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QUASISYMMETRIC FUNCTIONS FROM A
TOPOLOGICAL POINT OF VIEW

ANDREW BAKER and BIRGIT RICHTER∗

Abstract

It is well-known that the homology of the classifying space of the unitary group is isomorphic
to the ring of symmetric functions Symm. We offer the cohomology of the space ��CP∞ as a
topological model for the ring of quasisymmetric functions QSymm. We exploit standard results
from topology to shed light on some of the algebraic properties of QSymm. In particular, we
reprove the Ditters conjecture. We investigate a product on��CP∞ that gives rise to an algebraic
structure which generalizes the Witt vector structure in the cohomology of BU . The canonical
Thom spectrum over ��CP∞ is highly non-commutative and we study some of its features,
including the homology of its topological Hochschild homology spectrum.

Introduction

Let us recall some background on the variants of symmetric functions. For a
much more detailed account on that see [17], [18].

The algebra of symmetric functions, Symm, is an integral graded polyno-
mial algebra

Symm = Z[c1, c2, . . .],

where ci has degree 2i. The reader is encouraged to think of these ci as Chern
classes. This algebra structure can be extended to a Hopf algebra structure by
defining the coproduct to be that given by the Cartan formula

�(cn) =
∑
p+q=n

cp ⊗ cq.

The antipode on Symm is defined as

χ(cn) =
∑

i1+···+im=n
(−1)mci1 · . . . · cim .
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This Hopf algebra is self dual in the sense that there is an isomorphism of Hopf
algebras

Symm∗ ∼= Symm,

where Symm∗ is the degree-wise Z-linear dual of Symm. In particular, Symm
is bipolynomial, i.e., the underlying algebra of the Hopf algebra and its dual
are both polynomial algebras.

The non-commutative analogue of the algebra Symm is the algebra of non-
symmetric functions, NSymm (also known as the Leibniz algebra) which is
the free associative graded Z-algebra Z〈Z1, Z2, . . .〉 on generators Z1, Z2, . . .,
where Zi has degree 2i. Again, NSymm comes with a natural coproduct given
by

�(Zn) =
∑
p+q=n

Zp ⊗ Zq

and an antipode given on Zn by

χ(Zn) =
∑

a1+···+am=n
(−1)mZa1 · . . . · Zam.

The Hopf algebra of quasisymmetric functions (sometimes written quasi-
symmetric functions), QSymm, is defined to be the dual Hopf algebra to
NSymm. We follow the convention from [17], [18], denoting the element
dual to the monomial Za1 · . . . · Zan with respect to the monomial basis by
α = [a1, . . . , an] and call the number a1 + · · · + an the degree of α. The
resulting product structure among these elements is given by the overlapping
shuffle product of [16, section 3]. For example, using the dual pairing, we find
that

[3][1, 2] = [3, 1, 2]+ [1, 3, 2]+ [1, 2, 3]+ [4, 2]+ [1, 5].

Often it is useful to vary the ground ring and replace the integers by some
other commutative ring with unitR. We define Symm(R) to be Symm⊗R, and
similarly we set NSymm(R) = NSymm⊗R and QSymm(R) = QSymm⊗R.

The algebras NSymm and QSymm have received a great deal of attention in
combinatorics. Several structural properties were proven, for instance about the
explicit form of the primitives in the coalgebra NSymm [19] or the freeness of
QSymm as a commutative algebra [16]. The latter result is known as the Ditters
conjecture, and is our Theorem 2.1. The original methods of proof came from
within combinatorics. We offer an alternative proof using ingredients from
algebraic topology.

In the case of symmetric functions, Liulevicius [21] exploited the iden-
tification of Symm with the cohomology of BU to use topology to aid the
understanding of some of the properties of Symm. In this paper we offer a



210 andrew baker and birgit richter

topological model for the Hopf algebras NSymm and QSymm by interpreting
them as homology and cohomology of the loop space of the suspension of the
infinite complex projective space, ��CP∞.

Our desire to find a topological model for the algebra of quasisymmetric
functions has its origin in trying to understand Jack Morava’s thoughts on
connecting Galois theory of structured ring spectra to motivic Galois theory,
as explained in [25]. We do not claim that our insights are helpful in this
context, but it was our motivation to start this investigation.

The first part of this paper is concerned with the algebraic structure of the
algebra of quasisymmetric functions.

In Section 1 we describe the isomorphism between the Hopf algebra
NSymm and the homology of the loop space on the suspension of the in-
finite complex projective space. This identification is probably known to many
people, but we do not know of any source where this is seriously exploited.

We give a proof of the Ditters conjecture in Section 2. This conjecture states
that the algebra QSymm is polynomial and was proven by Hazewinkel in [16].
Our proof uses the Hilton-Milnor theorem which also yields an explicit set of
generators over the rationals.

The second part deals with the topological properties of the model��CP∞
and its relation to BU .

We investigate the p-local structure of QSymm in Section 3 using the split-
ting of �CP∞ at a prime p. We discuss Steenrod operations on QSymm(Fp)
in Section 4.

It is well-known that the ring of big Witt vectors on a commutative ring
is represented by Symm. Topologically this structure is induced by the two
canonical H -structures on BU . We recall this in Section 5, then in Section 6
we introduce product structures on��CP∞ which in cohomology produces a
structure that we call the quasi-Witt structure on QSymm, a hitherto unremarked
algebraic structure, which differs from the one explored by Hazewinkel in [17,
§14].

