is surjective, because H,(X"! X™) = 0. For i > 1 we have the
following piece of the long exact sequence of the pair (X"¢ xXnt+i=1)

. . . Ha(a;
(= Hn+l(Xn+z’Xn+z—1) EHn(X"'H_l) ( )>

H,, (X7+) —— H, (X7, Xn+iz1) o
Therefore H,(a;) is an isomorphism in this range. O
Corollary 12.3. For CW complexes X, Y we have
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(a) If the n-skeleta X™ and Y™ are homeomorphic, then Hy(X) = H,(Y), for all ¢ < n.
(b) If X has no g-cells, then Hy(X) = 0.
(c) In particular, if q exceeds the dimension of X, then Hy(X) = 0.

PROOF. The first claim is a direct consequence of the lemma above.
By assumption in (b) X497 = X9 therefore we have H, (X9 ') & H,(X) and the latter surjects onto
H,(X). We show that H,(X") =0 for n > r. To that end we use the chain of isomorphisms

H (X" =2 H,(X" Y= . =~H,(X"
which holds because the adjacent relative groups H,, (X%, X*~1) are trivial for i < n. O
Again, X is a CW complex.

Definition 12.4. The cellular chain complex C,(X) consists of Cy,(X) := H, (X", X"!) with boundary
operator

d: Hy(X", X" H, (X" )~ H, (X", X2
where o is the map induced by the projection map S, _1(X" 1) — S, 1 (X", X"~2).
Note that C,,(X) is a free abelian group with

= @ mEnE P oz

o an n-cell o an n-cell

For n < 0, C,(X) is trivial. If X has only finitely many n-cells, then C, (X) is finitely generated. If X is
a finite CW complex, then C,(X) is finitely generated as a chain complex, i.e., Cp,(X) is only non-trivial
in finitely many degrees n, and in these degrees, C,(X) is finitely generated. In this case, the boundary
operator can be calculated using matrices over the integers.

Lemma 12.5. The map d is a boundary operator.
PRrROOF. The composition d? is oo d o oo J, but § o ¢ is a composition in an exact sequence. |

Theorem 12.6. (Comparison of cellular and singular homology) For every CW complex X, there is an
isomorphism Y: H (C.(X),d) = H.(X).

PrOOF. Consider the diagram

l)\ \
& Hp (in)
d H,1(X,X")—— > H,(X") ———— > H,(X)
o
Cn(X) — Hn(X",X”_l)
l)\ \
n—1 5, n—1 Hn—l(in—l)
d Ho(X, Xm ) —% g, (x5 (X))
o
Cn1(X) == H,_1 (X1, X"7?)
l)\ \
d n—1y 9 n—2y Hn-2(in-2)
Hy (X, X1 =5 |, p(X72) 2 L o (X)
/
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e All occurring p-maps are injective because Hy(X*~1) 2 0 for all k.
e For every a € H,(X™) o(a) is a cycle for d:

do(a) = 0do(a) = 0.
e Let ¢ € C,,(X) be a d-cycle, thus 0 = dc = pdc and as p is injective we obtain dc = 0. Exactness
yields that ¢ = p(a) for an a € H,(X™). Hence,

H,(X™) Zker(d: Cp(X) = Cr_1(X)).

We define T': ker(d) — H,(X) as YT[c] = H,(in)(a) for ¢ = o(a) and Hy(in): Hp(X™) = Hp(X).
The map T is surjective because H,, (i) is surjective.
In the diagram, the triangles commute, 7.e., § = ¢’ o \.
Consider the sequence

Hypy (X)) —— Hyy (X)) —— Hy (X, X)) —— H, (X)) = H,(X)
which tells us that H,1(X, X"*!) = 0 and this in turn implies that \ is surjective.
e Using this we obtain
im(8) = im(8’) = ker(H,,(in)).
As d = pod, the map p induces an isomorphism between the image of d and the image of §.
e Taking all facts into account we get that g induces an isomorphism
ker(d: Cp(X) = Cp—1(X)) . Hp(X™)
im(d: Cpyr (X) = Co(X)) ~ ker(Hy,(in))

But the sequence
0——kerH,, (i) —— H,(X")——im(H,(i,)) ——0
is exact and therefore
H,(X")/ker(Hy (i) & imH, (i,) & Hy(X).

FEzamples Projective Spaces
Let K be R,C or H and let K* = K\{0}. We let K* act on K"*! via
K* x K"\ {0} — K"\ {0}, (\,0) = Av.
We define K P" = (K"*1\{0})/K* and we denote the equivalence class of (xq,...,2,) in KP" by [x¢:...:
xn].We define
Xi={lro:...:xp)|zi #0,2411 = ... =2, =0}

and consider the map
Zo ivzel)
sy .
Z; ZT;
As ¢; is a homeomorphism, we see that X; is a cell of dimension idimg(K) =: m. We can write K P™ as

XoU...UX, and we have characteristic maps ®;: D™ — KP" as
Cbz(y):q)z(yo,,yzfl):[yoy1711—|‘y|| 00}

afiZXi—>Ki, fl[éﬂofﬂn}:(

with X; = ®;(D™).
1) First we consider the case K = C. Here, we have a cell in each even dimension 0,2,4, ...,2n for CP™.
Therefore the cellular chain complex is
7Z k=2,0<i<n,
Ck; ((CP”) — 7'.5 (3 n
0 k=2t—1ork>2n.
The boundary operator is zero in each degree and thus
Z, x=2i,0< %< 2n,
0, otherwise.

H,(CP") = {

34



2) The case of the quaternions is similar. Here the cells are spread in degrees congruent to zero modulo
four, thus

Z, *x=4i,0<*x<4n
0, otherwise.

) )

H,(HP") = {

3) Non-trivial boundary operators occur in the case of the real numbers. Here, we have a cell in each
dimension up to n and thus the homology of RP"™ is the homology of the chain complex

00, 2z2%0, =272%. . 4o =7

For the computation of d we consider the diagram

H;(RP' RP') = H,(RP!/RP~1) = H;(S") = H;_,(S"1)
-

d( H;_(RP1)
\ |

H;,_;(RPI=1 RP72) >~ H, |(RP"'/RP=2) > H, ,(S" 1)

Let ; = ®;lgi-1: S — §~1/ +£id. The preimage of a class [z] € S=!/ £id is {&z}. We consider the
composition
si-1 —2 5§71/ +id = RPi~!
x lﬂ
RPi—l/RPi—Q o~ Si—l

and have to determine its degree.
By construction ¢; o A = @; and thus

grad(@;) = grad(@; o A) = (—1)"grad(g;)

and hence the degree of @; is trivial for odd i. The complement S*~*\S?~2 has two components X, X _ and
A exchanges these two components. The map @; sends X, and X_ to [X]. Therefore the degree of @; is

grad(@;) = grad(F o (id V A) o T') = grad(id) + grad(A) = 1 + (—1)".

and d is either zero or two. Thus, depending on n we get

Z k=0
H,(RP")=17/2Z k< n,kodd
0 otherwise.
for n even.
For odd dimensions n we get
/ k=0,n
H,(RP")=17/2Z 0<k<mn,kodd
0 otherwise.

13. Homology with coefficients
Let G be an arbitrary abelian group.
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Definition 13.1. The singular chain complex of a topological space X with coefficients in G, S.(X;G), has
as elements in S, (X; @) finite sums of the form Zf;l gia; with ¢g; in G and «;: A™ — X. Addition in
Sn(X; G) is given by

N

N N
> gici + > hici =Y (gi+ hi)a.
i=1 i=1 i=1
The n-th (singular) homology group of X with coefficients in G is
Hp (X5 G) = Hn(9(X; G))
where the boundary operator 9: S, (X;G) — S,—1(X; G) is given by
N n N
O(Y " giai) = Y- (-11 (X gilew 0.dy).
i=1 j=0 i=1
We use a similar definition for cellular homology of a CW complex X with coefficients in G. Recall, that
Co(X)=H, (X", X" )= Z

o an n-cell “*

Definition 13.2. We denote a ¢ € Cph(X;G) as ¢ = Zfil 9i0i € B, un ncen G and let the boundary
operator d be defined by de = Zfil 9:d(o;) where d: Cp,(X) — Cp,—1(X) is the boundary in the cellular
chain complex of X.

We can transfer Theorem to the case of homology with coefficients:

H,(X;G) = H,(Ci(X;G),d)
for every CW complex X and therefore we denote the latter by H,(X;G) as well.
Note, that H,(X;Z) = H,(X) for every space X.

Ezample If we consider the case X = RP?, then we see that coefficients really make a difference.
Recall that for G = Z we had that Hy(RP?) = Z, H,(RP?) = Z/2Z and Hy(RP?) = 0. However, for
G = 7Z/27Z the outcome differs drastically. The cellular chain complex looks as follows:

0

0 7./22.2=2,7,/27.

and therefore H;(RP?;7Z/27) = 7./27 for 0 < i < 2.
If we consider H,(RP?;Q) we obtain the cellular complex

7.)27. 0

0 Q—-Q—-Q 0
But here, multiplication by 2 is an isomorphism and we get Ho(RP?;Q) = Q, H;(RP?; Q) = Q/2Q = 0 and
H,y(RP?;Q) = 0.

14. Tensor products and universal coefficient theorem

The question we want to pursue in this section is, whether H, (X, G) is computable from H,(X) and G.
The general answer is "Yes’, but we need some basics from algebra to see that.
Let A and B be abelian groups.

Definition 14.1. The tensor product of A and B, A® B, is the quotient of the free abelian group generated
by A x B by the subgroup generated by

(a) (a1 + az,b) — (a1,b) — (az,b),
(b) (CL7 b1 + bg) - (CL7 bl) — (a, b2)
for ay,a1,a € A and by,b2,b € B.
We denote an equivalence class of (a,b) in A ® B by a ® b.

Note, that relations (a) and (b) imply that AMea ® b) = (Aa) ® b = a ® (Ab) for any integer A € Z and
a € A, be B. Elements in A® B are finite sums of equivalence classes > - ; \;a; ® b;.

e Of course, A ® B is generated by a ® b with a € A, b € B.

36



e The tensor product is symmetric up to isomorphism and the isomorphism A ® B = B ® A is given

by
Z Aia; ® b; — Z Aib; ® a;.
i=1 i=1

e [t is associative up to isomorphism:
AR (BRC)=2(A®B)C
for all abelian groups A, B, C.
e For homomorphisms f: A — A’ and g: B — B’ we get an induced homomorphism
f®g A B— A B

which is given by (f ® g)(a ® b) = f(a) ® g(b) on generators.
e The tensor product has the following universal property. For abelian groups A, B, C, the bilinear
maps from A x B to C are in bijection with the linear maps from A ® B to C.
e We've already seen tensor products: Note that S, (X)® G is isomorphic to S, (X, G) and Cp,(X) ®
G~ C,(X,G).
We collect the following properties of tensor products:
(a) For every abelian group A, we have
ARL=A=Z R A.
(b) For every abelian group A, we have
AQZ/nZ = A/nA.
Here, note that nA = {nala € A} makes sense in any abelian group. The isomorphism above is
given by
a®ivsia
where ¢ denotes an equivalence class of i € Z in Z/nZ and ia the class of ia € A in A/nA.

(c) f0— A B 2, ¢ = 0is a short exact sequence, then in general,

0——A® D4R D Y gid 0

is not exact for D abelian. For example,
0-Z—Q—Q/Z—0
is exact, but
0>ZQRZL/2Z — QRZ/2Z — Q/Z R Z/2Z — 0
isn’t, because Q ® Z/27 = 0.

Lemma 14.2. For every abelian group D, (=) ® D is right exact, i.e., if0 - A =+ B Ly 0 0is a short
exact sequence, then
a®id

id
A®D Be D20 % D— 0

is exact. If the exact sequence 0 — A — B i> C — 0 is a split short exact sequence, then

0— A D%YBe D Yo e D 0

s exact.
PRrOOF. Exercise. O

A consequence of the failure of the functor (—) ® D to be exact on the left hand side has as a consequence
that H,(X,G) = H,(S«(X) ® G) is not always isomorphic to H,,(X) ® G = H,(S.(X)) ® G.

Definition 14.3. Let A be an abelian group. A short exact sequence 0 - R — F — A — 0 with F' a
free abelian group is called a free resolution of A.

37



Note that in the situation above R is also free abelian because it can be identified with a subgroup of F'.
Ezample For every n > 1, the sequence 0 — Z — Z — Z/nZ — 0 is a free resolution of Z/nZ.

Proposition 14.4. Every abelian group possesses a free resolution.
The resolution that we will construct in the proof is called the standard resolution of A.

PROOF. Let F be the free abelian group generated by the elements of the underlying set of A. We
denote by y, the basis element in F' corresponding to a € A. Define a homomorphism

p: F— A7 p(z )\aya) = Z A
acA acA

Here, A\, € Z and this integer is non-trivial for only finitely many a € A. By construction, p is an epimor-
phism. We set R to be the kernel of p and in that way obtain the desired free resolution of A. O

Definition 14.5. For two abelian groups A and B and for 0 — R 3 F —+ A — 0 the standard resolution
of A we define

Tor(A, B) :==ker(i ®id: R® B — F ® B).

In general, i ® id doesn’t have to be injective, thus Tor(A, B) won’t be trivial. We will show that we can
calculate Tor(A, B) via an arbitrary free resolution of A. To that end we prove the following result.

Proposition 14.6. For every homomorphism f: A — B and for free resolutions 0 — R S F—A—0

-/
K2

and 0 - R’ — F' — B — 0 we have:
(a) There are homomorphisms g: F — F' and h: R — R’, such that the diagram

0 R——F—L14 0
[
0 R m Y p 0

commutes.
If ¢', 1/ are other homomorphisms with this property, then there is an a: F — R’ with i’ oo =
g—¢ and aoi=h—"n.

(b) For every abelian group D the map h®id: R® D — R’ ® D maps the kernel of i ®1id to the kernel
of i' ®id and the restriction h ®id|wer(igia) is independent of the choice of g and h. We denote this
map by p(f,R — F,R' — F).

(¢) For a homomorphism f': B — C the map o(f' o fyR — F,R" — F") is equal to the composition
o(f'\R = F',R" = F")op(f,R — F.R — F").

Note that we can view the a above as a chain homotopy between the chain maps g, h and ¢’, /.

-
o)
A

R 0
[

I
y

PRrROOF. For (a) let {z;} be a basis of F' and choose y; € F’ with p'(y;) = fp(z;). We define g: F — F’
via g(x;) = y;. Thus p’ o g(z;) = p'(yi) = fp(x;). For every r € R we obtain p’ o g(i(r)) = fopoi(r) =0
and therefore g(i(r)) is contained in the kernel of p’ which is equal to the image of i’. In order to define h
we use the injectivity of ¢, thus h(r) is the unique preimage of g(i(r)) under #’.

For h,h' and g,¢’ as in (a) we get for z € F that g(z) — ¢’(x) is in the kernel of p’ which is the image
of i'. Define v as (i')71(g — ¢’). Then by construction i'a = g — ¢’ and

i'(h—h)=(9—¢)i=1iai.

As i’ is injective, this yields h — h' = «i.

0
h/

7

0

0
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For (b) we consider an element z in the kernel of ¢ ® id. Note ker(: ® id) C R® D. Then
(i’ ®id) o (h®id)(z) = (9 ®id) o (i ® id)(z) = 0
and thus (h ® id)(2) is in the kernel of (i’ ® id). If A’ is any other map satisfying the properties, then
(W ®id)(z) — (h ®id)(2) = (' — h) ®id)(z) = ((c0i) ®id)(z) = (e ®id)(i ® id)(z) = 0.

For (¢) we note that the uniqueness in (b) implies (c). O

Corollary 14.7. For every free resolution 0 — R’ 1—/> F' — A — 0 we get a unique isomorphism
o(ida, R — F',R — F): ker(i’ @ id) — Tor(A, D).
Thus we can calculate Tor(A, D) with every free resolution of A.

