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Classical central simple algebras

Let R be a commutative ring and A an R-algebra. We denote by
Aop the opposite algebra corresponding to A.

µ : A⊗R Aop → EndR(A),

a⊗ b 7→ (c 7→ acb).

Fact: If R is a field and A is finite dimensional, then A is central
simple iff µA is an isomorphism.
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Classical Azumaya algebras

An R-algebra A is Azumaya, if

1. A is a faithful, finitely generated projective R-module and

2. the map µA is an isomorphism.

If P is a faithful, finitely generated projective R-module, then
EndR(P) is an Azumaya algebra.
Two Azumaya algebras A and B are called Brauer equivalent, if
there are faithful, finitely generated projective R-modules P,Q
such that

A⊗R EndR(P) ∼= B ⊗R EndR(Q).

We denote by [A] the Brauer equivalence class of A.
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Classical Brauer groups

The Brauer group of R is

Br(R) := {[A]|A Azumaya over R}

Facts:

I Br(R) is an abelian group with [A][B] := [A⊗R B].

I If A is equivalent to R, then A ∼= EndR(P) for some faithful,
finitely generated projective R-module P.

I [A][Aop] = [A⊗R Aop] = [EndR(A)] = 0.
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Examples

I If k is an algebraically closed field, then Br(k) ∼= 0.

I Br(Fq) ∼= 0, if Fq is a finite field,

I Br(R) ∼= Z/2Z = 〈[H]〉,
I Br(Q) ∼= Z/2Z⊕

⊕∞
i=1Q/Z.

I Br(Z) ∼= 0,

I Br(Z[π]) ∼= 0 for any finite abelian group π,

I (R,m) complete and local, then Br(R)→ Br(R/m) is an
isomorphism (Azumaya, Auslander-Goldman), e.g.,
Br(Zp) ∼= 0.

I Br(Z[12 ]) ∼= Z/2Z.
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Topological Azumaya algebras

Let R be a commutative S-algebra. We work in the categories of
R-modules, MR , and associative R-algebras, AR .

Let A be a cofibrant R-algebra. Then A is a (topological)
Azumaya algebra over R if

1. A is a dualizable R-module,

2. µA : A ∧R Aop → FR(A,A) is a weak equivalence, and

3. A is faithful as an R-module.
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Base change

Lemma

1. If A is Azumaya over R and C is a commutative R-algebra,
then A ∧R C is Azumaya over C .

2. Let A ∈ AR and let C be a commutative R-algebra, such that
C is dualizable and faithful as an R-module. If A ∧R C is
Azumaya over C , then A is Azumaya over R.

3. If A and B are Azumaya over R, then so is A ∧R B.

4. For any cofibrant faithful dualizable R-module M, FR(M,M)
is Azumaya over R.
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Brauer groups

Let A and B be Azumaya algebras over R. Then A is Brauer
equivalent to B, if there are cofibrant faithful dualizable R-module
spectra M,N such that

A ∧R FR(M,M) ' B ∧R FR(N,N).

As in algebra, we define the Brauer group of the commutative
R-algebra, Br(R), as the abelian group of Brauer equivalence
classes.
It is a priori not clear, that any Azumaya algebra A which is Brauer
equivalent to R is of the form FR(M,M) for suitable R-module
spectra M.
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Separability and centrality

Proposition Let A be an Azumaya algebra over R.

I A is separable, i.e., the multiplication m : A ∧R Aop → A has a
section in the derived category of A ∧R Aop-module spectra.

I A is homotopically central, i.e., the canonical map
R → THHR(A) is a weak equivalence.

Here, THHR(A), the topological Hochschild cohomology
spectrum, is FA∧RAop(Ã,A) where Ã is a cofibrant replacement of
A in the model category of A ∧R Aop-module spectra.
The proof uses Morita theory of ring spectra (Dwyer-Greenlees,
Baker-Lazarev, Schwede-Shipley)
In algebra, HomA⊗RAop(A,A) is the center of A.
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Galois extensions of commutative S-algebras

Let G be a finite group and B a commutative cofibrant R-algebra,
such that G acts on B via commutative R-algebra maps.
Definition[Rognes] The extension R → B is G -Galois if

I R ∼ BhG = FG (EG+,B) (htp fixed points)

I B ∧R B ' F (G+,B) (unramified condition)

Examples
KO → KU is a C2-Galois extension.
HR → HT is a G -Galois extension iff R → T is a G -Galois
extension of commutative rings (Rognes).
For a Galois extension R → B we can define the relative Brauer
group, Br(B/R), as

Br(B/R) = ker(Br(R)→ Br(B))

where the map is given by extension of scalars.
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Descent

For R → B G -Galois we consider the twisted group algebra B〈G 〉.

As an R-module spectrum, B〈G 〉 = B ∧ G+.
Symbolically, the multiplication is

(b1, g1)(b2, g2) = (b1g1(b2), g1g2).