The canonical map from ��CP∞ to BU is a loop map. Therefore the
associated Thom spectrum has a strictly associative multiplication. But as is
visible from the non-commutativity of its homology, it is not even homotopy
commutative. We will describe some of its features in Sections 7 and investigate
the homology of its topological Hochschild homology spectrum in Section 8.
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Part 1. Algebraic properties of the algebra of quasisymmetric
functions

1. A topological manifestation of NSymm

In this part we will recall some standards facts about H∗(��CP∞).
There is a nice combinatorial model JX for any topological space of the

form ��X with X connected, namely the James construction on X, fully
described in [34, VII §2]. After one suspension this gives rise to a splitting

(1.1) ���X ∼ �JX ∼
∨
n�1

�X(n),

where X(n) denotes the n-fold smash power of X.
If the homology ofX is torsion-free, then the homology of JX is the tensor

algebra on the reduced homology of X

H∗(JX) ∼= T (H̃∗(X)).
The concatenation of loops in��CP∞ together with the diagonal on��CP∞
turns the homology of ��CP∞ into a Hopf algebra.

The integral homology of CP∞ has Hi(CP∞) = Z for all even i with
generators βi ∈ H2i (CP∞) and is trivial in odd degrees. Therefore

H∗(��CP∞) ∼= T (H̃∗(CP∞)) = Z〈β1, β2, . . .〉,
with βi being a non-commuting variable in degree 2i. Thus there is an iso-
morphism of algebras

(1.2) H∗(��CP∞) ∼= NSymm

under which βn corresponds toZn. The coproduct� onH∗(��CP∞) induced
by the diagonal in ��CP∞ is compatible with the one on NSymm:

�(βn) =
∑
p+q=n

βp ⊗ βq.

Putting this information together, we see that (1.2) gives an isomorphism of
graded, connected Hopf algebras. Note that the antipode χ in H∗(��CP∞)
arises from the time-inversion of loops. As antipodes are unique for Hopf
algebras which are commutative or cocommutative, this gives a geometric
interpretation for the antipode in NSymm.

As the homology of��CP∞ is a graded free abelian group, the linear dual
ofH∗(��CP∞) is canonically isomorphic to the cohomology,H ∗(��CP∞),
which is also a Hopf algebra. Thus we have proven the following result.
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Theorem 1.1. There are isomorphisms of graded Hopf algebras

H∗(��CP∞) ∼= NSymm, H ∗(��CP∞) ∼= QSymm.

Remark 1.2. Note that the cohomological degree of a generator corres-
ponding to a sequence α = [a1, . . . , an] is twice its degree.

There is the canonical inclusion map j : CP∞ = BU(1) −→ BU . The
universal property of ��CP∞ as a free H -space gives an extension to a loop
map

j

CP∞ BU

��CP∞

which induces a virtual bundle ξ on ��CP∞. On homology, the map j in-
duces an epimorphism because CP∞ gives rise to the algebra generators in
H∗(BU) and correspondingly, H ∗(j) is a monomorphism on cohomology.
This corresponds to the inclusion of symmetric functions into quasisymmetric
functions. We will describe this in more detail in Section 5.

Hazewinkel mentions in [19] that over the rationals the Lie algebra of prim-
itives in the Hopf algebra NSymm(Q) is free and says that the primitive part of
NSymm “is most definitely not a free Lie algebra; rather it tries to be something
like a divided power Lie algebra (though I do not know what such a thing would
be)”. In this section we give a topological proof of the rational result and we
explain how to make sense of this last comment in positive characteristic.

A theorem of Milnor and Moore [24, Appendix] identifies the Lie-algebra of
primitives in the Hopf algebra H∗(��CP∞;Q) with the Lie-algebra
π∗(��CP∞) ⊗ Q. Here the Lie-algebra structure on π∗(��CP∞) is that
given by the Samelson-Whitehead product [34, X §§5-7].

Let C be a simply connected rational co-H -space that is a CW-complex.
Scheerer in [29, pp. 72–73] proves that for such spaces C, the Lie algebra
π∗(�C) is a free Lie-algebra. So in particular, π∗(��CP∞) ⊗ Q is a free
Lie-algebra.

In the case of positive characteristic, operads help to identify the primitives
in NSymm. In [12, theorem 1.2.5], Fresse uses the fact that for a vector space
V over a field k of characteristic p, the primitives in a tensor algebra T (V )
can be identified with the free p-restricted Lie-algebra generated by V . He
shows that the free p-restricted Lie-algebra is isomorphic to the direct sum of
invariants ⊕

n�1

(Lie(n)⊗ V ⊗n)�n,



quasisymmetric functions from a topological point of view 213

where Lie(n) is the nth part of the operad which codifies Lie algebras. We note
that instead of invariants we may take coinvariants⊕

n�1

(Lie(n)⊗ V ⊗n)�n

to give the free Lie algebra generated by the vector space V , whereas in
Fresse’s terminology of [12, p. 4122], the invariants codify the free Lie algebra
with divided symmetries. In the case when V is the vector space generated by
Z1, Z2, . . . we may deduce the following result.