Ezxamples

(a) Tor(Z/nZ,D) = {d € D|nd = 0} for all n > 1. That’s why Tor is sometimes called torsion product.
For the calculation we use the resolution 0 — Z —— Z — Z/nZ — 0. By definition and by
Corollary we have

Tor(Z/nZ,D) 2 ker(n®id: Z® D — Z ® D).
AsZ® D = D and as n ® id induces the multiplication by n, we get the claim.
(b) From the first example we obtain Tor(Z/nZ,Z/mZ) = Z/gcd(m,n)Z because the n-torsion sub-
group in Z/mZ is Z/ged(m,n)Z.
(¢) For A free abelian, Tor(A, D) = 0 for arbitrary D. For this note that 0 — 0 — A A5 0isa

free resolution of A and the kernel is a subgroup of 0 ® D = 0 and hence trivial.
(d) For two abelian groups Aj, As, D there is an isomorphism

Tor(A; @ Az, D) = Tor(A1, D) @ Tor(As, D).
Consider free resolutions
0—+R —F —A; —0,i=1,2.
Their direct sum
0>RI PR >F1BF, - A1 ®A—0

is a free resolution of A; ® Ay with

ker((i; @ i2) ® id) = ker(i; ® id) @ ker(iz ® id).

We extend the definition of tensor products to chain complexes.

Definition 14.8. Are (C.,d) and (C.,d") two chain complexes, then (C, ® C.,dg) is the chain complex
with
C.elln= P Coc,
pt+g=n
and with dg(c, ® ¢) = (dcp) @ ¢, + (—1)Pe, @ d'cy,.

Lemma 14.9. The map dg, is a differential.

PROOF. The composition is
dg((dep) @ ¢ + (—1)Pcp @ d'c)) = 0+ (=1)P " (dep) @ (d'¢}) + (—1)P(deyp) @ (d'c}) +0 = 0.

Ezample Let G be an abelian group, then let Cg be the chain complex with

G, n=0
C n: b b
(Ce) {Q n#0.

Then for every chain complex (C., d)
(Ci®Cq)n=Cr®G, dg=d®id.
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In particular, for every topological space X,
S (X)®Cq = S.(X)®G=5.(X,G).

Similarly, for a CW complex X we get C.(X; G) = Ci(X) ® Ce.
For every pair of spaces (X, A) we set

Sy (X, A;G) = S.(X,4) ® Cq.
A map f: (Cs,d) — (D«,dp) induces a map of chain complexes
f®id: C,®C. - D, ®C..

In particular, for every continuous (cellular) map we get induced maps on singular (cellular) homology with
coeflicients.

Note, that H.(pt; G) = G, *x=0
0, *x=#0.

Definition 14.10. A chain complex C, is called free, if C,, is a free abelian group for all n € Z.
Ezamples The complexes S.(X, A) and C,(X) are free.

Theorem 14.11. (Universal coefficient theorem (algebraic version)) Let C. be a free chain complexr and G
an abelian group, then for all n € Z we have a short exact sequence

0— H,(C,)®G — H,(C, ® G) — Tor(H,,-1(Cy),G) — 0,
in particular

H,(C.®G) = H,(C,) ® G® Tor(H,-1(Cy),G).

Theorem 14.12. (Universal coefficient theorem (topological version)) For every space X there is a split
short exact sequence
0— Hy(X)®G — Hy(X;G) = Tor(H,-1(X),G) — 0,

and therefore we get an isomorphism
H,(X;G) =2 H,(X)®G® Tor(H,—1(X),G).
Ezample For X = RP? we obtain
H,(RP?%G) = H,(RP?) ® G @ Tor(H,_1(RP?),G)
thus
Ho(RP*G) = Hy(RP?) ® G @ Tor(H_,(RP?),G) = G,
H,(RP?;G) =~ H,(RP?) ® G @ Tor(Ho(RP?),G) = G/2G & 0 = G/2G,
and
Hy(RP?,G) = Ho(RP?) ® G @ Tor(H,(RP?),G) = Tor(Z/2Z, G).

The universal coefficient theorems are both corollaries of the following more general statement.

Theorem 14.13. (Kiinneth formula) For a free chain complex C. and a chain complex C. we have the
following split exact sequence for every integer n

04>®p+q:n HP(C*) ® HQ(C;)QHW,(C* ® C;)*)®p+q:n—l Tor(Hp(C*)a HII(CL))4>07

ie.,
H,(C.®Cl = D Hy(C.)o Hy(C & (D Tor(Hy(C.), Hy(CY)).
pt+g=n p+g=n—1
The map A: @, ,—,, Hp(Cx) @ Hy(CY) = Hp(C, ® CY) in the theorem is given on the (p, ¢)-summand
by

A[ep] @ [cg]) = lep ® ]
for ¢, € C,, and ¢, € C;. By the definition of the tensor product of complexes, this map is well-defined.
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Lemma 14.14. For any free chain complex C,. with trivial differential and an arbitrary chain complez, C.,
A is an isomorphism

A D Hy(Ch) © Hy(CL) = Ha(C, @ CY).
ptg=n

Proor. We abbreviate the subgroup of cycles in € with Z and the subgroup of boundaries in Cf,
with B, and use analog abbreviations for C.. By definition 0 — Z; — C} — Bj_; — 0 is a short exact
sequence. By assumption Z, is free because Z, = C,, in particular Z, ® (—) is exact and thus

02,02, — Z,2Cy — Z, @B 1 =0

is a short exact sequence and this implies that Z, ® Z(’I is the subgroup of cycles in Z, ® Cé =Cp® Cé.
Summation over p + ¢ = n yields that the n-cycles in C, ® C., are

Zy(C.oC)= P 2,22z
p+g=n
and the n-boundaries are given by
B,(C.®Cl) = P Z,2B,
p+g=n
The sequence
0— B, — Z; — Hy(CL) = 0
is exact by definition. Tensoring with Z, and summing over p + ¢ = n then yields due to the freeness of Z,
that
0= P 2B, — P 2,22,— @ Z,@H,(C.)—~0
ptg=n ptg=n ptg=n
is exact. Our identification of Z,(C, ® C}) and B, (C, ® C%) yields that the right-most term is isomorphic
to the n-th homology group of C, ® C’ and therefore

Ho(C.® C = (D Z,@ Hy(Cl) = D Hyp(C.) ® Hy(CL).

p+q=n pt+qg=n
|

PRrROOF OF THEOREM [I4.13] We consider again the short exact sequence 0 — Z, — C,, — B,_1 — 0
and tensor it with C7 and sum over p + ¢ = n. As B, is free, the original sequence is split and hence the
resulting sequence is exact.

We define two chain complexes Z, and D, via

(Z)p = Zp, (Ds)p = Bp-1.
Then Z, and D, are free chain complexes with trivial differential and the exact sequence
0— @ Zy, ® Cyp — @ Cp, ® Cy — @ B,.1®Cp—0

pt+g=n pt+g=n ptg=n
can be interpreted as a short exact sequence of complexes and this gives a long exact sequence

On

i Hy 1 (D, @ C) 28 Hy (2, ® CL) — Hy(Ch @ CL) — Hoy(Dy @ CL) 2% Hy 1((Z.®CL) — ...
Lemma [14.14] gives us a description of H, (D, ® C.) and H,.(Z, ® C.) and therefore we can consider 4,11 as
a map
i®id
Ont1: @ HP(D*)®Hq(Ci) = @ Bp—1®Hq(Ci)&> @ Zp@Hq(C;) = @ Hp(Z*)®Hq(C>/k)
pHqg=n+1 p+g=n+1 ptqg=n pHq=n
with j: B, — Z,. We can cut the long exact sequence in homology in short exact pieces and obtain that
0 — coker(d,41) — H,(Cy ® CL) — ker(d,,) — 0
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is exact. The cokernel of d,,41 is isomorphic to €
exact, thus

ptq=nZp/ Bp) ® Hq(CY) because the tensor functor is right

coker(8,,41) = @ H,(C.) ® H,(C%).
ptg=n
As 0 — B, — Z, — H,(C.) — 0 is a free resolution of H,(C,) we obtain that

Tor(Hy(C.), Hy(CL)) = ker(j @ id: B, ® H,(CL) = Z, & H,(CL)

and therefore
B Tor(H,(C.), Hy(CL) = ker(5,)
p+g=n—1
which proves the exactness of the Kiinneth sequence.
We will prove that the Kiinneth sequence is split in the case where both chain complexes, C, and C’,
are free. In that case the sequences

0—+2,—C,—By 1—0, 02, -C,—B,_ ;-0

are split and we denote by r: C), — Z,, and r’: C’t’] — Zrlz chosen retractions. Consider the two compositions

’

Cp — Zp - Hp(CL), Cj —— Z, — Hy(CL)
and view H,(C,) and H,(C)) as chain complexes with trivial differential. Then these compositions yield a
chain map
C,®C. "5 H(C,) ® H,(C)
which on homology is
H,(C. @ CL) — Ho(H.(C.) ® Ho(CL)) = @D Hy(C.) @ Hy(CL).
ptg=n
This map gives the desired splitting. O
In the cases we are interested in (singular or cellular chains), the complexes will be free. Be careful! The

splitting of the Kiinneth sequence is not natural. We have chosen a splitting of the short exact sequences in
the proof and usually, there is no canonical choice possible.

15. The topological Kiinneth formula

What does the Kiinneth formula give for two topological spaces and their chain complexes? The Kiinneth
sequence for C, = S,(X) and C, = S,(Y) yields that

0= P Hy(X)®Hy(Y) — Hp(Su(X) @ Su(Y)) — @) Tor(Hy(X), Hy(Y)) = 0
ptq=n p+g=n—1

is exact. But what is H,, (S%(X)®5,(Y))? In the following we will show that this group is actually isomorphic
to Hp(X xY), thus the Kiinneth Theorem has some geometric content! First of all, we define a map.

Lemma 15.1. There is a homomorphism X: Sp(X) ® Sg(Y) — Spiq(X x Y) for all p,q > 0 with the
following properties.

(a) For all points xg € X viewed as zero chains
(.’EO X 6)(1;0, . ,tq) = (l’o,ﬁ(to, . ,tq))
for B: AT =Y. Analogously, for all yo € Y and a: AP — X
(OZ X yo)(to, . ,tp) = (Oé(to, e 7tp)7y0)~
(b) The map x is natural in X andY, so for f: X - X' and g: Y =Y’
Sp+q(f,9) 0 (a0 x B) = (Sp(f) 0 a) x (Sg(g) 0 ).
(c) The Leibniz rule holds
Do x ) = B(a) x -+ (~1)a x O(B).
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The map X is called the homology cross product.

PROOF. For p or g equal to zero, we define x as dictated by property (a). Therefore we can assume
that p,q > 1. The method of proof that we will apply here is called method of acyclic models — you’ll see
why. Let X = AP) Y = A9 a =ida»r, and f =idaq. If idar X idaq were already defined, then property (c)
would force

a(idAp X lqu) = a(idAp) X iqu + (—1)pidAp X 6(1qu) = Re Sp_;,_q_l(Ap X Aq)
For this element R we get
OR = 0?(idar) x idas + (—1)P719(idar) x O(idaq) + (—1)PO(idar) x O(idad) + (=1)*P " tidasr x 0% (idad) = 0

so R is a cycle. But H,14—1(AP x A9) =0 because p+ ¢ — 1 > 1 and AP x A7 is contractible and therefore
S (AP x A7) is acyclic. Thus R has to be a boundary, so there is a ¢ € Sp14(AP x A7) with dc = R.
We define

idar X idaq :=c.
Now let X and Y be arbitrary spaces and a: AP — X, f: A? — Y. Then Sy(a)(idar) = « and
Sq(B8)(idaq) = B and therefore binaturality dictates
ax = 5y(a)(idar) X S¢(B)(idaq) = Sp+q(a, B)(idar x idaq).

By construction, this definition satisfies all desired properties. O

Note that for spaces X,Y with trivial homology in positive degrees, the Kiinneth Theorem yields that
H,(5.(X)® S.(Y)) = 0 for positive n.

Lemma 15.2. Are C, and C. two chain complexes which are trivial in negative degrees and such that C,
is free abelian for all n and H,C, = 0 for all positive n, then we have

(a) Any two chain maps f«, g«: Cx — CL with fo = go are chain homotopic.
(b) Is fo: Co — C} a homomorphism with fo(0C1) C OCY then there is a chain map fi.: C — C
extending fo.

Proor. We will define a map H,,: C, — C},, for all n > 0 with 0H,, + H,_10 = f,, — g, inductively.
For n = 0 we can take zero because fy = go by assumption. Assume that we have Hy for k < n. Let {z;}
be a basis of the free abelian group C,, and define

yi = fnlx;) — gn(2;) — Hy—10(x;) € C,.
Then
0y; =0fn(x;) — 0gn(x;) — OHy,_10(x;)

=0fn(2i) — 0gn(x;) — Hp20(2;) — fn—10(x;) + gn—10(z;)

=0.
But C, is acyclic by assumption and therefore y; has to be a boundary and we define H,,(z;) = z; if 9z; = y;.
Then

(6Hn + Hn—la)(xz) =Y+ Hn—la(aji) = fn('ri) - gn(xi)-

For (b) we define f,: C,, — C/, inductively with df, = f,,—10. Assume that {z;} is a basis of C,,. Then

fn—10(x;) is a cycle and thus there is a y; with dy; = f,—19(x;) due to the acyclicity of C,. We define f,,(x;)
as y;. Then

Ofn(xi) = Oyi = fo_10(z).
0
Proposition 15.3. Any two binatural chain maps fx v, gx,y from S.(X)®S.(Y) to S.(X xY') which agree

in degree zero and send the zero chain £ ®yo € (S+(X) @ S5.(Y))o = So(X)®S0(Y) to (zo,y0) € So(X xY)
are chain homotopic.
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PROOF. First we deal with the case X = AP and Y = A? for p,q > 0. If f,g: S.(AP) ® S.(A?) —
S« (AP x A?) are two chain maps then S,(AP) ® S, (A?) is free abelian and S, (AP x A?) is acyclic so we can
apply Lemma and get a chain homotopy (H,)n,

H,: (S«(AP) @ S, (A7), — Spi1(AP x AT)
with 0H,, + H,,_10 = f, — gn.
Note that for arbitrary X and Y binaturality implies
fxy o (Si(a) ®Si(B) = Si(a, B) o far,aa,  gx,v 0 (Si(a) ® Su(B)) = Si(a, B) 0 gar,aa

forall a: AP - X, 5: A1 =Y.
We define
Hy,: (S«(X)®S5:(Y))y — Spi1(X xY)
as
H,(a®f) = Sp+1(a,B) o Hy(idar ® idaa).
This is well-defined and by construction:
OH, (o ® B) = 0Sp+1(a, B) o Hy(idar @ idaa)
= Sn(a, B)OH, (idar ® idaa)
= —Sp(a,B) o (Hp—10(idar ® idae) + fr(idar ® idae) — gpn(idar ® idaq))
= fa(@®B) — gn(a® B) — Hp—10(a @ B).
For the last step use the definition of H,,_10(a ® ) and 0;(«) = aod; = Sp(a)(idar o d;). O
Proposition 15.4.
(a) There is a chain map S.(X xXY) — S.(X) ® S.(Y) for all spaces X andY such that this map is
natural in X and Y and such that in degree zero this map sends (xg,yo) to xg @ yo for all xyg € X

and yo € Y.
(b) Any two such maps are chain homotopic.

PROOF. Let X = A" =Y for n > 0 and set C,, = S.(A™ x A™) and C), = S.(A") ® S.(A™). Set
fo: Co — C} as dictated by condition (a). Then by Lemma there is a chain map (fim)m, fm: Sm(A™ X
A™) = (SL(A™) ® S«(A™))m. For a: A™ — X x Y we then define

fa(@) = (S.(p1oa)) ® Su((pr o)) o f(Aan).
Here, Aan: A™ — A™ x A" is the diagonal map viewed as a singular simplex Aan € S, (A™ x A™) and
the p; are the projection maps X X xY 2y, thus

S (A" x A" — " (5.(A™) ® S.(A™)),

ls*(a)Q@S*(a)
(Sx(X XY)®8(X xY))n
ls*(zll)@b“*(pz)
(5:(X) @ 5. (Y))n-
g

Theorem 15.5. (Filenberg-Zilber) The homology cross product x: Sy (X) ® Sx(Y) — S.(X xY) is a
homotopy equivalence of chain complezes.

