

Topology 39 (2000) 525-530

TOPOLOGY

www.elsevier.com/locate/top

Robinson-Whitehouse complex and stable homotopy

T. Pirashvili^{a, ☆}, B. Richter^{b, *}

^a Razmadze Mathematical Institute, Rukhadze str. 1, Tbilisi 380093, Georgia ^b Mathematisches Institut der Universität Bonn, Beringstraße, 1, 53115 Bonn, Germany

Received 6 July 1998; received in revised form 11 December 1998; accepted 25 January 1999

Abstract

There is a version of André-Quillen homology for commutative algebras called Γ -homology H_{Γ}^* which was introduced by A. Robinson and S. Whitehouse. We will prove that a generalized variant of H_{Γ}^* calculates the homotopy of every abelian Γ -group. © 2000 Elsevier Science Ltd. All rights reserved.

MSC: 13D03; 18G60; 55P47

Keywords: Harrison homology; Stable homotopy; Gamma spaces

1. Introduction

Recently, Alan Robinson and Sarah Whitehouse introduced a brave new algebra version of André-Quillen homology theory, called Γ -homology. One version of Γ -homology for Eilenberg-MacLane spectra of commutative rings, has a purely algebraic description (see [9] and Section 2). The goal of this paper is to give a construction, which is a little bit more general and which allows us to prove the following result. Let Γ be the small category of finite pointed sets. For any $n \ge 0$, let [n] be the set $\{0, 1, \ldots, n\}$ with basepoint 0. We assume that the objects of Γ are the sets [n]. Let A be a commutative k-algebra over a commutative ring k and let M be an A-module. According to Loday [4] there exists a functor $\mathcal{L}(A, M): \Gamma \to k$ -mod, which assigns $M \otimes A^{\otimes n}$ to [n]. Here all tensor products are taken over k. On the other hand any functor $T: \Gamma \to \{pointed spaces\}$ gives rise to a spectrum (see [8,1] and Section 3), thus $\mathcal{L}(A, M)$ gives a spectrum as well. Our result

0040-9383/00/\$ - see front matter \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

PII: S0040-9383(98)00014-2

^{*} Corresponding author. Tel.: 0049-228-733306; e-mail: richter @math. uni-bonn.de.

^{*} The author was partially supported by the grant INTAS-93-2618-Ext and by the TMR network K-theory and algebraic groups, ERB FMRX CT-97-0107.

claims that the homotopy groups of this spectrum are isomorphic to the Γ -homology of A with coefficients in M as defined in [9]. Actually we prove a more general result: The Robinson-Whitehouse complex, as it is defined in Section 2, calculates the homotopy of any abelian Γ -group.

2. Robinson–Whitehouse complex

A left Γ -module is a covariant functor from Γ to k-mod. For any left Γ -module $T: \Gamma \to k - mod$ we define the chain complex $C_*^{\Gamma}(T)$, which coincides with the Robinson-Whitehouse complex $C_*^{\Gamma}(A, M)$ when $T = \mathcal{L}(A, M)$. Let Ω be the category of all finite nonempty sets and surjections. We will assume that the objects of Ω are the sets

$$n := \{1, \dots, n\}, \quad n \geqslant 1.$$

Let $N\Omega_q(\underline{n},\underline{1})$ be the set of composable morphisms $[f_q|f_{q-1}|\cdots|f_1]$ in Ω of length q, starting at \underline{n} and ending at $\underline{1}$. So, we assume that the domain of f_1 is \underline{n} and the codomain of f_q is $\underline{1}$. Let $kN\Omega_q(\underline{n},\underline{1})$ be the module generated by the set $N\Omega_q(\underline{n},\underline{1})$. For any arrow $g:\underline{n}\to\underline{m}$ and $i\in\underline{m}$ one denotes by $g^i:\underline{n}^i\to\underline{1}$ the component of g at i. Here n^i is the number of elements in $g^{-1}(i)$. Similarly, given a string of k morphisms $[f_k|f_{k-1}|\cdots|f_1]$ of Ω ending at \underline{m} , one decomposes this into m strings of k morphisms each ending at $\underline{1}$. One denotes by $[f_k^{(i)}|f_{k-1}^{(i)}|\cdots|f_1^{(i)}]$ the ith component of $[f_k|f_{k-1}|\cdots|f_1]$. Let $T:\Gamma\to Vect$ be a Γ -module. Any map $g:\underline{n}\to\underline{m}$ has a unique extension as a pointed map $[n]\to[m]$. By abuse of notation we still denote this map by g. Following Sarah Whitehouse [9] we define the Robinson-Whitehouse chain complex $C_*^\Gamma(T)$ by

$$C_0^{\Gamma}(T) = T(\lceil 1 \rceil)$$

$$C_q^{\Gamma}(T) = \bigoplus_{n \geq 1} kN\Omega_q(\underline{n}, \underline{1}) \otimes T([n]) \text{ for } q \geqslant 1.$$