Proposition 1.3. For a field k of positive characteristic p, the Lie sub-
algebra of primitives Prim(NSymm(k)) agrees with the free p-restricted Lie-
algebra on the k-vector space V generated by Z1, Z2, . . . and furthermore
there is an isomorphism⊕

n�1

(Lie(n)⊗ V ⊗n)�n ∼= Prim(NSymm(k)).

2. A proof of the Ditters conjecture

In this section we give a topological proof of the Ditters conjecture which
asserts that the algebra QSymm is a free commutative algebra (see [16], [18]),
and use the Hilton-Milnor theorem to show that over the rationals the generators
can be indexed on Lyndon words (see Definition 2.5). The Ditters conjecture
started off as a statement [9, proposition 2.2], but it turned out that the proof
was not correct. There were later attempts by Ditters and Scholtens to prove the
conjecture [10], however, the line of argument there turned out to be incorrect
as well. Hazewinkel proved the conjecture in [16]. For another approach on
related matters from a topological perspective see [8]. Here is our statement
of these results.

Theorem 2.1. The algebra of quasisymmetric functions, QSymm, is a
free commutative algebra. Over the rationals, the polynomial generators of
QSymm(Q) in degree 2n can be indexed on Lyndon words of degree n.

This Theorem recovers Hazewinkel’s result [16, theorem 8.1]. Recall that
the degree of a word a1 · . . . · an with ai ∈ N is a1 + · · · + an.

Our proof proceeds by using Borel’s theorem on the structure of Hopf al-
gebras over perfect fields [24, theorem 7.11] to first identify the rationalization
of QSymm as a polynomial algebra and then to show that the Fp-reductions
are polynomial for all primes p. Finally, we use a gluing result Proposition 2.4
to obtain the integral statement. For the explicit form of the generators we
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compare the words arising in the Hilton-Milnor theorem to Lyndon words in
Proposition 2.6.

The rational version of Borel’s theorem immediately implies that the algebra
of rational quasisymmetric functions, QSymm(Q), is a polynomial algebra
because all its generators live in even degrees.

Rationally the suspension of CP∞ splits into a wedge of rational spheres

�CP∞Q ∼ S3
Q ∨ S5

Q ∨ · · · ∼ �(S2
Q ∨ S4

Q ∨ · · ·).
Therefore we can apply the Hilton-Milnor theorem for loops on the suspension
of a wedge of spaces [33, theorem 1.2] and obtain

��(S2
Q ∨ S4

Q ∨ · · ·) ∼
∏
α

′
�Nα,

where after suitable suspension, Nα is a smash product of rational spheres,
thus its cohomology is monogenic polynomial. The α in the indexing set of
the weak product run over all basic products in the sense of Whitehead [34,
pp. 511–512].

Note that in the usual formulation of the Hilton-Milnor theorem, only a finite
number of wedge summands are considered. However, a colimit argument
gives the countable case as well. In Subsection 2.2 we give a bijection between
the set of basic products and the set of Lyndon words. Thus

QSymm(Q) ∼= Q[xα | α Lyndon].

Now we consider the Fp-cohomology H ∗(��CP∞; Fp) which is canon-
ically isomorphic to the mod p reduction of the quasisymmetric functions,
QSymm(Fp). A priori the Borel theorem allows for truncated polynomial al-
gebras. However we will use the action of the Steenrod algebra to prove:

Proposition 2.2. QSymm(Fp) is a polynomial algebra.

Proof. Using the James splitting we obtain that as a module over the Steen-
rod algebra A ∗p , the positive part of QSymm(Fp) has a direct sum decomposi-
tion

QSymm(Fp)
∗>0 ∼=

⊕
n

H̃ ∗((CP∞)(n); Fp).

We have to show that no pth power of an element x can be zero. Such a power
corresponds to the Steenrod operation P |x|/2 applied to x. If p is odd, we write
P i for the reduced power operation, while for p = 2, we set P i = Sq2i .

These operations are non-trivial on the cohomology of CP∞ and from the
Cartan formula we see that they are non-trivial on the cohomology of the smash
powers.
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Remark 2.3. The above proof showed that the pth power operation on the
algebra QSymm(Fp) is non-trivial. We will explicitly determine the action of
the mod p Steenrod algebra on QSymm(Fp) in Section 4.

Taking the rational result and the Fp-cohomology result together with Pro-
position 2.4 below yields a proof of Theorem 2.1.

2.1. An auxiliary result on polynomial algebras

In this section we provide a useful local to global result on polynomial algebras
which may be known but we were unable to locate a specific reference.

If R is a commutative ring, then for a graded R-algebra A∗, we write
DAn (resp.QAn) for the decomposables (resp. indecomposables) in degree n.
Unspecified tensor products will be taken over whatever ground ring R is in
evidence. If p is a positive prime or 0, let Fp denote either the corresponding
Galois field or F0 = Q.

Proposition 2.4. Let H ∗ be a graded commutative connective Z-algebra
which is concentrated in even degrees and with each H 2n a finitely generated
free abelian group. If for each non-negative rational prime p,H(p)∗ = H ∗ ⊗
Fp is a polynomial algebra, then H ∗ is a polynomial algebra and for every
non-negative rational prime p,

rankQH 2n = dimFp QH(p)
2n.