PROOF. Let f be any natural chain map S.«(X xXY) — S, (X) ® S, (Y) with fo(xo,y0) = zo ® yo for any
pair of points. Then
fo(=x—=):Su(X)®8.(Y) = Su(X) ® S (Y)
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and this composition sends xg ® yg to itself. Using Lemma for X = AP and Y = A% and then extending
by naturality again, we get that the identity and f o (— x —) are homotopic. Similarly we get that, the
composition (— x —) o f is homotopic to the identity. |

Corollary 15.6. (topological Kiinneth formula) For any pair of spaces X and Y the following sequence is
split short exact
0= P Hy(X)@Hy(Y) — Ho(X xY) — €D Tor(Hy(X), Hy(Y)) = 0.
p+g=n p+qg=n—1

The sequence is natural in X and Y but the splitting is not.

Ezxamples

1) For the n-torus T" = (S')" we get

(1) = 7(0)
2) For a space of the form X x S™ we obtain
H,(X x S") 2 H,(X) ® Hy_o(X).
There is also a relative version of the Kiinneth formula. The homology cross product in its relative form is
a map
x: Hp(X,A)@ Hy(Y,B) — Hpi (X xY,AxYUX x B).
In particular for A and B a point we get a reduced Kinneth formular which yields
Hy(X)® Hy(Y) — Hpy o(X XY, X VY).

If the chosen basepoints are strong deformation retracts of open neighborhoods, then the latter is isomorphic
to Hppq(X AY).

45






CHAPTER 2

Singular cohomology

1. Definition of singular cohomology

Definition 1.1. A cochain complex of abelian groups is a sequence (C™),cz of abelian groups C™ together
with homomorphisms 6: C™ — C™*! with 62 = 0. The map ¢ is called coboundary operator. The group
ker(6: O™ — C™F1
im(6: Cr—1 — Cn)

is the n-th cohomology group of C*.

Definition 1.2. For a topological space X we call S™"(X) := Hom(S,(X),Z) the n-th singular cochain
group of X and § = Hom(9,Z) is the corresponding coboundary operator.

For a: A" — X and ¢: S, (X) — Z, §(p)(a) = ¢(da).

|
Sn1(X)
The composition 62(¢)(8) is (5¢)(98) = ¢(9%B) = 0 for B: A"T2 — X.
Definition 1.3. Let G be an abelian group, then
S™(X;G) :==Hom(S,(X),G)
the cochain group of X with coefficients in G.

ker(§: S™(X;G) — S"THX; Q)
im(6: S"1(X;G) = S"(X;Q))

is the n-th cohomology group of X with coefficients in G.

H"(X;G) =

Note that S"(—;G) and H"(—;G) are contravariant functors from the category of topological spaces
and continuous maps to the category of abelian groups. For a continuous map f: X — Y we denote S, (f)
by fi. Then S*(f) = f*: S*(Y;G) — S*(X;G): For ¢ € S*(YV;G) and o € S.(X),

fr(@)(a) = o(fra) € G.

Definition 1.4. For two cochain complexes (C*,§) and (C*, 3) a map of cochain complezes from C* to C*
is a sequence of homomorphisms f7: C"* — C™ with f**1od§ =¢§o fm.

n+1
Cn+1 - C«nJrl

JT ST
I ~
cn —— ém,
Maps of cochain complexes induce maps on cohomology. For example, every continuous map f: X — Y
induces a map of cochain complexes S*(Y; G) — S*(X; G).
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Definition 1.5. e For two abelian groups A and G, ¢ € Hom(A4, G), a € A we define the Kronecker
pairing
(—,—): Hom(A,G) ® A — G, (p,a) = p(a) € G.
e For a homomorphism f: B — A, f*(¢) € Hom(B,G) and b € B we have
(f7p,b) = (0, fb) = po f(b).
For a chain complex C, and C" = Hom(C),, G) we define
(—,—):C"RC, = G,eQa— (p,a) = p(a).
In particular, for A = S,,(X) we get a Kronecker pairing
(=, —): S"(X;G)® S,(X) = G.
For 0: S;11(X) — S, (X) and a € S, 41(X) we get
(60, 0) = (9, 0a) = p(0(a)).

Lemma 1.6. The Kronecker pairing (—,—): C" @ C,, — G is well-defined on the level of cohomology and
homology, i.e., we obtained an induced map

(=, =): H(C*) © Hu(C.) = G,

PROOF. Let ¢ be a cocycle, then

(p,a+0b) = (@, a) + (p,0b) = (¢, a) + (6, b) = (¢, a).
Therefore (p, —) is well-defined on H,,(Cx).
Assume that ¢ = §y and a is a cycle. Then we get

(p,a) = (6¢,a) = (¥, da) = 0.

(]
Changing perspective, we get
k: H"(C*) — Hom(H,(C4),G)
via k[y][a] :== (¢, a). How much does the map x see?
2. Universal coeflicient theorem for cohomology
Dual to Tor, we consider a corresponding construction for the functor Hom(—, —) instead of (—) ® (—).

For a short exact sequence
0+A—B—C—0

the sequence
0 — Hom(C,G) — Hom(B,G) — Hom(A,G) — 0
doesn’t have to be exact. A problem can arise with respect to the surjectivity at the end.
As an example, consider 0 — Z —— Z — Z/nZ — 0 for a natural number n > 1. Then the sequence
0 — Hom(Z/nZ,7Z) = 0 — Hom(Z,Z) = Z -+ Hom(Z,Z) = Z

is exact but multiplication by n isn’t surjective, so we cannot prolong this sequence to the right with a zero.

Definition 2.1. For a free resolution 0 — R —— F' —+ A — 0 we call the cokernel of Hom(i, G): Hom(F,G) —
Hom(R,G) Ext(A, G).
Here, Ext comes from ’extension’, because one can describe Ext(A, G) in terms of extensions of abelian
groups.
e As for Tor it is true that Ext(A, G) is independent of the free resolution of A.

e Note that Ext(A, G) is covariant in G and contravariant in A: for homomorphisms f: A — B and
g: G — H we get

[ Ext(B,G) = Ext(A,G), g«: Ext(A,G) — Ext(A, H).
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e For a family of abelian groups (G;,i € I)
Ext(A, [[ Gi) = [ Ext(A, G;)
iel i€l
and
Ext((P Gy, B) = [ Ext(Gy, B).
i€l iel
e The group Ext(A, G) is trivial if A is free abelian.
e Correspondingly, Ext(A,G) is trivial if G is divisible, i.e., for all g € G and n € Z\{0} there is a
t € G with g = nt. For example this holds if G is isomorphic to Q, R, Q/Z, or C.
e For natural numbers n and m
Ext(Z/nZ,Z/mZ) = Z/gcd(n, m)Z.

This follows from the defining short exact sequence for Z/nZ.
e More generally,
Ext(Z/nZ,G) = G/nG.

Theorem 2.2. (Universal coefficient theorem for cochain complexes) For every free chain complex C, and
C* = Hom(Cy, G) the following sequence is exact and splits

0 — Ext(H,_1(C.),G) — H™(C*) = Hom(H, (C,),G) — 0.

Theorem 2.3. (Universal coefficient theorem for singular cohomology) Let X be an arbitrary space. Then
the sequence
0 — BExt(H, 1(X),G) — H"(X;G) - Hom(H,(X),G) = 0

is split exact.

PrOOF OF THEOREM [2.2] Let C, be a free chain complex and C* = Hom(Cy,G). Then the sequence
0— Z, — C, — B,_1 — 0 is split exact. Therefore the G-dual sequence

0—-B"! —-C"—2"=0
is short exact and it gives a short exact sequence of cochain complexes, where we view B* and Z* as cochain
complexes with trivial differential. This yields a long exact sequence on the level of cohomology groups
ozt Ll g ety — 20 -5 Bt —

Here, 0 denotes the connecting homomorphism in the cohomological case. By the very definition of the

connecting homomorphism we get that 0 is the dual of the inclusion i, : B, C Z,, 0 = i);. We cut the long
exact sequence above into the short one

0 — coker(i)_,) — H"(C") — ker(i}) = 0
and hence we have to identify the kernel and the cokernel above.
The exact sequence
0 — Hom(H,(C,), G) = Hom(Z,, G) = Hom(B,, G)

tells us that the kernel of i} is the image of #* and due to the injectivity of 7* this is isomorphic to
Hom(H,(C), G).
The sequence
infl

0—By-1 —Zp1— H,_1(C) =0
is a free resolution of H,_1(C\) and therefore the cokernel of ¢ _; is Ext(H,—1(Cy),G). O

Example We know that the homology of CP" is free with

{Z, 0 < k < 2n,k even,

H,(CP") =
k( ) 0 otherwise.

Therefore H*(CP™) = Hom(H},(CP™),Z), thus the cohomology is given by the Z-dual of the homology.
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3. Axiomatic description of a cohomology theory
Before we give an axiomatic description of singular homology, we establish some consequences of some
of the results we proved for singular homology.
e For a chain map f: C, — C. (such as the barycentric subdivision) the G-dual map
f* =Hom(f,G): Hom(C},G) — Hom(C,, Q)
is a map of cochain complexes.

o If (H,: C,, = C},1)n is a chain homotopy, then the G-dual
(H" := Hom(H,,G): Hom(C,, ;,G) — Hom(Cy, G)),

n

is a cochain homotopy. Thus if 0H,, + H,,_10 = fn — gn, then H"6 + §H" ! = f* — g".

e For a split exact sequence 0 — By — By — B3 — 0 the dual sequence 0 — Hom(B3,G) —
Hom(Bs3,G) — Hom(B1,G) — 0 is exact. For instance, if A is a subspace of X, then the short
exact sequence

00— S:(A) — Su(X) — S.(X,4A) =0
is split. We define r,,: S, (X) = Sp(4) on a: A™ — X via

o (@) {a, if a(A™) C A,

0, otherwise.

Therefore 0 — S*(X, A) — S*(X) — S«(A) — 0 is a short exact sequence.

With the help of these facts we can show that singular cohomology satisfies the azioms of a cohomology
theory:

(a) The assignment (X, A) — H™(X, A) is a contravariant functor from the category of pairs of topo-
logical spaces to the category of abelian groups.

(b) For any subspace A C X there is a natural homomorphism 9: H"(A) — H"1(X, A)

(c) If f,9: (X,A) — (Y, B) are two homotopic maps of pairs of topological spaces, then H"(f) =
H"™(g): H(Y,B) — H*(X, A).

(d) For any subspace A C X we get a long exact sequence

) o

L mxA) — B X)) Y By 2

(e) Excision holds, i.e., for W C W C AcAcX
H"(i): H"(X,A) =2 H"(X\W, A\W), for all n > 0.
(f) Let pt be the one-point space, then

n ~]Z n=0,
H (pt)—{o n#0

This is called the axiom about the coefficients or the dimension axiom.
(g) Singular cohomology is additive:
HY(| | X0) = [ H (X))
iel iel
For singular cohomology with coefficients in G we have an analoguous set of axioms.
There are generalized cohomology theories like topological K-theory or cobordism theories that satisfy
all axioms but the dimension axiom.
Note that
Hm(Sn) o Z m= O,’r.l,
0  otherwise.

for n > 1. For later use we choose v, € H™(S") with (v, pin) = 1.
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4. Cap product

The rough idea of the cap product is to digest a piece of a chain with a cochain of smaller or equal
degree.

Definition 4.1. Let a: A™ — X and let 0 < ¢ < n.

e The (n — ¢)-dimensional front face of a is
V(ie)=V"a)=aov: A" 71— A" 2 X

where v is the inclusion v: A""7 < A™ with v(e;) =e; for 0 < i< n —q.
e The g-dimensional back face of a is

H(a) = H9a) =aoh: AT— A" 25 X
where h: A7 — A" is the inclusion with h(eg) = en—g,...,h(eq) = €n, i.e., h(€;) = epn_(g—i).-
Definition 4.2. Let R be an associative ring with unit. We define
N: SYX,A;R) ® Sp(X, A;R) = Hom(S4(X, A), R) ® Sp(X,A) ® R — S,—¢(X) ® R = S,_¢(X;R)
as
N(a®@r):=V(a)® (o, HI(a))r.
(a) The map N is well-defined: for a = a’ € S,,(X, A), i.e., a = @’ + b with im(b) C A we get
Naor)=an((d +b@r)=an(d @r)+ V()@ (a, H(b))r.

The image of H (b) is contained in A, but a € Hom(S5,(X, A), R), thus a: So(X) — R with a|g, (a) =
0 and («, H(b)) = 0.
(b) We can express the (n — ¢)-dimensional front face of a as

V" (a) = Op—g+1©...0 0y (a).
Similarly,
Hi(a)=0dpo...00(a).
(¢) There is a more general version of the cap product. If there is a pairing of abelian groups
GG -G’
then we can define
N: SUX, A;G) @ Sp (X, 4;,G') — Sp—q(X;G").

Proposition 4.3.
e The Leibniz formular holds for the cap product, i.e.,

danN(a®r))=0a)N(a®r)+ (—1)%an (da@T).

e For a map of pairs of spaces f: (X, A) — (X, B)

L B)N(a@r)) = BN (fla)@7).

Here, f.: S.(X,A) = S.(Y,B) and f*: S*(Y,B) — S*(X, A).
For the proof we suppress the tensor product with R. It just adds to notational complexity.
PrOOF. For the first claim we calculate

d(ana)=0(V(a)® (a, H(a))
=0(V(a)) ® (a, H(a))

= Z 1 On— q+19...0 8n(a)) ® <a,H(a)>
=0



and
(ba)Na=V(a) ® (da, H(a))
=V(a) ® (o, 0H(a))

(=1)'V(a) ® {a, 8:05 " *(a))-

|
.MQ

@
I
=

Finally,

anda=Y (-1)andja

M-

<
Il
o

(—1)V(9;0) ® (o, H(9;a))

<.
Il
o

Il

(=1)V(9;0) ® {a, H(9;(a)))

I
NE

<.
I
o

(_l)jan—q—l ©...00p-10 8ja X <a,837(q+1)8ja).

|

Il
<

J
In order to get the result, use that 0;0; = 0;—10; for 0 < j <7 < n.
For the claim about naturality we plug in the definitions and obtain
f(f*(B)Nna) = fo(V(a) @ (f*8, H(a)))
= f«(V(a) @ (B, f+H(a)))
=V (f«(a)) ® (8, H(f.(a))))
= BN fula).

From the Leibniz formula we get that the cap product satisfies that

e a cocycle cap a cycle is a cycle,
e a cocycle cap a boundary is a boundary,
e a coboundary cap a cycle is a boundary.

Therefore we obtain the following result
Proposition 4.4. The cap product induces a map

N: HY(X,A;R) @ Hy(X,A; R) — H,,_4(X; R)
e

[a]Na] := [V(a) ® (a, H(a))]

Ezxamples
a) Let R be a ring and consider 1 € S%(X; R), i.e., 1(a) = 1 for all a: A° — X. We claim that 1Na = a.
We have V(a) = a because ¢ = 0 and H(a)(eg) = a(e,). Therefore, 1Na =a® (1,a(e,)) = a® 1 and we

identify the latter with a.
b) For a space X and o € S™(X; G), a € 5,(X; G) we get

aNa=ale) ® {a,a)

because V(a)(eg) = a(eg) and H(a) = a. In this sense, the cap product generalizes the Kronecker pairing:
if X is path-connected, then [a(eg)] € Ho(X) is a generator, and thus we can identify it with 1 € Z.
There is also a version of the cap product of the form

N: HY(X;R) ® Hy(X,A; R) — Hy_4(X, A; R).
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Where does the notation N come from? For instance if we take a torus 7' and the meridian b C T, then
we consider the class 8 € H*(T) dual to [b] € H;(T). We know that Hy(T') = Z and we denote the generator
by o. Then 8N o can be represented by the 1-dimensional submanifold of T" given by the longitude a C T.
This submanifold is transversal to b.

5. Cup product

In the following, let R be a commutative ring with unit and we will consider homology and cohomology
with coefficients in R, but we will suppress the R in our notation, so H, (X, A) will stand for H, (X, A; R)
and similarly S, (X, A) is S,(X, A4; R). We'll use analogous abbreviations for cochains and cohomology.
Sometimes, if we have to be explicit, we denote the multiplication in R by pu.