From now on, we assume that B is faithful as an R-module.
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Proposition Let R → B be a G -Galois extension, M ∈ B〈G 〉-mod
of the form M = B ∧R N such that N ∈ R-mod and such that the
B〈G 〉-action on M is only given on the B-factor. Then N ' MhG .

Theorem (Galois descent) If C is an Azumaya algebra over B and
an B〈G 〉-module with R → B G -Galois and if B ∧R ChG → C is a
weak equivalence of B〈G 〉-modules, then ChG is Azumaya over R.
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Setting

Let R → B be a Cn-Galois extension and let Cn = 〈σ〉. In addition
we assume that we have a Z-action on R via R-module maps and
Z = 〈u〉.

Let Mn(B) =
∨n

i ,j=1 Bi ,j be the B-algebra of n × n-matrices with
Bi ,j = B for all i , j . Then Mn(B) has a G = Cn-action which is
given on the (i , j)-summand via

Bi ,j
id // Bi+1,j+1

u
δi,n−δj,n

// Bi+1,j+1
σ // Bi+1,j+1.
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Informally, for n = 2 the action is given by the matrix
σ

σu
σu−1

σ

 .

We define the cyclic algebra with respect to B, σ and u as

A(B, σ, u) := Mn(B)hG .
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Proposition The R-algebra A(B, σ, u) is Azumaya over R and is
split by B, i.e.,

A(B, σ, u) ∈ Br(B/R).



THH-examples

For a finite group G and a commutative S-algebra R, the extension

THHR(R[G ])→ R[G ]

is Azumaya in some good cases.

Fix a prime p. Let En be the n-th Lubin-Tate spectrum,

π∗(En) = WFpn [[u1, . . . , un−1]][u±1].

Here, the deformation parameters ui are of degree zero and
|u| = −2.
Similarly, Enr

n is a commutative S-algebra with

π∗(E
nr
n ) = W F̄p[[u1, . . . , un−1]][u±1].
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Azumaya algebras via homotopy centers

Theorem Let p be a prime that does not divide the order of the
non-abelian group G (G 6= 1) and let R be an Eilenberg-MacLane
spectrum Hk for an algebraically closed field k of characteristic p
or let R be Enr

n . Then

THHR(R[G ])→ R[G ]

is an Azumaya extension.



Idea of proof

Algebraic case: Artin-Wedderburn gives k[G ] ∼=
∏r

i=1Mmi (k), i.e.,
the center is étale and hence realizable via Robinson and
Goerss-Hopkins obstruction theory as a commutative Hk-algebra
C .

Angeltveit obstruction theory realizes Hk[G ] as an associative
C -algebra.
Lubin-Tate case: Reduction modulo the maximal ideal in π0E

nr
n

gives a splitting similar to the one above. We can lift the
corresponding idempotents and get

(Enr
n [G ]c)hG ∼

r∏
i=1

Enr
n .

These homotopy fixed points are equivalent to
THHEnr

n
(Enr

n [G ],Enr
n [G ]) and Enr

n [G ] can actually be realized as an
associative

∏r
i=1 E

nr
n -algebra, such that the extension is Azumaya.
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Eilenberg-MacLane spectra

Let R be an ordinary commutative ring and let T be an R-algebra.
If T is Azumaya over R, then so is HT over HR.

This yields a group homomorphism Br(R)→ Br(HR). For the
converse, we need (so far) that R satisfies the following: If M is a
finitely presented R-module and TorRk (M,M) = 0 for k > 0, then
M is flat.
For such R we have, that if HT is Azumaya over HR, then so is T
over R. Using results of Toën we can show that Br(Hk) = 0 if k is
an algebraically closed field.
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over R. Using results of Toën we can show that Br(Hk) = 0 if k is
an algebraically closed field.



Eilenberg-MacLane spectra

Let R be an ordinary commutative ring and let T be an R-algebra.
If T is Azumaya over R, then so is HT over HR.
This yields a group homomorphism Br(R)→ Br(HR). For the
converse, we need (so far) that R satisfies the following: If M is a
finitely presented R-module and TorRk (M,M) = 0 for k > 0, then
M is flat.
For such R we have, that if HT is Azumaya over HR, then so is T
over R.
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Importing examples from algebra

Assume that R is a commutative S-algebra and π0(R)→ A0 is an
algebraic Azumaya algebra.
Then using Angeltveit’s obstruction theory, we can realize
A∗ = π∗(R)⊗π0(R) A0 as an associative R-algebra spectrum.

In that way one can realize for instance algebraic quaternionic
extensions or cyclic extensions in brave new rings.
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Questions

I Is it true that HR → HT is Azumaya iff R → T is Azumaya
for arbitrary commutative rings R?

I What is the relationship between Br(HR) and Br(R)?

I What is the order of the A(B, σ, u) in Br(R)?

I What is Br(S)?
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