Proof. Let p � 0 be a prime. We will denote by πp(n) the number of poly-
nomial generators ofH(p)∗ in degree 2n, and this is equal to dimFp QH(p)

2n.
The Poincaré series of the even degree part of H ∗(p) satisfies∑

n�0

rankH 2ntn =
∑
n�0

rankH(p)2ntn =
∏
n�0

(1− tn)−πp(n),

hence πp(n) is independent of p.
Now it is easy to see that the natural homomorphism DH 2n ⊗ Q −→

DH(0)2n is an isomorphism and therefore the natural homomorphismQH 2n⊗
Q −→ QH(0)2n is an isomorphism. Furthermore, for each positive prime p
there is a commutative diagram

0 −−−−→ DH 2n −−−−→ H 2n −−−−→ QH 2n −−−−→ 0

↓epic ↓epic ↓
0 −−−−→ DH(p)2n −−−−→ H(p)2n −−−−→QH(p)2n −−−−→ 0
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with exact rows and whose columns have the indicated properties. Since the
right hand vertical homomorphism factors as

QH 2n −→ QH 2n ⊗ Fp −→ QH(p)2n,

we see that the right hand factor is an epimorphismQH 2n⊗Fp −→ QH(p)2n.
This implies that

π0(n) � πp(n).

We will now show that the indecomposables in degree 2n are torsion free.
Assume that QH 2n were of the form

QH 2n = Zr ⊕
⊕
p

Tp,

where p runs over a finite set of primes and Tp is the p-torsion subgroup of
QH 2n. Then

QH 2n ⊗ Fp ∼= Frp ⊕ Tp ⊗ Fp.

Thus if Tp �= 0, then the dimension ofQH 2n⊗Fp as an Fp-vector space would
be strictly bigger than r . However, the following argument shows that these
dimensions are equal and so Tp has to be zero.

Let I = H ∗>0 and IFp = H ∗>0 ⊗ Fp = I ⊗ Fp. Observe that

I ⊗ Fp ⊗ I ⊗ Fp ∼= (I ⊗ I )⊗ Fp

and consider the following commuting diagram with exact rows.

(I ⊗ I )⊗ Fp
mult⊗ id−−−−−−−→ I ⊗ Fp −−−−→ I/I 2 ⊗ Fp −−−−→ 0

↓∼= ↓∼=
IFp ⊗ IFp

mult−−−−−−−→ IFp −−−−→ IFp/I
2
Fp
−−−−→ 0

Thus we obtain that I/I 2 ⊗ Fp ∼= IFp/I
2
Fp

, i.e., QH 2n ⊗ Fp ∼= QH(p)2n.
Now for each n, choose a lifting of a basis of QH(p)2n to linearly inde-

pendent elements xn,i ofH 2n. It is clear that under the natural monomorphism
H 2n −→ H(0)2n, these give a part of a polynomial generating set for H(0)2n

and therefore generate a polynomial subalgebra P ∗ = Z[xn,i : n, i] ⊆ H ∗. We
will use induction on degree to show that we have equality here.

For n = 1, we have QH 2 = H 2. Now suppose that we have H ∗ = P ∗ in
degrees less than 2k. ThenDH 2k = DP 2k and for each positive prime p there
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is a diagram with short exact rows

0 −−−−→ DP 2k −−−−→ P 2k −−−−→ QP 2k −−−−→ 0

↓= ↓incl ↓
0 −−−−→ DH 2k −−−−→ H 2k −−−−→ QH 2k −−−−→ 0

↓epic ↓epic ↓epic

0 −−−−→ DH(p)2k −−−−→ H(p)2k −−−−→QH(p)2k −−−−→ 0

in which the composite homomorphism P 2k −→ QH(p)2k is surjective. To
complete the proof, we must show that the cokernel of the inclusion P 2k −→
H 2k is trivial. Since P 2k and H 2k agree rationally, this cokernel is torsion and
it suffices to verify this locally at each prime p. The map from P 2k ⊗ Fp to
H(p)2k is an isomorphism, so we see that over the local ring Z(p),

P 2k
(p) + pH 2k

(p) = H 2k
(p)

and Nakayama’s Lemma implies that P 2k
(p) = H 2k

(p). Thus P 2k = H 2k and we
have established the induction step.

2.2. Basic products and Lyndon words

Usually [9], [16] the set of polynomial generators of the rationalized algebra of
quasisymmetric functions is indexed on Lyndon words, whereas our approach
yields a polynomial basis indexed on basic products in the sense of [34, pp. 511–
512]. The aim of this section is to compare these two sets of generators.

First, let us recall some notation and definitions. See [28, §5] for more
details.

LetA be an alphabet, finite or infinite. We assume thatA is linearly ordered.
The elements ofA are called letters. Finite sequences a1 . . . an with ai ∈ A are
words; the number of letters in a word is its length. We use the lexicographical
ordering on words given as follows. A word u is smaller than a word v if and
only if v = ur , where r is a non-empty word or if u = wau′ and v = wbv′
where w, u′, v′ are words and a and b are letters with a < b. If a word w can
be decomposed as w = uv, then v is called a right and u is called the left
factor. If u is not the empty word, then v is called a proper right factor.

Definition 2.5. A word is Lyndon if it is a non-empty word which is
smaller than any of its proper right factors.