Definition 5.1. For a € S?(X, A) and 8 € SU(Y, B) we define the cohomology cross product, x, as
axf:=po(a®pB)oEZ
where EZ is any Eilenberg-Zilber map
SAXXY;Xx BUAXY) — S,(X,A)® S.(Y,B)

Thus
Sp(X XY; X x BUAXY)

@p+q:n SP(X’ A) ® SQ(K B)

J

Sy (X, 4) @ 8,(Y,B) ——— RO R——3 R

e The cohomology cross product is natural, i.e., for maps of pairs of spaces f: (X, A4) — (X', A),
g: (Y,B)— (Y',B)

(f,9)"(ax B) = (f*a) x (g7PB).
e The Leibniz formula holds
5(a x B) = (da) x B+ (=D x (68).

Here, |a| denotes the degree of a.
e For the Kronecker pairing we have for cohomology classes a, 8 and homology classes a,b of a
corresponding degree

(@ x B,a xb) = (a,a)(B,b).
e For 1 € R and thus 1 € (X, A)
1x B =p5(8),ax1=pi(a)

where p; (i = 1,2) denotes the projection onto the i-th factor in X x Y.
e The cohomology cross product is associative

ax (Bxy)=(axp)xy

on the level of cohomology groups.
e It satisfies a graded version of commutativity. The twist map 7: X XY — Y x X yields on
cohomology

ax B = (=Dl (5 x a).
We will use the cohomology cross product in order to obtain a multiplication on H*. Let A: X — X x X.
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Definition 5.2. For a € H?(X, A) and 8 € H%4(X, B) we define the cup-product of a and 3 as
aUpf=A"axp).
H?(X,A) ® HI(X,B) —— HP*9(X x X,X x BUA x X)
HP4(X, AU B)
Proposition 5.3. Let o, 8,7 be cohomology classes. The cup product satisfies

(a)
(b)

aU(BUy)=(aUB)Un.

aUg=(-1lFlgya.
(c) For d: H*(A) — H*tY(X,A), a € H*(A), B € H*(X)
d(aUi*pB) = (0a)Up € H (X, A).
(d) For f: X =Y
[Haup)=fau fp.
(e) We can express the cohomology cross product via the cup product

ax B = pi(a)Ups(B).

PROOF. The properties can be deduced from the properties of the cross product, thus we only prove
the last claim. So let « € HP(X), 8 € H1(X).

pi(@)Upy(B) = (@ x 1) U (1 x f).
Here, @ x 1 and 1 x 8 live in the cohomology of X x X. By definition, the cup product is the pull-back of
the cross product by the diagonal. Here, Axyx: X x X — X*. Therefore, the above is equal to

Ak ux((@x1) x (1 xp)) =axp.
O

We will get an explicit formula of the cup product by choosing a nice version of the Eilenberg-Zilber
map.
Definition 5.4. A diagonal approximation is a natural chain map D: S,(X) — S.(X) ® Si(X) with
D(z) =x®x for x € So(X).

With the method of acyclic methods one can prove
Proposition 5.5. Any two diagonal approrimations are chain homotopic.
Definition 5.6. The Alexander- Whitney map is the diagonal approximation

AW(a) = Z VP(a) ® H(a)
ptg=n

for a € S, (X).

It is obvious that AW is a chain map and this map yields
(aUB)(a) =po(a®B)AW(a) = po (a®B) > (VP(a)® Hi(a)) = (=1)""a(V"(a))B(H(a)).

ptg=n
This formula gives that U is associative on cochain level and not just on the level of cohomology groups.
But note that it does not give a (graded) commutative product on singular cochains. (The cup product
is homotopy commutative and in fact it is homotopy commutative up to coherent homotopies, it is an
E-algebra.)
Note, that with this model of the cup product, the properties in Proposition [5.3] can be checked directly.
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Proposition 5.7. (a) For all pairs of spaces (X, A) the cohomology groups H*(X, A; R) have a struc-

(b)

ture of a graded commutative ring with unit 1 € H°(X, A; R).
The ring H*(X, A; R) acts on H.(X, A; R) via the cap product

H (X,AR)®@ H(X,A;R) > a®a— aNa,

ie,1Na=ua, (aUB)Na=an(BNa). Thus H.(X, A; R) is a graded module over the graded ring
H*(X,A;R).

Ezamples Many cup products are trivial for degree reasons.

()

Let S™ be a sphere of dimension n > 1. We know that H°(S") & Z = H™(S"™) and the cohomology
is trivial in all other degrees. We have 1 € H°(S™) and v,, € H™(S™). We know that

Uy, =v,=rv,Ul;1Ul=1
but v, Uy, =0 € H?*(S"). Thus, H*(S") has the structure of a so-called graded exterior algebra
with the generator v, Az(vy).
More generally, if X is a CW complex of finite dimension, then a U 8 = 0 for all «, 8 for |a| + | 5]
big enough.
In particular, H*(X) often has nilpotent elements: if
" :=aU...Ua=0,
—_——
T
then (U B)" = +a"UB" =0.
Assume that « € H?(X; R) with an odd p, then
o = (71)”2&2 = —a?

Therefore 2a? = 0 and if R is a field of characteristic not equal to 2 or if R is torsionfree, then
a?=0.
If X = X7 VX, and X, Xs are well-pointed, then H*(X) &2 H*(X1)x H*(X2) = H*(X1)®H*(X3)
as rings: for a = a3 +ag and 8 = 1 + P2 with «;, 5; € H*(X;) in positive degrees, the cup product
is

aUpf = (a1 +a) U B+ f2) =1 UBr +azUfs.
If X can be covered like X = X3 U...UX, with H*(X;) = 0 for x > 1 and X; path-connected, then
in H*(X) all r-fold cup products of elements of positive degree vanish. We prove the case where
r = 2; the general claim then follows by induction. So assume X = X; U X5 such that the X; have
vanishing cohomology groups in positive degrees and let i;: X; < X be the inclusion of X; into X
(j = 1,2). Then for all « € H*(X), if(a) = 0. Consider the exact sequence

H*(X,X;) — H"(X) — H"(X}).
Therefore, for all « there is an o/ € H*(X, X;) that is mapped isomorphically to «. Similarly,
for f € H*(X) there is an 8/ € H*(X, X3) that corresponds to 8. The cup product o U 3 then
corresponds to o’ U 8’ but this is an element of H*(X, X; U X)) = H*(X,X) = 0.
Consider a product of spheres, X = S™ xS™ with n,m > 1. The Kiinneth formula and the universal
coefficient theorem tell us that
H*(S" xS™) =2 H*(S") ® H*(S™).

We have three additive generators

Qp =VUn X 1,Bm =1XVp, and Ypim = Vn X Un,.
The square o2 is trivial:

a2 =W, x Uy x1)= v, Ury) x (1U1) =0.
Similarly, 8%, =0 =~2_,,. But the products

o U ﬁm = VUnp X Vm = Yn+m) ﬁm Uay, = (_1)mn’7n+m

are non-trivial.
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This determines the ring structure of H*(S™ x S™). In particular, the cohomology ring H*(S™ x
S™) is not isomorphic to the cohomology ring H*(S™VS™ v S**™™). Additively, both graded abelian
groups are isomorphic, thus the graded cohomology ring is a finer invariant than the cohomology
groups.
Note that the cohomology rings of 3(S™ x §™) and ¥(S™ vV S™ V S"*™) are isomorphic (namely here cup
products of elements of positive degree are trivial due to example (f)). But here, we actually have

S(S™ x S™) ~ B(S™ v S™ v ST,

6. Orientability of manifolds
Definition 6.1. A topological space X is called locally euclidean, if every point x € X has an open neigh-
borhood U which is homeomorphic to an open subset V' C R™.

e A homeomorphism ¢: U — V is called a chart.
o A set of charts is called atlas, if the corresponding U C X cover X.
e The number m is the dimension of X.

Ezxample Consider the line with two origins, i.e., let
X ={(zx,)|zr e R} U{(z,-D]z € R}/ ~, (x,1)~ (z,—1) for z # 0.
Then X is locally euclidean, but X is not a particularly nice space. For instance, it is not hausdorff: you

cannot separate the two origins.

Definition 6.2. A topological space X is an m-dimensional (topological) manifold (or m-manifold for short)
if X is a locally euclidean space of dimension m that is hausdorff and has a countable basis for its topology.
FExamples

(a) Let U C R™ an open subset, then U is a topological manifold of dimension m.
(b) The n-sphere S® C R™*! is an n-manifold and S = S"\N US"\S is an atlas of S".
(c) The 2-dimensional torus 7' = S x S! is a 2-manifold and more generally, the surfaces F, are
2-manifolds. Charts can be easily given via the 4g-gon whose quotient is Fj.
(d) The open Mobius strip [—1,1] x (=1,1)/ ~ with (=1,¢) ~ (1, —t) is a 2-manifold.
Let M be a connected manifold of dimension m > 2. We denote the open charts by U, C M. Without loss
of generality we can assume that

¢: U, D™ c R™
and for an 2 € M we can choose charts with p(z) = 0. Excision tells us that for all z € M
H,, (M, M\z) = H,,,(D"™, D™\{0}) = H,,_1(D™\{0}) = Z
for m > 2.
For a triple B C A C M there are maps of pairs
oB,A: (M,M\A) — (M, M\B).
Definition 6.3. An m-manifold M is orientable (with respect to Z) if there is a coherent choice of generators

0y € Hy, (M, M\z), i.e., for all 2 € M and for all neighborhoods U of  with U C U, with U = D™ and for
all 1,29 € U we have

Oy = Qz,,U © (Qzl,U)_l(Ofl)'

Hp (M, M\U)
Qaq,U Ozo.U
0z, € Hm(M7M\x1) Hm(M7M\x2) D Og,
Definition 6.4. If such a choice is possible, then (o.|z € M) is an orientation of M.
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Note that for an orientation (o,|x € M) the family (—o,|z € M) is an orientation of M as well.

Ezample If M is the open Mobius strip and you pick a generator o, € Ha(M, M\z) and you walk once
around the Mobius strip, you end up at —o,.

If we choose other coefficients, these problems can disappear. For instance for G = Z/27Z there is no
problem to choose coherent generators for Ho(M, M\x;Z/27), so the Mdbius strip is Z/2Z-orientable.

Now, we consider integral coefficients again. What we want to have is a global class oy € H,,,(M;Z) =
H,, (M) with

Ox,M =: Qx: Hm(M)%Hm(MvM\x), Qr(OM):Oz

if (o4|z € M) is an orientation of M.
Ezample If M = RP?, then Hy(RP?) =0, but Hy(RP? RP?\z) & Z, so here we cannot have such a class.

Definition 6.5. Let K C M be a compact subset of M. We call an ox € H,,,(M, M\K) an orientation of
M along K, if the classes oy := (04,5 )+ (0K ) constitute a coherent choice of generators for all z € K.

Of course, if we have a global class oy € H,,, (M) then we get coherent generators o, for all x € M and
also a class ox as above for all compact K C M.

Lemma 6.6. Let M be a connected topological manifold of dimension m and assume that M is orientable.
Let K C M be compact. Then
o H,(M,M\K) =0 for all ¢ > m, and
o ifa€ Hy(M,M\K), then a is trivial if and only if (05, x)«(a) =0 for allx € K.
The following method of proof is a standard method in the theory of manifolds.

PRrOOF. (a) First, let M =R™ and let K be convex and compact in M. In this case we can assume
without loss of generality that K C D™. We calculate

Hy (M, M\K) = Hy(R™ R™K) = H,(R™,R™\z) = 0, for ¢ > m.

All identifications are isomorphisms and this gives the second claim as well.

(b) Let M be again R™ and let K = K; U K, with K7, K5 as in (a). In this case the claims follow with
the help of the Mayer-Vietoris sequence, because K7, Ko and K; N K, satisfy the assumptions as
in (a).

(¢) An induction shows the case of M = R™ and K = K; U... UK, with K; as in (a).

(d) Let M = R™ and let K be an arbitrary compact subset and let a € H,(M, M\K). Choose a
1 € Sy(R™) representing the class a. The boundary of 9, (¢), has to be of the form

¢
o) =D N
j=1
with 7;: A971 — R™\ K. As A9"! is compact, the union

(AT C R™MK

-

Jj=1

is compact.
There exists an open neighborhood U of K in R™ with

Tj(Aqil) NnNU =o.

C-~

—

J
Therefore ¢ gives a cycle in S, (R™,R™\U) and we let o’ € Hy(R™,R™\U) be the corresponding
class. Thus

(0r.v)+(d') = a.
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Choose closed balls By, ..., B, C R™ with B; C U for all i and K N B; # @ such that K C U:Zl B;.
Consider the restriction maps

R™ R™\U)—Z R R\ |, B2 (R, R\ K).

Define a” as a” := (o B,,u)«(a’). Note that (ox s,)«(a") = a.
The B; are convex and compact and therefore

(o Biv)s(a)=0=2ad", forallg>m

and hence a = 0.
Let ¢ = m and assume that (0, k)«(a) = 0 for all z € K. We have to show that a is trivial.
We express (04,5 )«(a) as above as

(02,5)+(a) = (0z.5)« © (ex,u B,)+(0") = (02, y B )+(a") = 0
for all z € K. For every x € B; N K the above composition is equal to (0.,5,)«° (0B, B,)«(a"), but
(0,8, )« is an isomorphism and hence (¢p, B, )«(a”) = 0. This implies (04, 5,)«° (25, B;)+(@”) =0
for all y € B; and in addition (g, B,)«(a”) = 0 for all y € J B;. According to case (c) this implies
that a” = 0 and therefore a = (o, B, )«(a") is trivial as well.
(e) Now let M be arbitrary and K C U, = R™. Therefore

Hy(M, M\K) = Hy(Ua, Us\K) = Hy(R™, R™\im(K)).

As the image of K is compact in R™, the claim follows from (d).
(f) If M and K are arbitrary, then K = K,, U... UK, with K,, = K NU,, # @. An induction as
in (c) then proves the claim.
(]

Proposition 6.7. Let K C M be compact and assume that M is oriented with (o, € Hp (M, M\z)|x € M).
Then there is a unique orientation of M along K, which is compatible with the orientation of M, i.e., there
is a class o € Hy (M, M\K) such that (0.x)«(0K) = 0 for all x € K.

PROOF. First we show uniqueness. Let ox and 6x be two orientations of M along K. By assumption
we have that
02k )x (0K ) — (02K )«(0K) = (02K )+ (0K — Ok) = 0.
According to Lemma this is only the case if ox — 0 = 0.
In order to prove existence we first consider the case where K C U, &2 D™ and hence M \U, C M\K.
Let € K. We denote the isomorphism H,,,(M, M\U,) = H,,(M, M\z) by ¢.
We define ox as

OK ‘= (QK,UQ)*((¢_1)(OJC))'

For K = K; U Ky with K, contained in the source of a chart we get that ox, and og, exist. Let
Ky = K1 N K5 and consider the Mayer-Vietoris sequence

0 = Hp(M, M\K) = H,,(M, M\K1) & Hp(M, M\K3) — H,,(M, M\K;) —
The uniqueness of the orientation along K implies that

K/(OK17OK2) = (QKO,Kl)*(OKl) - (QKO,KQ)*(OKz) =0.

Therefore there is a unique class ox € H,,(M, M\K) with i(ox) = (0K, 0K, )-
For the last case we consider a compact subset K and we know that K = K; U...U K, with K; C U,,.
An induction then finishes the proof. |

Theorem 6.8. Let M be a connected and compact manifold of dimension m. The following are equivalent

(a) M is orientable,
(b) there is an orientation class opy € Hp(M;Z),
(¢) Hpn(M;Z) = 7.