The boundary map $d: C_q^{\Gamma}(T) \to C_{q-1}^{\Gamma}(T)$ is the alternating sum of face maps $\partial_i: C_q^{\Gamma}(T) \to C_{q-1}^{\Gamma}(T)$, $0 \le i \le q$. For $[f_q|f_{q-1}| \cdots |f_1] \in N\Omega_q(n, 1)$ and $x \in T([n])$ one defines

$$\partial_0([f_q|\cdots|f_1]\otimes x)=[f_q|\cdots|f_2]\otimes f_{1*}(x),$$

$$\partial_i([f_q] \cdots |f_1] \otimes x) = [f_q] \cdots |f_{i+1}f_i| \cdots |f_1] \otimes x \quad \text{for } 0 < i < q.$$

In order to describe the last face map we need to fix additional notation. Let \underline{r} be the domain of f_q . Thus $f_{q-1} \cdots f_1 : \underline{n} \to \underline{r}$. Moreover, for any $1 \le j \le r$ let r_j be the number of elements in the preimage of j under $f_{q-1} \cdots f_1$. Let $l_j : [n] \to [r_j]$ be the map, which is nonzero only on the preimage of j under $f_{q-1} \cdots f_1$, where it is an ordering preserving bijection. Now one defines

$$\partial_q([f_q|\cdots|f_1]\otimes x) = \sum_{j=1}^r [f_{q-1}^{(j)}|\cdots|f_1^{(j)}]\otimes l_{j*}x \quad \text{if } q > 1$$

and $\partial_1([\underline{n} \to \underline{1}] \otimes x) = \sum_{j=1}^n g_{j*} x$ for q = 1. Here g_j : $[n] \to [1]$ is the map, for which $g_j(j) = 1$ and $g_j(i) = 0$ for i = j. Straightforward calculation shows that $\partial_i \partial_j = \partial_{j-1} \partial_i$ if i < j. Hence one obtains a chain complex, whose homology is denoted by $H_*^{\Gamma}(T)$.

For $T = \mathcal{L}(A, M)$ this complex was defined by S. Whitehouse. In this case one writes $H_*^{\Gamma}(A, M)$ instead of $H_*^{\Gamma}(T)$ and $H_*^{\Gamma}(A, M)$ is called the Γ -homology of A with coefficients in M.

3. Homotopy of Γ -spaces

Let $Sets_*$ be the category of all pointed sets and F be a left Γ -module. One can prolong F by direct limits to a functor $Sets_* \to k$ -mod. Then by degreewise action one obtains a functor from the category of simplicial sets with basepoint $s.Sets_*$ to the category of simplicial modules. By abuse of notation we will still denote this functor by F. By [1] one knows that the homotopy of the spectrum corresponding to the Γ -space F can be described as

$$\pi_*^{st}(F) := \operatorname{colim} \pi_{*+n} F(S^n).$$

Here S^n denotes a simplicial model of the *n*-dimensional sphere. By [1] this definition does not depend on the model one chooses for the sphere. Mimicking Korollar 6.12 in [2], one can prove that this limit always stabilizes and one has the isomorphism

$$\pi_i(F) \cong \pi_{i+n} F(S^n) \quad \text{if } n > i. \tag{3.1}$$

Theorem 1. Let F be a left Γ -module. Then there are natural isomorphisms

$$\pi^{st}_*(F) \cong H^{\Gamma}_*(F).$$

Remark. It is already proved by the first author (see [5] or E.13.2.2 of [4]) that $\pi_*^{st}(F)$ is isomorphic to $Tor_*^{\Gamma}(t, F)$. Here $t: \Gamma^{op} \to Ab$ maps a finite pointed set S_+ to the free abelian group generated by the elements of S.

Proof. Let Γ -mod be the category of all Γ -modules. Clearly Γ -mod is an abelian category with enough projective objects. Moreover π_*^{st} and H_*^{Γ} define exact connected sequences of functors from Γ -modules to k-modules. Therefore it is enough to show that both sequences vanish on projectives in positive dimensions and are isomorphic to each other in dimension zero. Since π_*^{st} and H_*^{Γ} commute with direct sums it is enough to consider projective generators. According to Section 4 and Lemma 2 it suffices to consider the left modules $L^{\otimes n}$, $n \geq 0$. That π_*^{st} vanishes on projective left Γ -modules is clear from the remark we made above. Lemma 3 below gives an independent proof for this fact. The vanishing result for H_*^{Γ} is proved in Lemma 4. The isomorphism in dimension zero can be directly seen; it is also consequence of Lemmas 3 and 4.