So for example, if A is the alphabet that consists of the natural numbers
with its standard ordering, then the first few Lyndon words are

1, 2, 3, . . . , 12, 13, 23, . . . , 112, . . . .
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Words are elements in the free monoid generated by the alphabet A. Let
M(A) be the free magma generated by A, i.e., we consider non-associative
words built from the letters in A. Elements in the free magma correspond to
planar binary trees with a root where the leaves are labelled by the elements
in A. For instance, if a, b, c are letters, then the element (ab)c corresponds to
the tree

a cb

whereas a(bc) corresponds to

a b c

We will briefly recall the construction of basic products. For more details
see [34].

Let A be an alphabet whose letters are linearly ordered, for instance A =
{a1, . . . , ak} with a1 < · · · < ak . Basic products of length one are just the
letters ai . We assign a rank and a serial number to each basic product. The
convention for basic products of length one is that the serial number of ai is
s(ai) = i, whereas the rank is r(ai) = 0.

Assume that basic products of length up to n− 1 have been already defined
and that these words are linearly ordered in such a way that a word w1 is less
than a wordw2 if the length ofw1 is less than the length ofw2, and assume that
we have assigned ranks to all those words. Then the basic products of length
n are all (non-associative) words of length n of the form w1w2 such that the
wi are basic products, w2 < w1 and the rank of w1, r(w1), is smaller than the
serial number of w2, s(w2). We choose an arbitrary linear ordering on these
products of length n and we define their rank as r(w1w2) = s(w2).

Any basic product on A is in particular an element of the free magma
generated by A. We need the fact that on an alphabet with k elements, the
number of basic products of length n is

1

n

∑
d|n
μ(d)kn/d,

where μ is the Möbius function [34, p. 514]. This number agrees with the
number of Lyndon words of length n on such an alphabet, see [28, theorem 5.1,
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& corollary 4.14] for details. So we know that there is an abstract bijection
between the two sets.

Proposition 2.6. There is a canonical algorithm defining a bijection
between the set of basic products and the set of Lyndon words on a finite
alphabet A.

Roughly speaking, the idea of the proof is to ‘correct’ the ordering in the
product w1w2 of basic products with w2 < w1 and to switch the product back
to one that is ordered according to the convention used for building Lyndon
words.

Proof. We start with a basic product ξ of length n and consider it as an
element in the magma generated by A and take its associated planar binary
tree. A binary tree has a natural level structure: we regard a binary tree such as

as having four levels

level 4

level 3
level 2

level 1

Starting with a basic product of length n, its tree has some number of levels,
saym. The idea is to work from the leaves of the tree to its root and transform
the basic product into a Lyndon word during this process.

We start with level m. Whenever there is a part of a tree of V-shape we
induce a multiplication; otherwise we leave the element as it is. In the above
example, the starting point could be a word such as ((a1(a2a3))a4)(a5a6).

From level m to level m− 1 we induce multiplication whenever there is a
local picture like

a i�1a i
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and in such a case we send (aiai+1) to{
aiai+1 if ai < ai+1,

ai+1ai if ai > ai+1.

Note that in a basic product equal neighbours ai = ai+1 do not occur. We place
this product on the corresponding leaf in level m− 1.

Iterating this procedure gives a reordered word in the alphabet A.
We have to prove that this is a Lyndon word. We do this by showing that in

each step in the algorithm we produce Lyndon words. Starting with the highest
level m this is clear because words of length two of the form ab with a < b

are Lyndon words.
In the following we will slightly abuse notation and use

∏t
j=1 ai for the

ordered product a1 · . . . · at . Assume that we have reduced the tree down to
an intermediate level less than m and obtained Lyndon words as labels on the
leaves. In the next step we have to check that every multiplication on subtrees
of the form

a j bk

j

∏
k

∏

with
∏t
j=1 aj and

∏s
k=1 bk Lyndon words, again give a Lyndon word. But this

is proved in [28, (5.1.2), p. 106].
Each step in the algorithm is reversable, therefore the algorithm defines an

injective map. As the cardinalities of the domain and target agree, this map is
a bijection.

Part 2. ��CP ∞: a splitting, Witt vectors and its associated Thom
spectrum

3. A p-local splitting

In this section we fix an odd prime p. On the one hand, from [1, lecture 4] we
have the Adams splitting of BU localized at p,

(3.1) BU(p) � W1 × · · · ×Wp−1

which is a splitting of infinite loop spaces. On the other hand, by [23] there is
an unstable p-local splitting of �CP∞(p) into a wedge of spaces,

(3.2) �CP∞(p) � Y1 ∨ · · · ∨ Yp−1,
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where the bottom cell of Yi is in degree 2i + 1.

Remark 3.1. Each space Yi inherits a co-H -space structure from �CP∞(p)
via the inclusion and projection maps. However, this co-H -structure is not
necessarily co-associative and neither are the inclusion and projection maps
necessarily co-H -maps. Furthermore, each Yi is minimal atomic in the sense
of [5], and cannot be equivalent to a suspension except in the case i = p − 1
when it does desuspend [14].