58



PROOF. Proposition yields that (a) implies (b). Now assume that (b) holds, thus there is a class
oy € Hp(M) restricting to the local orientation classes o,. Then the class oy satisfies, that ops is not
trivial, because its restriction (g4 a)+0Mm = 0, is a generator and hence non-trivial. Furthermore, o, cannot
be of finite order: if kops = 0, then this would imply ko, = 0 for all x € M contradicting the generating
property of the o,. Let a € H,,(M) be an arbitrary element. Thus (04 ar)«(a) = ko, for some integer k.
As the o, are coherent in z, this k£ has to be constant and if we set b := kops — a then (o5 )b = 0 for all
2 and this implies that b = 0. Therefore a = koys, thus every element in H,, (M) is a multiple of oy and

H,,(M)=Z.
Assuming (c) there are two possible generators in H,,(M). Choose one of them and call it op;. Then
((0z,m) 00|z € M) is an orientation of M. O

The ops as in Theorem is also called fundamental class of M and is often denoted by [M] = op.
Ezample For the m-sphere, M = S™ we can choose p,, € H,,,(S™) as a generator, thus

[S™] = ogm = .-
All results about orientations can be transferred to a setting with coefficients in a commutative ring R
with unit 1g.

e Then M is called R-orientable if and only if there is a coherent choice of generators H,,, (M, M\x; R)
for all x € M.
e The results we had have formulations relative R: Lemma goes through, and if M has an R-
orientation (off|z € M), then for all compact K C M there is an R-orientation of M along K, i.e.,
a class ot € H,,(M, M\K;R) that restricts to the local classes. The R-version of Theorem
yields a class o, € H,,(M; R) restricting to the of. The class o} is then called the fundamental
class of M with respect to R and is denoted by [M; R].
Returning to integral coefficients, we know that for compact orientable manifolds of the same dimension we
get a copy of the integers in the homology of the highest degree.

Definition 6.9. Let M and N be two oriented compact connected manifolds of the same dimension m > 2
and let f: M — N be continuous. Then the degree of f is the integer grad(f) that is given by

Hp(f)[M] = grad(f)[N].
Of course, this definition extends the notion of the degree of a map that we had for self-maps of spheres.

Proposition 6.10. Let M, N1, Ny be as above and let f: M — Ny, g: Ny — Na.
(a) The degree is multiplicative, i.e.,

grad(g o f) = grad(g)grad(f).
(b) If M is the same manifold as M but with opposite orientation, then

grad(f) = grad(f: M — Ny) = —grad(f: M — N;) = —grad(f: M — Ny).
c) If the degree of f is not trivial, then f is surjective.
() g j

PRrOOF. The first claim follows directly from the definition of the degree. For (b) note that [M] = —[M],
because we have to have

(Qm,M)*[M] = —0g
if (o4|z € M) is the orientation of M.
For (c) assume that f is not surjective, thus there is a y € N, that is not contained in the image of M
under f. Consider the composition

Hpm(f)

Hon (M) 2D, (N) 223 1, (N, ).

This composition is trivial by assumption. On the other hand (oy,n)« is an isomorphism. Hence H,,(f) =
0. |
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7. Cohomology with compact support

So far, orientation theory works fine if we restrict our attention to compact manifolds. We are aiming
at Poincaré duality: if M is a compact connected oriented manifold of dimension m, then taking the cap
product with [M] = oy gives a map

(—) Nop: Hq(M) — Hm,q(M).
Our aim is to show that this gives an isomorphism, but we also want to extend the result to non-compact
M. To this end we define the following.

Definition 7.1. Let X be an arbitrary topological space and let R be a commutative ring with unit 1p.
Then the singular n-cochains with compact support are
SH(X;R) = {¢: Sp(X) = R|FK, C X compact ,p(c) =0 for all 0: A" — X with o(A")NK, = 2.}
The n-cohomology with compact support of X with coefficients in R is
HI (X5 R) := H"(5;(X; R)).

Note that S¥(X;R) C S*(X;R) is a sub-complex. This inclusion of complexes induces a map on

cohomology
H}(X;R) — H"(X;R).

If X is compact, then H?(X; R) = H"(X; R) for all n.

Do we get a map from singular cohomology to singular cohomology with compact support? Well, yes,
but only in a relative setting: Let K C X be compact. The restriction map

or.x: (X, X\X) =(X,9) — (X, X\K)

induces a map
Ok x: S"(X, X\K; R) — S"(X; R)
whose image is contained in S¢’(X; R): for a ¢ in the image there is a ¢ € S™ (X, X\K; R) with o} (¢) = ¢.
The functional 1 is trivial on all simplices o: A" — X with o(A™) N K = @&. Therefore,
p(0) = ok x(¥)(0) =0
for such o.
Lemma 7.2. (a) Each 0} x gives a cochain map S*(X, X\K; R) — S:(X; R) and in particular we
get an induced map
H*(ox x): H(X,X\K;R) — H}(X;R).
(b) For compact subsets K C L C X we have
OK,L ©0L,X = 0K, X

and therefore
5*(X, X\K; R)

S*(X,X\L; R)
commautes.
Lemma says that the system K — S*(X, X\K;R) is a direct system of cochain complezes: For
K Cc L C L' we have
Q;(,L’ = Q*L,L’ © Q?{,L
and we even have that for compact K and L we can consider the inclusions K C K UL and L C K UL, thus
these maps meet again.
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We recall some facts about direct limits of R-modules and (co)chain complexes of R-modules.

Let I be a partially ordered set which we consider as a diagram, i.e., for all ¢ < j there is a unique map
fji: i — j and for i = j we have f;; = id;. The poset [ is called directed, if for all i,j € I there is a k € I
with 4,5 < k.

Let M; for i € I be a family of R-modules together with maps f;;: M; — M; with fi; o fj; = fr: for
1 < j < k. Then we call (M;);cr a direct system. If I is directed, then we call the system (M;);er a directed
system.

The direct limit of (M), @Mi is the R-module that is determined (up to canonical isomorphism) by
the following universal property: there are R-linear maps h;: M; — hngZ such that for every family of
R-module maps g;: M; — M that satisfy g; o f;; = g; for all ¢ < j, there is a unique morphism of R-modules
g: h%li — M such that goh; = g; for all i € I.

For a direct system (M;,: € T) of R-modules we can construct hglMl as

lim M; = (G}M) /U

iel
where U is the submodule of @, _; M; generated by all m; — fj;(m;),1 < j.
For (co)chain complexes the construction is similar. For a direct system of chain complexes ((C;)«)ier
we set

(lmy(C)n = lim((Ci)).
The boundary operators d;: (C;), — (C;)n—1 induce a boundary map
d: (m(C;))n — (Hm(C5))n—1-

Let (A;)ier, (B;)icr and (C;);er be three direct systems of R-modules. If

is a short exact sequence for all + € I and if fj; 0 ¢; = ¢; o fji, fji 0y = ;o fj; for all i < 7, then we call

0 (4) By ¥ ) —o0
a short exact sequence of direct systems.
Lemma 7.3. (a) If
0 (4) 2 (B) () » 0
is a short exact sequence of directed systems of R-modules, then the sequence of R-modules
Oﬁthi—HigBi—)ligC’iﬁo
is short exact.
(b) If (Ai)icr is a directed system of chain complexes, then

ling H,, (A;) 2 H, (lim A;).

PROOF. The maps ¢;: A; — B; give — via composition with h;: B; — @Bi —maps A; — li_n;Bi and

by the universal property this yields a unique map
¢I hﬂAz — hngz

One has to show that i) ¢ is injective, ii) the kernel of ¢ is the image of ¢ and iii) v is surjective.

We show i) and leave ii) and iii) as an exercise.

Let a € @Ai with ¢(a) =0 € hﬂBi Write a = [Z?:l Ajaj] with a; € A;;. Choose k > i1, ..., 1iy,, then
a = [ay] for some ay, € Ay. By assumption ¢(a) = [¢r(ar)] = 0. Thus there is an N > k with fyror(ag) =0
and by the coherence of the maps ¢y we have 0 = fy o dp(ar) = dn o fyr(ax). But ¢ is a monomorphism
and therefore fyp(ax) =0 € liﬂAi, but @ = [fyr(ax)] = 0.

For (b) we observe that (a) holds as well for short exact sequences of directed systems of chain complexes
and thus (a) implies (b). O
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We can use this algebraic result to approximate singular cohomology with compact support via relative
singular cohomology groups.

Proposition 7.4. For all spaces X we have
lim $*(X, X\K; R) — S%(X; R)
and hence N
ligH*(X,X\K;R) — HX(X; R).
Here the directed system runs over the poset of compact subsets K C X.

PROOF. A cochain ¢ € S"(X;R) is an element of S7'(X; R) if and only if there is a compact K = K,
such that p(o) = 0 for all o with ¢(A™) N K = & and this is the case if and only if ¢ € S™(X, X\K; R).
The remaining part of the claim follows from Lemma [7:2} O

To the eyes of compact cohomology R™ looks like a sphere:

Proposition 7.5.
R =
HZ(R™; R) = H'(R™, R™\{0 ) = § "~ "™
0, *x#*m.

ProoOF. If K C R™ is compact, then there is a closed ball of radius rx around the origin, B, (0), with
K C By, (0). Without loss of generality we can assume that 7y is a natural number. Thus

@H*(Rm,Rm\K; R) = liﬂH*(Rm,Rm\BT(O); R)
where the direct system on the right runs over all natural numbers r. But
H* (R™, R™ B, (0); R) = H* (R™, R"™\{0}; )
for all r and the diagrams

H*(R™,R"™\ B,(0); R) — H*(R™,R™\ B, ,(0); R)

| |

H*(R™, R™\{0}; R) ——— H*(R™,R™\{0}; R)
commute. Therefore
lim H*(R™, R™\B,.(0); R) = lim H*(R™, R™\{0}; R)
is an isomorphism, but the system on the right is constant and therefore
HZ(R™; R) = lim H*(R™, R™\B,.(0); R) = H*(R™, R"™\{0}; R).
|

Thus to the eyes of cohomology with compact support, R™ looks like an m-sphere in positive cohomo-
logical degrees.

8. Poincaré duality

Let M be a connected m-dimensional manifold with an R-orientation (o, |z € M). For a compact L C M
let or, be the orientation of M along L. For K C L compact we have that

(QK,L)*(OL) = 0K

because (0z,k)«(0K) = 05 = (0u,1)+(0L) = (0s,x)+ © (0K,1)+(0r) and o is unique with this property.
Consider

(=)Nog: H"P(M,M\K;R) — H,(M;R), a— anNog =V (ok)® (a,H(ok)).
For K C L we have (ok,1)*(a)) € H™ P(M, M\L; R) and
(ox.p) (@) Nor =an (ox,L)«(or) =aNok.
because the cap product is natural.
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Therefore the cap product yields a map
lig(— Nok): ligHm’]"(M7 M\K;R)=H"P(M;R) — H,(M;R).
Definition 8.1. The map
lim(— Nox): H'7(M; R) — Hy(M; R)
is called Poincaré duality map and is denoted by PD or PD),.

Theorem 8.2. (Poincaré Duality) Let M be a connected m-manifold with R-orientation (o.|x € M). Then
PD is an isomorphism PD: H" P(M; R) — H,(M;R) for all p € Z.

Corollary 8.3. (Poincaré duality for compact manifolds) Let M be a connected compact manifold of dimen-
sion m with an R-orientation (oz|lx € M) and let [M] = oy be the fundamental class of M, then

PD=(—)N[M]: H"?(M;R) — H,(M;R)
is an isomorphism for all p € Z.

Ezample Any connected compact manifold of dimension m possesses a Z/2Z-orientation and thus a

fundamental class 0@/22 € Hp(M;Z/27) = 7Z/2Z and thus for all p

(=) M™% H™=P(M;Z,/2Z) = H,(M;Z/2Z).

For instance the cohomology of RP™ and its homology satisfy Poincaré duality with Z/2Z-coefficients re-
gardless of the parity of n.

PROOF OF THEOREM [3.2]
(a) First we consider the case of M = R™ and we know that

R, p=0,
0, p#0

and this is isomorphic to H,(R™; R). Therefore, abstractly, both R-modules are isomorphic. Let
B, be the closed r-ball centered at the origin. We have to understand

(=)Nopg,: H*(R™) — Hy(R™; R).
We know that (1,aNop.) = (o, 0p,) for all « € H™(R™,R™\B,; R). But
(—,0p,): H*(R™,R™\B,; R) — R, u+~ (u,0p,)

HP' P (R™) = {

is bijective because
H™R™,R"™\B;; R) 2 Hom(H,,(R™,R™\B,), R) ® Ext(H,,—1(R™,R™\B,), R)

but the last summand is trivial because H,,_1(R™,R™\B,) = 0. Thus we obtain that for all r the
map (—) Nop, is bijective and therefore its direct limit
h_I)Il(—) Nopg,: ligHm(RmJRm\Br; R) — Hy(R™; R)
is an isomorphism as well.

(b) Now assume that M = U UV such that the claim holds for the open subsets U,V and U NV, i.e.,
the maps PDy,PDy and PDyny are isomorphisms and each of them uses the orientation that is
induced from the orientation of M. Assume that K C U and L C V are compact and consider the
relative version of the Mayer-Vietoris sequences in cohomology

<o —— HP(M,M\(K N L); R) —— H?(M, M\K;R) ® H?(M, M\L; R) —— H?(M, M\(K U L); R) )

:—> HPY(M, M\(KNL);R) — - --
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Excision tells us that
HP (M, M\(K 1 L); R) = H((U N V), (U N V)\(K N L); R)
HP(M,M\K;R) = H?(U,U\K; R)
HP(M, M\L; R) = H?(V,V\L; R).

Here our W for excision is M\(U NV), M\U and M\V respectively, and the corresponding A is
M\(K N L), M\K respectively M\ L. We obtain a map of exact sequences

H™P(UNV;R) fovav H,(UNV;R)
HPP(U;R) ® HPP(V; R) — 220 H,(U; R) ® Hy(V; R)
H?(M; R) mo H,(M; R)
H™P*L(U N V;R) fovnv H, 1 (UNV;R)
Noy ®Noy

HP=PHHUs R) @ H PPV R) Hy (U R) © Hp 1 (V5 R)

The five lemma thus proves the case M =U U V.
Now assume M = Uf; U; with open U; such that Uy C Us C .... We will show that if the claim
holds for all U; with the orientation induced by the one of M, then the claim holds for M.

To that end, let U C M be an arbitrary open subset and let K C U be compact. Excision gives
us

H?(M,M\K;R) = H?(U,U\K; R)
and we denote by ¢k the inverse of this map. The direct limit of these ¢ induces a map
bl = lim i : HY(U; R) — HY(M; ).
In general, this map is not an iso (U is 'too small’), but now we let U vary. For U C V C W we get
o0 =V ovl, vy =id.

As the excision isomorphism is induced by the inclusion (U,U\K) < (M, M\K), we get that the
following diagram commutes:

M
Yu

HP(U; R) —— H""P(M; R)

JPDU J(PDM
(-1\/1

H,(U; R) —"" 1,(M; R)

and hence the corresponding diagram

lim oM
lim H~7(Us; RY - H P (M R)

lhg PDy, JPDM

lim(igy; )«
@Hp(Ui; R)——— H,(M;R)
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commutes as well. The map li cpg{ is an isomorphism because every K ends up in some U;
eventually. By assumption, each PDy, is an isomorphism and so is their limit. Similarly the limit
of the (if/), is an iso and therefore PD)y is.

(d) We show that the claim is valid for arbitrary open subsets M C R™. We express M as a union
M=U2, ér where the B, are m-balls. This is possible because R™ has a countable basis of its
topology. Set U; := Ui:l B,., then of course

U cU;C...

The claim holds for the U; and because of (c) it then holds for M.

(e) Finally we assume that M is as in the theorem with some fixed R-orientation. Every point in M
has a neighborhood which is homeomorphic to some open subset of R™ and we can choose the
homeomorphism in such a way that it preserves the orientation. We know that M has a countable
basis for its topology and thus there are open subsets Vi, Va,... C M such that V; = W; C R™ and
the V; cover M. Define U, := U;Zl Vj, thus M = |J, U;. The claim holds for the V; and therefore
it holds for the U; and thus for M.

|

9. Alexander-Lefschetz duality

We will derive a relative version of Poincaré duality and some geometric applications. First, we will
consider Cech cohomology.

Let X be an arbitrary topological space and let A C B C X. We consider open neighborhoods (V,U)
of (B, A), i.e., open subsets U C V C X with A C U and B C V. The rough idea of Cech cohomology is to
approximate H?(B, A) by H4(V,U) where the open neighborhoods come closer and closer to (B, A).

Note that for (V,U) C (V',U’) we get induced maps

HY(V',U) — HY(V,U).