Lemma 2. For left Γ -modules F, T one has an isomorphism

$$\pi_*^{st}(F \otimes T) \cong \pi_*^{st}(F) \otimes T([0]) \oplus F([0]) \otimes \pi_*^{st}(T).$$

Proof. One of the models of S^n has only two nondegenerate simplexes, one in dimension 0 and a second one in dimension n. Therefore for n > 0 the group $\pi_j F(S^n)$ is F(0) for j = 0 and is zero for 0 < j < n. Having this fact in mind the Lemma is a consequence of the isomorphism (3.1) and the Eilenberg–Zilber theorem. \square

4. Projective generators in Γ -mod

For any $n \ge 0$ one defines

$$\Gamma^n := k \lceil Hom_{\Gamma}(\lceil n \rceil, -) \rceil.$$

Here k[S] denotes the free k-module generated by a set S. It is a consequence of the Yoneda lemma that the functors Γ^n are projective generators in Γ -mod for $n \ge 0$. Clearly Γ^0 is the constant functor with the value k and $\Gamma^n \otimes \Gamma^m \cong \Gamma^{n+m}$. Here for any two left Γ -modules F and T we define

$$(F \otimes T)(\lceil n \rceil) := F(\lceil n \rceil) \otimes T(\lceil n \rceil).$$

Moreover $\Gamma^1 \cong \Gamma^0 \oplus L$, where L takes [n] to the free k-module generated by the set [n] modulo the subspace generated by $0 \in [n]$. Hence the $L^{\otimes n}$, $n \ge 0$, are also projective generators. The Γ -homology and the homotopy of these projective generators are described in the following two lemmas.

Lemma 3. The left Γ -modules $F = L^{\otimes n}$ have the following homotopy:

$$\pi_*^{st}(F) = 0$$
 if $n \neq 1$,

and for n = 1 one has

$$\pi_i(L) = 0$$
, for $i \ge 1$ and $\pi_0(L) \cong k$.

Proof. If n = 0, then F is a constant functor. Therefore $F(S^n)$ is a constant simplicial module and the result follows. Now assume $n \ge 1$. Thanks to Lemma 6, it is enough to consider the case F = L, because L([0]) = 0. In this case one can use the isomorphism (3.1) and the fact that the chain complex associated to the simplicial module $L(S^n)$ is nothing but the reduced chains of S^n with coefficients in k \square .

Lemma 4. The Γ -homology of the left Γ -modules $F = L^{\otimes m}$ is as follows:

$$H_*^{\Gamma}(F) = 0$$
 if $m \neq 1$

and for m = 1 one has

$$H_i^{\Gamma}(L) = 0$$
, for $i \ge 1$ and $H_0^{\Gamma}(L) \cong k$.

Proof. Using the fact that the generalized Robinson-Whitehouse complex is a semisimplicial module, we are going to construct homotopies to prove the claim.

In the case m=0 we have the constant functor with the value k. We denote a generator of $C_q^{\Gamma}(F)$ by

$$[f_q|\ldots|f_1]\otimes(1).$$

Here (1) is the unit in k. The homotopy in degree zero from the identity map to zero is easy to guess: We take

$$h_0(1) := \lceil 2 \to 1 \rceil \otimes (1) - \lceil 1 \to 1 \rceil \otimes (1).$$

For the homotopies in higher degrees we need to describe some additional maps. If we have two maps $f: \underline{n} \to \underline{m}$ and $g: \underline{k} \to \underline{l}$ in Ω , we can build their sum $f \sqcup g$ in the obvious way, such that $f \sqcup g: \underline{n} + \underline{k} \to \underline{m} + \underline{l}$. Moreover we can define a folding map $\delta: \underline{2n} \to \underline{n}$ just by

$$\delta(i) = i$$
 for $1 \le i \le n$ and $\delta(n+i) = i$ again for $1 \le i \le n$

Now the presimplicial homotopy $h = \sum_{i=0}^{q} (-1)^{i} h_{i}([f_{q}| \dots |f_{1}] \otimes (1))$ can be defined as follows:

$$h_0([f_q|\dots|f_1]\otimes(1))$$

$$:= [f_q|\dots|f_1|\delta]\otimes(1) - [f_q|\dots|f_1|id]\otimes(1)$$

and

$$h_i([f_q|\ldots|f_1]\otimes(1))$$

$$:= [f_q|\ldots|f_{i+1}|\delta|f_i\sqcup f_i|\ldots|f_1\sqcup f_1]\otimes(1)$$

$$- [f_q|\ldots|f_{i+1}|id|f_i|\ldots|f_1]\otimes(1).$$

A straightforward calculation shows that this yields a homotopy between the identity map on $C_*^{\Gamma}(T)$ and the zero map.