Recent work of Selick, Theriault and Wu [31] establishes a Hilton-Milnor
like splitting of loops on such a wedge of co-H -spaces. In our case, the splitting
is of the familiar form

��CP∞(p) � �(Y1 ∨ · · · ∨ Yp−1) �
∏
α

′
�Nα,

where α runs over all basic products formed on the alphabet {1, . . . , p − 1}
and

∏′
denotes the weak product. In cohomology, i.e., in QSymm(Z(p)), this

splitting gives rise to a splitting of algebras,

H ∗(��CP∞(p)) ∼=
⊗
α

H ∗(�Nα).

If νi(α) denotes the number of occurrences of the letter i in the word α,
then

�ν1(α)+···+νp−1(α)−1Nα � Y (ν1(α))
1 ∧ · · · ∧ Y (νp−1(α))

p−1 ,

where X(n) denotes the nth smash power of X. The homology of the space
Yi starts with a generator in degree 2i + 1, thus the smash power Y (ν1(α))

1 ∧
· · · ∧ Y (νp−1(α))

p−1 has homology starting in degree
∑
(2i + 1)νi(α). Thus �Nα

has bottom degree 2ν1(α)+· · ·+2(p−1)νp−1(α)which is the cohomological
degree of the element α in QSymm(Z(p)).

The map CP∞ −→ BU corresponds to the K-theory orientation of CP∞
in ku2(CP∞). AsBU � �SU , there is an adjoint map�CP∞ −→ SU . Since
the Adams splitting is compatible with the infinite loop space structure onBU ,
the delooping of BU(p), BBU(p) � SU(p), splits into delooped pieces BW1 ×
· · ·×BWp−1. For a fixed j in the range 1 � j � p−1, the homology generators
βi ∈ H2i (CP∞; Z(p)) with i ≡ j mod(p − 1) stem from H∗(Yj ; Z(p)). The
orientation maps βi to the ith generator bi in H∗(BU ; Z(p)) and this lives on
the corresponding Adams summand.
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4. Steenrod operations on QSymm(Fp)

Working with Fp-coefficients we can ask how the Steenrod operations connect
the generators in QSymm(Fp). We first state an easy result about pth powers,
which is stated without proof in [16, (7.17)].

Lemma 4.1. The pth power of an element [a1, . . . , ar ] ∈ QSymm(Fp) is
equal to [pa1, . . . , par ], i.e., Pa1+···+ar ([a1, . . . , ar ]) = [pa1, . . . , par ].

Proof. Recall that [a1, . . . , ar ] is dual to the generator Za1 · . . . · Zar with
respect to the monomial basis in NSymm. Thus we have to determine the
element which corresponds to ((Za1 · . . . · Zar )∗)p.

Setting Z(t) = ∑
i Zi t

i , we have �(Zm) = ∑
i Zi ⊗ Zm−i , so Z(t) is

group-like. We obtain that thep-fold iterate�p of the coproduct on a monomial
Zj1 · . . . · Zjn is captured in the series

�p(Z(t1) · . . . · Z(tn)) = �p(Z(t1)) · . . . ·�p(Z(tn))

which can be expressed as the p-fold product

(Z(t1)⊗ . . .⊗ Z(tn)) · . . . · (Z(t1)⊗ . . .⊗ Z(tn)) = (Z(t1) · . . . · Z(tn))⊗p.
Thus ∑

(j1,...,jn)

〈[a1, . . . , ar ]
p, Zj1 · . . . · Zjn〉t j1

1 · . . . · t jnr = tpj1
1 · . . . · tpjrr ,

therefore [a1, . . . , ar ]p is dual to Zpa1 · . . . · Zpar .
We will determine the Steenrod operations in QSymm by using the James

splitting (1.1) and the isomorphism of Theorem 1.1: there is an isomorphism
of modules over the Steenrod algebra

H̃ ∗(��CP∞; Fp) ∼=
⊕
n

H̃ ∗((CP∞)(n); Fp).

Let x(i) ∈ H 2(CP∞(i) ) be c1(ηi), where CP∞(i) denotes the i-th copy of CP∞
in the product (CP∞)×n and ηi is the line bundle induced from η over CP∞.
As βn is dual to cn1 , the elements xa1

(1) · . . . · xan(n) give an additive basis of
H ∗(��CP∞) and they correspond to the generators α = [a1, . . . , an]. Since
the James splitting (1.1) is only defined after one suspension, we cannot read
off the multiplicative structure of H ∗(��CP∞) immediately.

For two generators α and β in QSymm we denote their concatenation by
α ∗ β. Thus for α as above and β = [b1, . . . , bm], we have

α ∗ β = [a1, . . . , an, b1, . . . , bm].
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The Cartan formula leads to a nice description of the action of the Steenrod
algebra on QSymm(Fp).

Proposition 4.2. The following Cartan formula holds for the star product:

(4.1) P i (α ∗ β) =
∑
k+�=i

P k(α) ∗P �(β).

Proof. Identifying α and β with their corresponding elements in the co-
homology of a suitable smash power of CP∞, the Cartan formula on
H ∗((CP∞)(n+m); Fp) becomes

P i
(
x
a1
(1) · . . . · xan(n)xb1

(n+1) · . . . · xbm(n+m)
)

=
∑
k+�=i

P k
(
x
a1
(1) · . . . · xan(n)

)
P �

(
x
b1
(n+1) · . . . · xbm(n+m)

)
.