We use this property to construct a directed system, so we set (V/,U’) < (V,U) if and only if V C V' and
Ucu'.

Definition 9.1. We define the Cech cohomology of the pair (B, A) with A C B C X as
HP(B, A) = lim H?(V,U).

In this generality, Cech cohomology has very bad properties.

For subsets A C B C X where X is a so-called euclidean neighborhood retract and if A and B are locally
compact, then HP(B, A) only depends on B and A and not on X. (A space Y is a euclidean neighborhood
retract, if there is a space X C R” for some n such that X is a retract of a neighborhood X C U C R" and
Y is homeomorphic to X.)

If in addition A and B are euclidean neighborhood retracts, then H? (B, A) is actually isomorphic to
HP?(B, A). For more background on Cech cohomology see Dold’s book Lectures on Algebraic Topology, reprint
in: Classics in Mathematics. Springer-Verlag, Berlin, 1995, VIII §6.

Now let M be a connected m-dimensional manifold and let K’ C L C M be compact subsets in M. We
assume that there is an orientation class oy, € H,,, (M, M\L) of M along L (possibly with coefficients in R
but we will suppress this from the notation). We aim at a cap-pairing of H*(L, K) with H,(M, M\L).

For (L, K) C (V,U) we get a map on the level of chains and cochains

Sk(U) + Si(V\K)
P — Sk— K,V\L).
SP(V,U) ® < Se(V\L) Sk—p(VAK,V\L)
For this note that V\L C (U U (V\K)) = V. Thus for « € SP(V,U) and a + b € Sl VAK) o have

Sk(VA\L)
anN(a+bd)=anNa+anb=0+anbd

and this ends up in the correct chain group.

The homology of W is isomorphic to H,(V, V\L) and this in turn is isomorphic to H.(M, M\ L)

via excision.
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Excision tells us as well that
H.(V\K,V\L; R) 2 H.,(M\K, M\L; R).

As Cech cohomology is the direct limit lim H*(V,U) and as everything is compatible (which we did not

really show), the above gives a well-defined map
PD: HY(L,K)® H,,(M, M\L) — H,,_(M\K,M\L), a®or+ aNoy.
Proposition 9.2. (Alexander-Lefschetz duality) Let M be a connected m-dimensional manifold and let
K C L C M with K, L compact. Let M be oriented along L with respect to R. Then the map
PD = (-)Nor: HY(L,K;R) — Hp,—q( M\K, M\L; R)

is an isomorphism for all integers q.

Before we prove this result, we collect some properties of this form of the Poincaré duality map.
(a) This PD map still satisfies that PD(1) = oy, for K = @ and 1 € H(L; R).
(b) The PD-map is natural in the following sense: for (L, K) < (L', K') the diagram

. (—=)Noy:

HI(L, K =5 Hp_ o (M\K', M\L)

lﬁq(i) leq(i)

fa(r, k) 7% |, (M\K, M\L)

commutes.
(c) We won’t prove the following fact. The diagram

o ———— HY(L,K) HI(L) HY(K)————— HYY (LK) ———— -+

lmOL J/OOL lmOK J{ﬂOL

oo —— Hypyo(M\K, M\L) — H,,_o(M, M\L) — H,, (M, M\K) — H,, 1 (M\K, M\L) — - -

commutes, and therefore (using the five lemma) it suffices to show the absolute version of Alexander-
Lefschetz duality.

Lemma 9.3. If K and L are compact subsets of M with an orientation class oxyr, along K\ UL and induced
orientation classes o and or,. Then the diagram

~-~46)H‘1(KUL) HY(K)pH(L) Hq(KﬁL)L”'

J{ﬂoKuL lﬂoKEBﬁoL lOKﬂL
5

5
coe — 2 Hyy g (M,M\(KUL)) —— Hpy_ (M, M\K)®Hpn_q(M,M\L) ——% Hp,_o(M,M\(KNL)) —— - - -
commutes and has exact rows.

PROOF. The only critical squares are the ones that are slightly out of the focus of the above diagram,
the ones with the connecting homomorphisms. The H*-sequence comes from direct limits of
0 — Hom(S.(U) 4+ S«(V), R) — Hom(S,(U), R) ® Hom(S,(V), R) — Hom(S.(UNV),R) — 0

for open U,V with K C U and L C V.

Let o € H9(K N L; R). Choose a representing cocycle f with o = [f], i.e., 6f = 0 on UNV and let
0 be the conneting homomorphism for ordinary singular cohomology. What is d(«)? A preimage for f in
the direct sum is (f,0) and its coboundary is (0 f,0), so if we choose an h € Hom(S,.U + S.V, R) with the
property h(u + v) = §f(u) for u € S,(U), v € S« (V), then

a(a) = [h].

We can extend h to a cochain on M (for instance by defining it to be trivial on the chains that are supported
on the complement).
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We want to compare d(«) Nogur and (o Nognr). For the first term we express ok, = [a] as a sum
a=b+c+d+eec S, (UNV)+S,(U\L)+ S.(V\K) + S, (M\(K UL)).
The subsets UNV,U\L,V\K and M\ (K UL) are open and therefore we can work with small chains for this
open cover. With the notation as above we get
O(a) Nogur =[hN(b+c+d+e)] =[hNc

because h is only non-trivial on chains in U and as §(f) is trivial on U NV h is only non-trivial on the
complement of V in U.
For aNogny we write [f Na] and as the lower exact row comes from the short exact sequence

S (M) N S (M) S (M) . S, (M)
S (M\K UL) S (M\K) = S.(M\L) Sy (M\K) + S« (M\L)
we view the latter as an element modulo S,(M\K) + S.(M\L). The connecting homomorphism picks
(f Na,0) as a pre-image of f Na takes its boundary (9(f Na),0) but the latter is up to sign
(0(f Na),0) = (6(f) Na),0) £ (f N da,0).

Writing a as a = b+ ¢+ d + e and using that f ignores b and e we obtain that the above is (0f Nc+df N
d+ fNda,0). But 6f Nd and f N da are elements in S, (M\K) and hence all that remains when we pick a
preimage is (6 f N¢,0), thus

0— — 0

daNognr) =1[0fNc]=[hNcl.

Now we can prove Alexander-Lefschetz duality.

PROOF OF PROPOSITION [0.21 The lemma above tells us that it suffices to prove the absolute case, i.e.,

to show that
(=) Nox: HY(K) — Hy—g(M, M\K)

is an isomorphism for all q.

If K is empty, then we get the true statement that 0 = 0. For K a point we only get something non-trivial
for ¢ = 0 and here 1 € R = H°(K) is sent to ox = 0, via Poincaré duality.

Similarly, if M = R™ and K is convex and compact we can proceed as in the case of a point.

If K=K;U...UK, and M is still R™ an induction over r proves the claim.

For M = R™ and K arbitrary we can find a neighborhood U of K of the form U = vazl U; with the
U; being convex. Such U suffice to calculate the direct limit h£r1H 4(U) for the Cech cohomology of K. For
such U we have

Hy_((R™R™MK) = g}nHm,q(Rm,Rm\U)

because R™\K = (J;; R™\U. The U satisfy Alexander-Lefschetz duality and hence K does.

Finally let M and K be arbitrary, but satisfying the conditions of Proposition [9.2] Express K =
Ki U...UK, such that the K; are contained in a chart that is homeomorphic to R™ and proceed as in the
case before. |

10. Application of duality
Proposition 10.1. (Classical Alexander duality) Let K C R™ be compact. Then

Hq(K) = Hp—q(R™, R™\K) = f{qufl(Rm\K)-

Here the first isomorphism is Alexander-Lefschetz duality and the second one is a result of the long exact
sequence of pairs in homology.

This is bad news for knot complements. A knot K is the homeomorphic image of S' in R? and the above
tells us that

Hy(R°\K) = H'(K)

but the circle is a euclidean neighborhood retract and therefore Cech cohomology concides with ordinary
singular cohomology, but H'(K) = Z, thus the first homology group of any knot complement is isomorphic
to the integers, thus it does not help to distinguish knots. The fundamental group of the knot complement
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does a better job. Here the un-knot gives the integers, but for instance the complement of the trefoil knot
has a fundamental group that is not isomorphic to the integers, but is isomorphic to the group (a, b|a® = b3).
This group is actually isomorphic to the braid group on three strands.

Proposition 10.2. Let M be a compact oriented connected m-manifold and let @ # K C M be compact. If
Hi(M) is trivial, then H™ Y(K) is free abelian and M\K has rank H™ 1 (K) + 1 components.

PROOF. Let k = |mo(M\K)| be the number of components of the complement of K in M. Therefore
k = rankHo(M\K) = 1 + rankHy(M\K).
By assumption H;(M) =0 = Hy(M) and therefore we know from the long exact sequence and duality that
Ho(M\K) = H\ (M, M\K) = H" }(K).
]

Proposition 10.3. If M is a compact connected orientable m-manifold and if the first homology group of
M with integral coefficients vanishes, then all compact submanifolds without boundary of dimension m — 1
are orientable.

Compact manifolds without boundary are often called closed.

PRrROOF. A submanifold N C M is a euclidean neighborhood retract and therefore
H™ YN)= A" Y(N) = H; (M, M\N) = Hy(M\N)
thus H™~1(N) is free abelian. This implies that the components of N are orientable. |
Corollary 10.4. It is not possible to embed RP? into R3.

If one could, then one could embed RP? into S* as the one-point compactification of R3. Due to
H1(S?) = 0, the 2-manifold RP? would be orientable, but we know that it’s not. At the math institute in
Oberwolfach there is a model of the Boy surface. That’s a model of an immersion of RP? into three-space.
http://www.mfo.de/general/boy/

Proposition 10.5. Let M be a compact connected and orientable m-manifold and let 5; be the i-th Betti
number of M, 8; = dimgH;(M;Q). Then

61' = ﬁm—i-

PrOOF. Note that by the very definition of Cech cohomology, H*(M) is isomorphic to H*(M) because
L =M and K = @. Duality then tells us that

dimgH,,—;(M;Q) = dimgH"(M;Q)
As Q is divisible, there is no Ext-term arising in the universal coefficient theorem and thus
dimgH*(M; Q) = dimg(Hom(H;(M),Q))

but this is equal to the dimension of the vector space of the homomorphisms from the free part of H;(M) to
Q which is equal to the rank of H;(M) and this in turn is equal to ;. a

Proposition 10.6. If M is as above of odd dimension, then the Fuler characteristic of M vanishes.

Just recall that

Proposition 10.7. If M is a compact connected orientable m-manifold with boundary, then
HY(M,0M) = H,,_,(M).
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PROOF. Glue a collar to M, i.e., consider
W:=MU(OM x [0,1)) = MUW'.
Then W is an m-manifold without boundary such that duality applies and as W ~ M we obtain
HY(M,0M) = H,,_,(W\OM,W\M) = H,,_,(M\OM) = H,,_,(M).

For this note that W\M ~ 9M, W\OM ~ M\OM U W"\OM, W\M = W'\OM and that taking the
complement of M in M gives something that is homotopy equivalent to M. O

Corollary 10.8. If M is as above then the Fuler characteristic of OM is always even.
ProOOF. Note that x(M) = x(W) and the long exact sequence of the pair W\M C W gives
X(W) = x(WAM) + x(W, W\M).

Homotopy invariance yields x(W\M) = x(0M) and duality guarantees that x(W, W\M) = (—=1)"x(M).
Therefore
X(OM) = (1+ (=)™ )x(M)

and this is always an even number. (Il

An important consequence is that RP?™ can never be a boundary of a compact connected manifold,
because its Euler characteristic is 1. Similarly, as

2m
MCPP™) =3 (~1)% = 2m +1
i=0

and
2m

XHP?™) =3 (-1)* =2m + 1
i=0
all these projective spaces do not occur as boundaries of connected compact orientable manifolds. For the
calculations of y note that for complex projective space of dimension 2m we have cells in dimension up to
4m, but only in even dimensions. Similarly, for quaternion projective space of dimension 2m cells occur up
to dimension 8m, but only in degrees divisible by 4.

These facts are important in bordism theory: one can introduce an equivalence relation on manifolds by
saying that two m-manifolds M and N are bordant, if there is an (m+ 1)-manifold W whose boundary is the
disjoint union of M and N, OW = M U N. Thus the above projective spaces don’t give trivial equivalence
classes under the bordism relation.

11. Duality and cup products

Let M be a connected closed m-manifold with an R-orientation for some commutative ring R. We
consider the composition

HY(M; R) @ H™*(M; R) —— H™ (M; R)
l(—)mﬁ
Hyo(M;R) =R
Definition 11.1. For a € H*(M;R), 3 € H™ *(M; R) the map
(@, B) = (@ U B, 0f)
is called cup product pairing of M.

Proposition 11.2. The cup product pairing is non-singular if R is a field or if R = Z and all homology
groups of M are torsion-free.
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Here, non-singular means that the induced maps
H*(M; R) — Homp(H™ *(M;R), R) and H™ ¥(M; R) — Homg(H"(M;R), R)

are both isomorphisms.
Proposition holds as long as one restricts attention to the free part of the cohomology groups: let
FH*(M;R) denote the free part of H*(M; R) then there is a non-singular pairing

FH*(M;R) @z FH™ *(M;R) — R.
In geometric applications the ground ring is often R = R, so then you are dealing with a pairing over
the real numbers and methods of linear algebra apply.
PRrROOF. The Kronecker pairing yields a map
k: H*(M;R) — Homg(Hy(M;R), R)
and Poincaré duality tells us that capping with of; is an isomorphism between Hy(M; R) and H™*(M; R).
The composite is
H*(M; R) — Hompg(Hy(M; R), R) = Homg(H™ *(M; R),R), a + (a, (=) Nok,).
Over a field, k and hence the composite is an isomorphism. In the torsion-free setting we obtain an isomor-
phism as well. (|
Dual to the cup product pairing there is the intersection form:
H,(M)® Hpy—p(M) = Z
with a @ b+ (PD™'(a) UPD™!(b), 0ps). In particular for even-dimensional manifolds, the signature of this
form is an important invariant in differential topology. For instance one can show that for a compact oriented

manifold W such that OW = M with a 4n-dimensional manifold M the signature of the intersection form
on M is trivial.

Lemma 11.3. Let M be as z'n with torsion-free homology groups. If HP(M) = 7 = H™ P(M) and if
a € HP(M), B € H™ P(M) are generators, then « U 3 is a generator of H™(M) = Z.

PRrROOF. For « there exists a ' € H™ P(M) with
(aU B opn) =1.
As S is a generator we know that 8’ = kS for some integer k and hence
1={(aUpf on)={aUkB,on)=k{aUpB,on).
But (aU 3, 0p) is an integer, so k has to be £1 and therefore o U 3 generates H™ (M). |
We will use this result to calculate the cohomology rings of projective spaces.
Lemma 11.4. If a € H?(CP™) is a generator, then a? € H?1(CP™) is a generator as well for ¢ < m.

PROOF. We have to show by induction that a?~! is an additive generator of H2¢=2(CP™) and we do
that by induction over m because we will use the argument in this proof later again.

For m = 1 there is nothing to prove because CP! = S§? and there a? = 0.

Consider the inclusion i: CP™~! < CP™. The CW structure of CP™ is CP™~! Uy D?™. For m > 1
i*: H*(CP™) — H?*(CP™™!) is an isomorphism for 1 < i < m — 1 and i*(«) generates H?(CP™™1).
Induction over m then shows that (i*(a))? generates H2¢(CP™ ') for all 1 < ¢ < m — 1. But (i*(a))? =
i*(a?) and therefore a? generates H24(CP™) for 1 < ¢ < m—1. Lemmaﬂthen shows that cUa™ ™! = o™
generates H>™(CP™). O

Corollary 11.5. As a graded ring
H*(CP™) = Z[a]/a™ " with |a| = 2.
Similarly,

H*(RP™;7./27) = 7./2Z[a] /o™ " with |af = 1.
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There are two geometric consequences that follow from this calculation.
Proposition 11.6. For 0 < m < n the inclusion j: CP™ — CP™ is no weak retract.