In the cases $m \ge 1$ we can define the homotopy as follows: The chain complex consists of strings of composable morphisms tensorized with m-tuples (a_1, \ldots, a_m) of $a_i \in \underline{n_1}$ when the first map in this string starts in n_1 .

Let $\varepsilon(i)$ with $1 \le i \le n$ denote the map $\varepsilon(i): \underline{n+1} \to \underline{n}$ which takes n+1 to i and is the identity on all other values. Then we can define the maps h_i as

$$h_0([f_q|\ldots|f_1]\otimes(a_1,\ldots,a_m):=[f_q|\ldots|f_1|\epsilon(a_m)]\otimes(a_1,\ldots,a_{m-1},n_1+1)$$

and

$$h_{j}([f_{q}| \dots | f_{1}] \otimes (a_{1}, \dots, a_{m}) := [f_{q}| \dots | f_{i+1}| \varepsilon(f_{j} \dots f_{1}(a_{m})) | f_{i} \sqcup id | \dots | f_{1} \sqcup id]$$
$$\otimes (a_{1}, \dots, a_{m-1}, n_{1} + 1).$$

Here f_1 is supposed to start in $\underline{n_1}$.

In the cases m > 1 we obtain a homotopy between the identity map and the zero map. For m = 1 the homotopy connects the identity and the constant chain map η

$$\eta([f_q|\ldots|f_1]\otimes(a)):=[id|\ldots|id]\otimes(1).$$

These facts can be seen by direct but tedious calculation.

5. Relation with Harrison theory

In 3.3 of [3] Loday defined the Harrison homology of a left Γ -module F, which is denoted by $Harr_*(F)$. For $F = \mathcal{L}(A, M)$ one recovers the usual Harrison homology of commutative algebras (see [4]). It is a well-known fact that, in the characteristic zero case, Harrison homology is isomorphic to André-Quillen homology (see [6]) up to a shift in dimension. It follows from the very definition that $Harr_0(F) \cong F([0])$ and $Harr_1(F) \cong \pi_0(F)$.

It is not hard to show that in the characteristic zero case one has an isomorphism $Harr_{*-1}(F) \cong \pi_*^{st}(F)$ (see [5] for this and more general results). Thus $Harr_{*-1}(F) \cong H_*^{\Gamma}(F)$. This was also proved in [9] based on the combinatorical and homotopical analysis of the space of fully grown trees [7]. In positive characteristic the sequence of functors $Harr_*: \Gamma\text{-mod} \to k\text{-mod}$ does not form an exact connected sequence of functors, but still Harrison homology vanishes on projective Γ -modules. The proof of this fact is a bit technical and will be given elsewhere.

Ackowledgements

The authors would like to thank Alan Robinson for an important comment on the subject and the referee for his helpful suggestions. Finally it is a pleasure to thank the SFB 343 Bielefeld for the hospitality.

References

- [1] A.K. Bousfield, E.M. Friedlander, Homotopy theory of Γ -spaces, spectra, and bisimplicial sets, In: Geometric applications of homotopy theory, Proceedings Conference, Evanston, Ill, 1977, II, Lecture Notes in Mathematics, vol. 658, Springer, Berlin 1978, pp. 80–130.
- [2] A. Dold, D. Puppe, Homologie nicht-additiver Funktoren, Anwendungen, Annals de l' Institut Fourier 11 (1961) 201–312.
- [3] J.-L. Loday, Opérations sur l'homologie cyclique des algèbres commutatives, Inventiones mathematicae 96 (1989) 205–230.
- [4] J.-L. Loday. Cyclic Homology, Grundlehren der mathematischen Wissenschaften, vol. 301, second ed., Springer, Berlin, 1998.
- [5] T. Pirashvili, Hodge decomposition of higher order Hochschild homology. In preparation.
- [6] D.G. Quillen, On the (co)homology of commutative rings, American Mathematic Society Proceedings Sym. Pure Math. XVII (1970) 65-87.
- [7] A. Robinson, S. Whitehouse, The tree representation of \sum_{n+1} , Journal of Pure and Applied Algebra 111 (1996) 245–253.
- [8] G. Segal, Categories and cohomology theories, Topology 13 (1974) 293–312.
- [9] S.A. Whitehouse, Gamma (co)homology of commutative algebras and some related representations of the symmetric group, Thesis, University of Warwick, 1994.