Identifying xbi(n+i) with xbi(i) gives the result.

As we can write every element α = [a1, . . . , an] as [a1] ∗ . . . ∗ [an] it
suffices to describe the Steenrod operations on the elements of the form [n]
with n ∈ N. The following is easy to verify using standard identities for
binomial coefficients mod p and from Lemma 4.1. We recall that when s > r ,(
r

s

) = 0.

Proposition 4.3. If the p-adic expansions of n and k are n0+n1p+ . . .+
nrp

r and k0 + k1p + . . .+ ksps respectively, where s � r , then

P k[n] =
(
n

k

)
[n+ k(p − 1)] =

(
n0

k0

)
. . .

(
ns

ks

)
[n+ k(p − 1)].

Hence if p � (k0−n0) and if ni � ki for all 1 � i � s, then P k[n] is a non-zero
indecomposable. When p � (k0 − n0) but ni < ki for some i, the right hand
side is zero, and for p | (k0 − n0) the right hand side is decomposable.

For example, the power operations P k on the elements α = [a1, . . . , an]
with 1 � ai � p − 1 and k � deg(α) yield non-trivial sums of indecompos-
ables.

5. Witt vectors and the cohomology of BU

The self-dual bicommutative Hopf algebras H∗(BU) ∼= H ∗(BU) are closely
related to both lambda rings and Witt vectors (see [15]). In particular, there
are p-local splittings due to Husemöller [20], subsequently refined to take into
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account the Steenrod actions in [4]. Here is a brief account of this theory over
any commutative ring R.

First consider the graded commutative Hopf algebra

H∗(BU ;R) = R[bn | n � 1],

where bn ∈ H2n(BU ;R) is the image of the canonical generator of
H2n(CP∞;R) as defined in [1], and the coproduct is determined by

�(bn) =
∑
i+j=n

bi ⊗ bj .

This coproduct makes the formal power series

b(t) :=
∑
n�0

bnt
n ∈ H∗(BU)[[t]]

grouplike, i.e.,
�b(t) = b(t)⊗ b(t),

or equivalently ∑
n�0

�(bn)t
n =

(∑
n�0

bmt
m

)
⊗

(∑
n�0

bnt
n

)
.

There is an obvious isomorphism of graded Hopf algebras over R,

H∗(BU ;R) ∼= Symm(R)

under which bn ↔ cn.
For each n � 1, there is a cyclic primitive submodule

Prim(Symm(R))2n = R{qn},
where the generators are defined recursively by q1 = b1 together with the
Newton formula

(5.1) qn = b1qn−1 − b2qn−2 + · · · + (−1)nbn−1q1 + (−1)n−1nbn.

The qn can be defined using generating functions and logarithmic derivatives
as follows.

(5.2)
∑
n�1

(−1)n−1qnt
n−1 = d

dt
log(b(t)) = b′(t)

b(t)
.
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The recursion (5.1) then follows via multiplication by b(t). The fact that the
qn are primitive follows because the logarithmic derivative maps products to
sums.

Now we introduce another family of elements vn ∈ Symm(R)2n which
are defined by generating functions using an indexing variable t through the
formula

(5.3)
∏
k�1

(1− vktk) =
∑
n�0

bn(−t)n.

These also satisfy

(5.4) qn =
∑
k�=n

kv�k.

Theorem 5.1. The elements vn ∈ Symm(R)2n are polynomial generators
for Symm(R),

Symm(R) = R[vn | n � 1].

The coproduct is given by the recursion∑
k�=n

k�(vk)
� =

∑
k�=n

k(v�k ⊗ 1+ 1⊗ v�k).

When R is a Z(p)-algebra, for each n such that p � n, there are elements
vn,r ∈ Symm(R)2npr defined recursively by

qnpr = prvn,r + pr−1v
p

n,r−1 + · · · + vp
r

n,0.

Then the subalgebra

R[vn,r | r � 0] ⊆ Symm(R)

is a sub Hopf algebra. The following result was first introduced into topology
in [20].

Theorem 5.2. If R is a Z(p)-algebra, there is a decomposition of Hopf
algebras

Symm(R) =
⊗
p�n

R[vn,r | r � 0].

Notice that when R is an Fp-algebra, we have qnpr = qprn .
There are Frobenius and Verschiebung Hopf algebra endomorphisms

fd , vd : Symm(R) −→ Symm(R)
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given by

fd(vn) = vnd, vd(vn) =
{
dvn/d if d | n,

0 otherwise.

In the dual H ∗(BU ;R), we have the universal Chern classes ci and the
primitives si and under there is an isomorphism of Hopf algebras

H∗(BU ;R) ∼=→ H ∗(BU ;R); bi ↔ ci, qi ↔ si .

We define the element wi to be the image of the element vi under this iso-
morphism. When localized at a prime p, we define wn,r to be the element
corresponding to vn,r . The coproduct on the wi is computed using the ana-
logue of Equation (5.3),

(5.5)
∏
k�1

(1− wktk) =
∑
n�0

cn(−t)n

together with the Cartan formula for the ci .
The ci can be identified with elementary symmetric functions in infinitely

many variables, say xi , and the coproduct ψ⊕ on a symmetric function f (xi)
amounts to splitting the variables into two infinite collections, say x ′i , x

′′
i , and

expressing the symmetric function f (x ′i , x
′′
j ) in terms of symmetric functions

of these subsets. There is a second coproduct ψ⊗ corresponding to replacing
f (xi) by f (x ′i + x ′′j ). There is an interpretation of this structure in terms of
symmetric functions. For example, the latter coproduct gives

ψ⊗(sn) =
∑

0�i�n

(
n

i

)
si ⊗ sn−i .