PROOF. Let us assume that there is an r: CP™ — CP™ with r o j ~ id. On second cohomology groups
7 induces an isomorphism
§*: H*(CP™) — H?*(CP™).
Let a € H2(CP™) be a generator, then 8 := r*(a) is a generator as well. As
ﬁm—i—l — T*(O[)m+1 — r*(am-&-l) _ T*(O) _ 0

But H*(CP") = Z[B]/BnJrl and hence gm+1 £0. .

mtl — () we get

Proposition 11.7. The attaching map of the 2n-cell in CP™ is not null-homotopic.

PROOF. Let ¢: S?»~1 — CP"! be the attaching map, thus
CP"=C, =CP" 'u, D*".
If ¢ were null-homotopic, then
(CPn_l Ug, DQn ~ (CPn_l vV S2n
and CP"~! were a weak retract of CP". (]
A famous example of this phenomenon is the Hopf fibration ¢ = n: S* —+ CP! = S? = CUco. Consider
S? C C?% and send S® > (u,v) to
E7 v # 07
n(u,v) = {”

oo, v=0.

Then this map is not null-homotopic, n: S* — S2, and in fact it generates 73(S?) = Z.
12. The Milnor sequence

The aim is to calculate the cohomology rings of infinite dimensional projective spaces and more generally
to understand cohomology groups for infinite dimensional CW complexes.
Let (M;):en, be a family of R-modules together with a sequence of maps

My <= My 2 vy L2

We call such a family (M;, fi)ien, an inverse system.
Definition 12.1. The inverse limit of the inverse system (M;);en, is the R-module
hm M; = {(zo,z1,...) € H M;|fiv1(®it1) = @i,0 > 0},
i€Np

If ¢ denotes the map that sends (zg,x1,...) € HieNo M; to (xg — fi(x1),z1 — fa(x2),...) then we can

express the inverse limit as the kernel of ¢:
0—limM; — ] M -5 [] M
1€Ng 1€Ng

Definition 12.2. Let lim LM; be the R-module coker(€).

Thus we have an exact sequence

0= 1imM; — [] M =5 T Mi — 1lim ' M; — 0.
1€Ng 1€Ng
Lemma 12.3. If
0 — (M, fi) — (Ni, 9:) — (Qi, hi) = 0
is a short exact sequence of inverse systems, then the sequence
0 —>1&an —>].£1Ni —>@1Q, —>]£D1Mi — r&llNi —)I&IllQl —0

s exact.
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Proor. Consider &: [[, M; — [[, M; as a chain complex C,. Then the first homology group is the
inverse limit and the zeroth homology group is the lim-one term

H\Cy = lim M;,  HoC, = yLnlMi.

We can translate the short exact sequence of inverse systems into a short exact sequence of chain complexes

0——ILMi—— 1N I @ 0
)
0 >HiMi ’HiNi HZQZ 0
and the associated long exact sequence is precisely what we want. (]

Therefore the lim-one terms measure how non-exact inverse limits are. We are interested in the case
where we have exactness.

Lemma 12.4. (Mittag-Leffler condition) Assume that for every n > 0 there is an N = N(n) such that we
have for allm > N that the image of fpy10...0fn: My, — M, is equal to the image of frpy10...0fn: My —
M,,. Then

.1 o

h(Ln M; = 0.

PrOOF. Without loss of generality we can assume that the sequence N(n) is monoton increasing in n.
We have to show that the cokernel of ¢ is trivial. Let (a;); € [, M;. We have to show that this sequence is
in the image of &.
As a first case we deal with sequences (a;) such that a; is in the image of fi;10...0 fy: My — M;. We
construct elements by, ..., by with a; = b; — f;+10;41 for i < k by induction on k such that
b; € im(fiy10...0 fn).

We start with ag = bg. Assume the claim is shown for 7 up to k. Choose a y € My (1) with

ak — b = fer10-..0 [N (Y)-

This is possible by the assumption that the image of fx110...0fn(x41) is equal to the image of fxy10...0fn ).
Define

bey1 = —fri20... 0 [t ()
Then
b = fr+1be+1 = by + ag — by = ay.
If a; is not in the image f;110...0 fn: My — M;, then we define
a; = a;+ fiy1aip1+ ...+ fiy1 0. 0 fney(ane)-
We check that
ai — (a; — fiy1(aiy)) = ai —a; — fixa(aig1) — ... = fiy10... 0 fny(an()
+ fir1(aiv1) + fiyr 0 fiza(aize) + ...+ fix1 0. 0 fngrr) (ansn))
= fix10...0 fn@ytilangy+1) + -+ fix1 0. 0 fngry(ansn))
and therefore a; — (aj — fit1(aj ;1)) is in the image of fi;10...0 fy(;i41). As in case one we write a; — (a; —
fir1(ajy,)) as by — fiy1bir1. Thus
a; = ¢; — firv1(cit1)
Ezamples If every map f; is surjective, then the system (M, f;) satisfies the Mittag-Leffler criterion.
For instance the inverse system

Z)pZ +— L]p*Z +— L)p°7 +— ...

satisfies this condition. The inverse limit of this system is called the p-adic integers. These are denoted by
Z, and they are the p-adic completion of the ring of integers.
We want to apply this result to inverse systems of cochain complexes.
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Assume that X is a CW complex and that (X,,), is a sequence of subcomplexes with X,, C X,,11 and
X =U,, Xn, for instance, we could have X, = X", the n-skeleton of X. Consider

SH(X) == S5"(X,).
The inclusion maps X,, C X, 41 induce maps
Jra1: S5 (X) — SH(X).
We therefore have
Sr(X) <L sr(x) L2
and these maps commute with the coboundary maps

fn+1

S} 41 (X) —— Si(X)

b

St (x) L gt x).

Lemma 12.5. If (C¥, f,) is an inverse system of cochain complexes, such that for every cochain degree m
the system (CI, f.) satisfies the Mittag-Leffler condition, then the sequence

0 — lim ' H™(Cy) — H™(im Cy) — lim H™(C;) — 0
15 exact.

PROOF. We consider the two exact sequences

(12.1) 0— B — Z* — H™(C;) =0
and

(12.2) 0— 2" — C" — BI" —0.
As the C)" satisfy the Mittag-Leffler condition we know that

(12.3) 1'&11072” =0, for all m.

Lemma [12.3] tells us that the sequence
. 1, vm . 1 pm+1
Jim chlt— im "B — 0
is exact and thus @ 1pm+l = 0. Therefore the sequence (12.1)) yields that
lim 2 = lim " H™(C).
In addition we know that
. m . m . m—+1
0= lim Z* — lim C7" — lim B,
is exact and hence the inverse limit of the cocycles is equal to the module of cocycles in the inverse limit
lim 27" 2 27 (lim C).
As the lim-one term on the inverse system of coboundaries is trivial we obtain that
0— @BTT — @Z}f — @Hm(C;:) —0
is exact as well. Lemma tells us that the kernel of the connecting homomorphism
9: lm B} — lm'Z;" ™! — 0
is isomorphic to the coboundaries
B (lim C).
Therefore we get the following sequence of inclusions
B"(m Cy) C lim B C lim Z;* = Z™ (lim C;))
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and this gives that
N N
Bm L mC) Bm 1&1 C) L Bm
is exact. The middle term is H™ (lim C7), the right term is isomorphic to lim H™(CY) and the left term is
isomorphic to the lim-one term lim ' H™~1(C?) because im Lzm=1 Hm LHm=1(Cr). O

Theorem 12.6. (Milnor sequence) If X is a CW complex with a filtration Xo C ... C X,, C Xp41 C ... of
subcomplexes with X =J,, Xy, then the sequence

0= lim ' H™ (X, G) — H™(X;G) — lim H™ (X5 G) = 0
is exact for all abelian groups G.

PROOF. We define C* = Hom(S,(X,),G). This system satisfies the Mittag-Leffler condition because
the inclusions

Sm(Xn) = Sm(Xnt1)

dualize to epimorphisms
Hom(S,,(Xn+1),G) — Hom(S5,,(X,), G).
The only thing we have to show is that
H™(X;G) H’”(@ Hom(S.(X,),G)).
The inverse limit has a universal property dual to the one of the direct limit and the maps
Hom(S5.(X),G) — Hom(S.(X,),G)

can be used to show that Hom(S.(X),G) has the universal property of

@Hom(S*(Xn), G).

O

Ezample We consider the infinite complex projective space CP*. The arguments are analogous for the
infinite real and quaternionic projective spaces, RP> and HP°.
For CP* we consider the skeleton filtration, i.e.,

Xo=ptC X; =CP'c X, =CP%2C
so X, is the 2n-skeleton of CP>°. The Milnor sequence in this case is
0 — lim tgm=(cpP") — H™(CP>) — lim H™(CP") — 0.
However, the maps H™~}(CP"*1) — H™~1(CP") are surjective and therefore this inverse system satisfies
the Mittag-Leffler condition as well and thus
@1Hm—1((cpn) —0
and therefore
H™(CP™) @Hm(CP”).

The inverse limit of truncated polynomial rings Z[a]/a"*! is isomorphic to the ring of formal power

series.

Corollary 12.7.
H*(CP™®) 2 Zl[[a]], |a] =2
where Z[[a]] denotes the ring of formal power series in «.
Corollary 12.8.
H*(RP>;Z/27) 2 7./]2Z][a]], |o| = 1
and

H*(HP*) = Z[[o]], || = 4.
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Often we consider the cohomology of a space as a direct sum

H(X;G) =P H"(X;G).
n>=0
From that point of view we only have finite sums in H*(X; G) so that this interpretation yields the identifi-
cation of H™(CP*) and H*(RP*;7Z/27Z) as a polynomial ring and you will find

H*(CP*®) = Zla], |a| =2
and
H*(RP*>;Z/2Z) = Z/2Z][o]], || = 1.
in the literature as well. However, if you view H,(X) as @,, Hn(X) and for free H,(X) the cohomology as
a dual, then the description of H*(X) as a product [], H"(X) is more natural.

13. Lens spaces

Let m € N and let ¢4,..., ¢, be natural numbers with ged(m,¢;) = 1 for all ¢ and assume n > 2. We
consider the action of Z/mZ on S*"~! given by

0: Z/mZ x 2" 5§ (G, ) = (B2, CErzy).

Here, Z/mZ = (¢) with ¢ = e and we view $2"~1 as a subspace of C".

This action is free: if o(¢";21,...,2n) = (21,--.,2n), then we have ("% z; = z; for all 4, but that implies
¢ =1 for all i and thus 7¢; = km for some k. As the ¢; have no non-trivial common divisor with m this
implies that r is a multiple of m.

Ezxzample If m = 2, then the ¢; are odd and therefore the action

0: Z/mZ x S*"~1 — §2n—t

is the antipodal action.
We consider the quotient spaces S?"~1/(Z/mZ).

Definition 13.1. The space L = L(m;fy,...,¢,) = S>*~1/(Z/mZ) as above is called lens space with
parameters (m; £y, ..., 4,).

Ezamples For m = 2 we get the real projective spaces L(2;/1,...,4,) = RP?"~1 as lens spaces.

The classical case is the three manifold case: For integers p,q with (p,q) = 1 one considers L(p,q) :=
L(p; 1,q).

Note that the projection map m: S?"~* — L(2;/,...,£,) is a covering map because of the freeness of
the Z/mZ-action.

We now want to consider CW structures on lens spaces that generalize the CW structures on projective
spaces. -

We start with a CW structure on S! that has zero cells {eQWT”, 1<j<m}.

Let BJQ.”_2 be the set

B?"fz = {cos 6(0,... 7076%) +sinf(z1,. .., 20-1,0)[0 <O < 7/2, (21, ..., 2n_1) € S*" 73},

2mij
m

i.e., we connect the point (0,...,0,e m ) with the point (z1,...,2,_1) € S?"73 via a quarter of a circle.

A calculation shows that BJZ»”_2 C S?»~! and we have B?”_Q >~ P2n,

. 27ig 2mi(j+1) . _ _ .
If we connect the circular arc between e m~ and e” =m ~ with S?" 3 we get BJQ-” ! with boundary

2n—1 __ 2n—2 2n—2

0B; = B; UBT
We have to understand the Z/mZ-action on these cells. If we restrict g to S>" =3, then o(S?"~3) c §?n~3.
The arcs between the e m’ and e %" are permuted by o and therefore ¢ permutes the balls BJZ"_Q and

the balls B~
Assume that r € N with 7¢,, = 1 mod m, then o" has order m as well and

7 . 2n—2 2n—2
1Y |B?n72.Bj —>Bj+1 5
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because
e 2mij 2mirly 2wij 27i(j+1)
C ne"m —e m e m —eg ™

The Bf-’“1 are a fundamental domain of the p"-action. Thus
~ R2n—1/, r

for any j.

There is a natural inclusion

L(m;ﬁl, Ce ,Enfl) - L(m;&, R ,€n)

which is given by mapping the class [(z1,...,2n—1)] to [(21,..., 2n—1,0)]. Representing L(m;¥y,...,£4,_1) as
B;"fg/ ~ we see that we can build L(m;£y,...,£,) out of L(m;¢y,...,¢,_1) by attaching the (2n — 1)-cell
B?"_l and a (2n — 2)-cell BJQ-"_2. Note that we really just have to take one of the latter because sz-”_z is

glued to its neighbor BJQCIQ in the quotient.

Inductively we get a cell structure of L with one cell in each dimension up to 2n — 1.

Ezample Let n be 2, so the lens spaces are quotients of S3. Let m =5and ¢, =1 and f» = 2, so
C = e% . -

We have B being a 3-ball with boundary B? and B7, . The B have elements cos (0, e“5" ) +sin6(z,0)
for z € S! so these are pairs

27ig
(sinfz,cosfe” 5 ) € S°.
Let us consider the cellular chain complex of the lens spaces. We saw that
C.(Ly=2, x=0,...,2n—1.

and let o* be the cell corresponding to the ball B]’»C .
The top cell has trivial boundary
d(O_Qn—l) —_ 0_2n—2 _ 0_2n—2 =0

because the topological boundary of B?"_l is the union of two balls one dimension lower which are identified
in the quotient.
For calculating the boundary of 02"~2 the boundary of that cell is S?*~3 and the attaching map is the
quotient map
S8 s L(myly, ...l 1).
As the action p permutes the cells cyclically, we get that
d(0,2n72) _ mo,2n73'

By induction we see that the boundary maps are given by multiplication by zero respectively m. Thus

Z, x*x=0,2n—1,
Ho(L(m;ly, ... 0,) =H (0277 . " 7-27)=Z/mZ, +oddand <2n—1,
0, otherwise.

Note that we get Hy(L) = 71 (L) = Z/mZ from covering theory because mS?*"~! = 0.
As the top homology group is Z we see that lens spaces are compact connected orientable manifolds of
dimension 2n — 1.

Lemma 13.2. The additive cohomology groups are

Z/mZ, 0<*x<2n—1

H(L; 2/mZ) = {0 *>2n—1

The universal coefficient theorem gives the result immediately.
Note that the homology groups of L with coefficients in Z/mZ are isomorphic to the cohomology groups
just by using
Hy(L;Z/mZ) = Hy(L; Z) @ Z/mZ & Tor(Hy—1(L),Z/mZ)

or by applying Poincaré duality.
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We now focus on the case where m = p is a prime.

Proposition 13.3. The cohomology group HI(L(p; {1, ... ,lny1);Z/DZ) is generated by

g, j=2i
aBt, j=2i+1
Here o € HY(L; Z/pZ) and B € H*(L;Z/pZ) are generators.

PROOF. We prove the claim by induction on n. For n = 1 we have L = L(p;¢;,¢3) and if o €
HY(L;Z/pZ) and B € H?(L;Z/pZ) are generators, then a cup product pairing argument shows that aU 3 is
a generator in degree three. We have to understand what o? is: if p is odd, then a? = 0. For p = 2 we know
that the lens space is RP? and hence in that case a? is a generator so it is equal to 3. In all other degrees,
the cohomology groups are trivial.

Assume now that the claim is true up to degree n. We consider the inclusion

L(p7 617 s agn) — L(pa 417 s 7£n+1) = L2n+1'

Up to degree 2n — 1 this inclusion gives rise to an isomorphism on cohomology groups. We know that
generates the cohomology groups up in degrees j = 2i < 2n — 1 and af3? generates the cohomology groups
in degrees j = 2i +1 < 2n — 1. An argument as for projective spaces then shows that 8 U 3"~ ! generates
H2(L*"*Y7/pZ) and BU Bt = af" generates H2" (L2 7 /p7). O

Corollary 13.4. As graded rings

Ale) ® Z/pZ[B)/B", p>2,

HA b b 2/02) = {Z/pZ[a]/aQ"“ p=2

Let L denote the direct limit of any system of the form

L(p;ly,.. . lnv1) CL(p; e, bnta) C ...
then
Ae) ® Z/pZ[[B]], p>2,
Z[pZ[a]], p=2.

The second claim follows with the help of the Milnor sequence.

Lens spaces of dimension three give rise to important examples of orientable connected and compact 3-
manifolds that have the same fundamental group and homology groups but that are not homotopy equivalent.
For instance the lens spaces L(5;1,1) and L(5;1,2) are of that type. You will prove that!

We can interpret the generator 8 in terms of the so-called Bockstein-homomorphism. The short exact
sequences

H*(L;Z/pZ) = {

0+7Z—=7Z—>Z/pL —0, 0—Z/pZ — L/p°Z — L/pZ — 0

give rise to short exact sequences of cochain complexes
0— S*(X;Z) = S*(X;Z) = S*(X;Z/pZ) -0, 0— S*(X;Z/pZ) — S*(X;Z/p*Z) — S*(X;Z/pZ) — 0

and we get corresponding long exact sequences of cohomology groups. Let B: H "(X;Z/pZ) — H" (X Z)
be the connecting homomorphism for the first sequence, let 3: H"(X;Z/pZ) — H"*'(X;Z/pZ) be the one
for the second sequence and let p,: H"*Y(X;Z) — H""Y(X;Z/pZ) be induced by the reduction mod p.
Then § is called the Bockstein homomorphism.

Lemma 13.5. The diagram
H™(X;Z/pZ) —2—s HH(X;7)
\ J{
P
H" (X, Z/pZ)
commautes.
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For the proof just note that the diagram of the corresponding short exact sequences

0 7z—2 7 — L s 7)pZ 0
J'P lpz Jid
0 —— Z/pZ —2= 7/p*Z 7] pZ 0

commutes and therefore we obtain the commutativity of

H™(X;Z/pZ) —2—s H™ (X, 7)

—

H™(X: Z)pZ) —s H™ Y (X;2,/p2).

With the help of this auxiliary result it is easy to see that 3 € H2(L(p;{1,...,0n11);Z/pZ) deserves its
name: this class is the image of the Bockstein homomorphism applied to «, i.e., 8 = 8(«).
We do the example p = 2, i.e., the cases of real projective spaces of odd dimension in detail; the odd

prime cases are similar.

Proposition 13.6. The Bockstein B: H"(RP>;Z/27) — H" T (RP>;Z/2Z) is an isomorphism for odd n

and is trivial for even n. In particular, B(a) = o?.

PRrOOF. Consider the diagram
H" 1 (RP>;7Z)
2
H™(RP>;7Z/27) L H" 1 (RP>;7Z) —2 H" Y RP>;Z)

B
P

H" M (RP>;7,/27)

B

H"2(RP>;7,/27)

If n is odd, then n + 1 = 2k for some k and then H?*(RP>;7) = Z/2Z so that the multiplication by 2 is
trivial. Hence § is surjective. But both adjacent groups are Z/2Z, thus g is an isomorphism.

For even n the groups H" T} (RP>°;Z) are trivial, hence in these degrees B=0.
This also implies that for odd n, p.: H"T}(RP>;Z) — H"*1(RP>;Z/2Z) is an isomorphism and

therefore 3 is an isomorphism. |

Remark 13.7. Using that § is a connecting homomorphism, one can show that it is a derivation with

respect to the cup-product:
Blauy) = Bla) Uy + (=1)*la u ().

The Bockstein homomorphism is just one example of a cohomology operation.
14. Steenrod operations

Let p be a prime.
So far we had the Bockstein homomorphism

B: H™(X:Z/pL) — H""(X: Z/pZ)
and of course we have the p-th power map
H™"(X;Z/pZ) 3 x — 2P € HP"(X;Z/pZ)

78



which is a homomorphism.
It turns out that there are further operations on cohomology that are natural in the space X:

Theorem 14.1. For p = 2 there are operations
Sq': H"(X;Z/22) — H""(X;Z/27).
These maps are homomorphisms and are natural in X. In addition they satisfy
(a) 5q =id,

q'(z) =a? fori=|z],

(b) S
()forz>|x| Sqiz =0,
(d)

k

S¢*(xUy) = Sq'(x) U S (y).

=0

The third property says that the operations are 'unstable’. The fourth relation is the Cartan formular.
The operation Sq' is the Bockstein homomorphism. There are further relations: for 0 < i < 2j the Adém
relation holds.

li/2] j—1—1

S lS J_— i+j—4

7S¢ =) ( o )Sq Sq".
£=0

There are analogous operations at odd primes:

Theorem 14.2. For any odd prime p there are operations
Pl HY(X;Z/pZ) — H" 2 =Y(X; 7,/p7Z).

These maps are homomorphisms and are natural in X. In addition they satisfy
(a) PO =
(b) P'(x )—x”for% |z,
(c) for 2i>|z|, Pz =0,
(d)

k

PrzUy) =) Plz) UPH(y).

=0

There are Adém relations for odd primes as well. They are more complicated and involve relations with
the mod-p-Bockstein:

o . SOV — ) — 1\
PZPJ=Z(—1)”’“<(p )G~ ) )P“”_k?’k,i<pj, and

- i — pk
inpi _ ik (=1 — k) i+j—kpk
Pﬁpﬂ_zk:(—lw( P ok )ﬁpﬂ P
ik (=D — k) = 1\ iy o

We will construct the Sq via acyclic models. There are alternative constructions. For instance you can
find a geometric one in Hatcher’s book.

We will first define a sequence of U;-products with Uy = U. These exist because the cup product is
homotopy commutative on chain level but not strictly commutative.

Construction: Consider a diagonal approximation on singular chains, i.e.,
Ap: Su(X) = Su(X) @ Su(X).
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The twist map 7: S,(X) ®5,(X) — S.(X)® S.(X) sending a®b to (—1)!/1’lp © a for homogenous a, b gives
rise to another diagonal approximation 7o Agy. But any two of these are chain homotopic so there is a map
of degree one

Ap: Su(X) = (5:(X) @ 5u(X))wpa
with
OoA1+A100=70Ag—Ap=(7—1id) o Ay.
As (1 +id)(r —id) = 72 —id = 0, we get
(1 +id)A; + (7 +id)A,0
=0TA1 + 0A1 +7A10 + A0
=0TA1 + 700 — Ao +T7A10
=01A1 —01TA1 =0
because 7A10 = 7(7A¢ — Ag — OA1) = Ag — TAg — TOA; and 7 is a chain map.
Therefore the composition (7 4 id)A; is a chain map of degree one. As the zero map is another such

map and as both maps agree on Sy(X), the method of acyclic models shows that there is a chain homotopy
between (7 4 id)A; and zero, i.e.,

Agl S*(X) — (S*(X) ® S*(X)>*+27 8A2 — A28 = (T + ld)Al

Now you can iterate the process: (7 —id)As is a chain map of degree 2, and this leads to higher chain
homotopies

Ap: Su(X) = (S:(X) @ Su(X))wpn,n > 1,
with
01+ (—1)"Ay 10 = (7 + (=1)"THA)A,,.
Definition 14.3. 1) Let R be a commutative unital ring, then
hn: S*(X;R)® S*(X;R) — S*(X; R)

is defined as
S*(X;R) ® S*(X; R) —— Hom(S.(X) ® S.(X), R)

\ P;

Hom(S.(X), R
2) The cup-i-product of two cochains a € SP(X; R), 8 € S*(X; R) is defined as
aVy; B:=h(a® pb).

As A, raises degree by n, h, lowers degree by n. In particular, |a U, 5| = |a| + |5] — n.

Theorem 14.4. For odd q—n or for rings with 2R = 0 the map o — aU, « induces a natural homomorphism
Sqn: HY(X;R) — H*"(X; R),[a] = Sqn[a] = [hn(a® a)].

We obtain the Steenrod operations via a shift in degree:

Definition 14.5. For odd j or for rings R with 2R = 0 we define
Sq¢: HY(X; R) — H™ (X; R)

as S¢? = Sqq—;.

Proor oF THEOREM [I4.4] (See Glen E. Bredon, Topology and Geometry, Springer GTM 139, Springer
1993, pp. 414-415) One has to show that cocycles go to cocycles and that coboundary terms are mapped
to coboundaries. To that end one shows

Bpy1(6a @ da) = (—=1)" 6,11 (a @ 6a) — 6h,(a @ a).
The map h,, is linear up to coboundary terms:
ha((+ B) @ (a4 B)) = hn(a ® a) + hn(B®@ B) + hpi16(a @ B) + (=1)"6hni1(a ® B).
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O

Note that for &« € H1(X; R) we get S¢?(a) = Sqo(a) = ho(a® a) = aU . With the usual argument we
get that any two families A,, are homotopic, so on H* the operations Sq¢* do not depend on the choices for
A,

We have a suspension isomorphism, o, on cohomology and the Sq¢' commute with this map.

Proposition 14.6. For all n and i the diagram
H"(X;7/22) —>— H""\(ZX;Z/27)

Sqil lsqi

H"(X;7,/27) — H'" Y (SX;Z/27)
commutes.
PROOF. The suspension isomorphism arises from the composition
H™(X:2)22)—2—H"(CX, X; Z/2Z) = H"\(SX; Z/27).
The naturality of the Sq’ then proves the claim. |
We discuss one application of Steenrod operations and calculate the action of the Sq' on H* (RP>°;Z/27).

14.1. Non-triviality of the stable Hopf maps. We know by duality arguments that the Hopf map
n: S* — §% = CP! is not null-homotopic. Using Steenrod operations we also get:

Proposition 14.7. For alln > 0, ¥™n is not null-homotopic.

PrOOF. The cell structure of CP? is the mapping cone of 7
cP?>=8§*y, D*
and therefore we get
Y"CP? = ¥"(S? U, D*) = S Ugn,, D™
Assume Y1 ~ x. Then ZCP? ~ S3VS®. Consider the projection map 7: S*VS? — S? and the corresponding
diagram in cohomology:

H3(S%7,/27) — L H5(S,7./22)

H3(S? v §5: 2,/27) =L H5(SP v S5, 2,/27)

3(SCP2; Z,/27) H5(SCP?,7Z/27)

Hence the operation Sgq? is trivial on H3(SCP?;Z/2Z) because H*(S® Vv S5 Z/27Z) = H*(S*Z/27Z) ®
H*(S%;Z/2Z). On the other hand, if « € H?(CP?,Z/27Z) then S¢*(c(a)) = 0Sq¢*(a) = o(a?) # 0.
The argument also works for higher suspensions of 7. (Il

As a consequence, [X"7] is a non-trivial element in 7,41 (S™) for all n > 2 and hence this group is not
trivial. In fact:
7Tn+1Sn = Z/2277L 2 3
is generated by suspensions of 7.
We can also consider the other Hopf maps: For quaterionic projective spaces there are defining fibre
bundles
S* — s HP"
so in particular for n = 1 we get
S* —»§" — HP' = §*
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and the bundle map is usually called v: S” — S%.

For the Cayley numbers there are no higher-dimensional generalizations, but there is a fibre bundle
o: S — S® with fibre S”. One can show in a similar manner that these elements and their suspensions give
rise to non-trivial elements in the corresponding homotopy groups.

Definition 14.8. The k-th stable homotopy group of the sphere is
g = colimy, 7,4+, (S™).
This limit actually stabilizes at a finite stage:
T & Tk (S™) for n >k + 1.
Corollary 14.9. The stable homotopy groups of the sphere w7, ©3 and 73 are non-trivial.
The values of these groups are
m 2 Z)27, w3 =2 ZL[247, w5 = 7/240Z.

With the help of Steenrod operations one can also show that the squares %, v and ¢2 are not nullho-
motopic. Here you have to use suitable suspensions to compose the maps. I will do the case of the first Hopf
map.

Proposition 14.10. The composition X" 210 X" 1n: S"*t2 — §" is not nullhomotopic for all n > 2.

ProoOF. Consider the mapping cone, C, of ¥" 1. This space is homotopy equivalent to X"~ 'CP? and
therefore we know that Sq' is trivial on H"*1(Cy;Z/2Z) but Sq¢? is an isomorphism.
Let ¢: S"~2 — (] be the attaching map for the (n + 3)-cell in

Ci = snHt Usn-1y D"+3.
Assume that the composition " ~270 X"y is nullhomotopic. Then any nullhomotopy yields an exten-
sion
h: D3 = CS" T2 5 §"
and we can use this map to get a well-defined map
k:Ci — S”.
(On the image of ¢ the map X" ~21 gives £" 2po X" 1p.)
We denote the mapping cone of k by Cs, hence
Cy =S" Uy, C(Cl) = S" Uy C(Sn+1 Usn—1y Dn+3) >~ S™ Uy Dnt2 Uesn-1y Dn+4).
The subcomplex S™ Uy D"2 can be identified with the cone of %" ~21 whereas Cy/S" ~ £C}.
Therefore Sq? is an isomorphism
Sq*: H"(Co;2/27) — H™2(Ca; Z/27)
because for these degrees the cohomology groups are isomorphic to the ones of the cone of X" ~25. In addition

The cohomology of C3/S™ ~ 3C; agrees with the one of Cs in degrees larger than n because of the cell
structure of these spaces. Therefore

Sq?: H"2(Cy; 7)27) — H"4(Cy; 7./27)

is an isomorphism as well.
This is a contradiction because the Adém relation Sq2Sq? = Sq3Sq' decomposes this alleged isomor-
phism into a composition with Sq! and this is the zero map on H"(Cy;Z/27) = H"(C1;Z/27Z). O

The proof can be generalized to the squares of the other two Hopf maps, but there one needs the more
complicated Adém relations for Sq*Sq* and S¢®S¢®. You should work out what they are.

Corollary 14.11. The stable homotopy groups of the sphere w3, g and 73, are not trivial.
In fact, 7§ 2 Z/2Z = «§ and w5, = Z/2Z X Z/2Z.
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14.2. Steenrod operations on the cohomology of RP>°. We know that H*(RP>;Z/27) = 7./2Z][a])
with |a| = 1. In general, we get:

Lemma 14.12. Ifz € HY(X;Z/27Z), then
sa'(at) = (F)at

7

PROOF. Due to the unstability condition there are only non-trivial Sq¢°(x) = z and Sq¢'(z) = 22. The
Cartan formula then proves the claim. O

Remark 14.13. The formal expression

Sq = Z Sqt
i=0

is called the total Steenrod operation. Evaluated on an element in some cohomology group, this sum is finite
thanks to the unstability constraint. The total Steenrod operation helps to organize certain calculations, for
instance the Cartan relation can we rewritten as

Sq(a U B) = Sq(a) U Sq(B)

and this in turn gives an alternative proof of the lemma above, because for an z € H'(X;Z/27Z) we have

Sq(z) = = + 2*
and with Sq(z*) = Sq(x)* we obtain
"k e
By _ 2\k _ k—i, 2 _ kt-i
Sq(z®) = (z + z=) —iEZO <Z)x x —12:0 <Z)z .

Comparing the coefficients then proves the claim.

This yields a complete description of the action of the Steenrod operations on H*(RP*°;Z/27Z). We
therefore have to understand how binomial coefficients behave modulo 2.

Lemma 14.14. Letk =}, k;27 and i = > i;27 be the 2-adic expansions of k and i. Then

() 1I(3) e

J
PRrROOF. We consider Z/2Z[X] and get

(1+X)F =(1 4 X)Zeks?’
ZH(1 + X7 =T+ X2k

J
kj 027
11 (%)
i e
Comparing the coefficients at X* gives the result. O

A similar formula holds for odd primes using the p-adic expansion of k and . Note that we only used
that the p-th power map is a homomorphism mod p.

Corollary 14.15. For a € HY(RP>;Z/27Z) the Steenrod action on elements of the form o2 s

2" -
. a” i =0,
i 2 _ 21c+1 . k
Sq (Oé ) - « y U= 2 )
0, otherwise.
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These are not the only non-trivial cases:
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