Both of these coproducts are induced by topological constructions. Let us
recall that the space BU admits maps that represent the Whitney sum and
tensor products of bundles,

BU × BU ⊕→ BU, BU × BU ⊗→ BU.

Using the Splitting Principle, it is standard that the resulting coproducts

H ∗(BU) −→ H ∗(BU)⊗H ∗(BU)
induced by these are equal to our two coproducts ψ⊕, ψ⊗.

Let R be again a commutative ring with unit. There are two endofunctors
�(−) andW(−) on the category of commutative rings, Rings. Details of this
can be found in [15, chapter III], in particular in E.2, although the construction
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there is of an inhomogeneous version corresponding to K0(BU) rather than
H ∗(BU). We will first describe their values in the category of sets.

Definition 5.3. Let �(R) be 1 + tR[[t]] with addition given by the
multiplication of power series and let the (big) Witt vectors on R, W(R), be
the product

∏
i�1 R.

Consider the following representable functor Rings(Symm,−). The co-
products ψ⊕ and ψ⊗ make this into a ring scheme. Therefore they induce two
different commutative multiplications on Rings(Symm, R).

Let ϕ�: Rings(Symm, R) −→ �(R) be the bijection that sends a map f
from Symm to R to the power series

1+ f (c1)(−t)+ f (c2)(−t)2 + · · · + f (cn)(−t)n + · · · .
The coproduct ψ⊕ corresponds to the multiplication of power series which
should be thought of as a kind of addition, whereas ψ⊗ gives a multiplication.
These two operations interact to make this a functor with values in commutative
rings.

For the Witt vectors, W(R), take the bijection ϕW : Rings(Symm, R) −→
W(R) that sends f to the sequence (f (wi))i�1 where the wi are given as
in (5.5). Therefore, the two coproducts ψ⊕ and ψ⊗ induce a ring structure on
W(R).

Theorem 5.4. The two different H -space structures, BU⊕ and BU⊗ give
rise to two comultiplications on Symm viaψ⊕ andψ⊗ which together induce a
ring structure on the big Witt vector W(R) ring. This ring structure coincides
with the standard one as it is described for instance in [15, III §17].

Proof. The exponential map [15, (17.2.7)] sends a Witt vector (a1, a2, . . .)

∈ W(R) to the element
∏
i�1(1−ait i) ∈ �(R). Formula (5.5) ensures that this

isomorphism of rings sends the sequence of generators (wn)n to the product∏
i�1(1+ (−1)ici t i). That the ring structure agrees for�(R) follows directly

from the definition.

6. Quasi-Witt vectors

In the case of symmetric functions, we interpreted the addition and mul-
tiplication of Witt vectors as coming from the two H -space structures on
BU . On ��CP∞ we have the ordinary H -space structure, μ⊕:��CP∞ ×
��CP∞ −→ ��CP∞, coming from loop addition. In addition to this, we
consider the following construction. Essentially the same construction already
appears in [26], the difference arises from various choices concerning the Hopf
construction.
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Let X be an H -space. For two loops f, g: S1 −→ �X, their product f � g
is the composition

S1 g f∧ id

H (νX)

�

f �g

S1 ∧ X S1 ∧ X ∧ X

X ∗ X

�X

in which the last map is the Hopf construction H on theH -space multiplication
νX on X from the reduced join of two copies of X, see [34, XI, §4].

Lemma 6.1. The �-product defines a map �:��X ∧��X −→ ��X. It
satisfies the following left distributivity law for loops f, g, h ∈ ��X:

(6.1) f � (μ⊕(g, h)) � μ⊕(f � g, f � h).
If i:X −→ ��X is the natural map, then for any x ∈ X the following right
distributivity law holds:

(6.2) μ⊕(g, h) � i(x) � μ⊕(g � i(x), h � i(x)).
A map of H -spaces �:X −→ Y is compatible with the �-operations in that it
satisfies

��(�) ���(�) � ��(�) ◦ �.
Proof. It is obvious that the �-product with the constant loop on either

side gives the constant loop again. For the distributivity law we consider the
following diagram

μ⊕(g,h)

�X

�X ∨ �X

S1 f∧ id

pinch ∇ ∇

∨f∧ id

f∧ id

S1 ∧ X

S1 ∧ X ∨ S1 ∧ X S1 ∧ X ∧ X ∨ S1 ∧ X ∧ XS1 ∨ S1

S1 ∧ X ∧ X

g∨h

∇
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in which all squares commute and the upper composition corresponds to f �
(μ⊕) whereas the lower composition is μ⊕(f � g, f � h). Hence the diagram
commutes and left distributivity is verified.

A simpler argument gives the right distributivity for loops of the form i(x).
Naturality of the diamond product with respect to maps of H -spaces follows
because the Hopf-construction H on an H -space multiplication ν satisfies

H (νY ) ◦ (� ∗ �) ∼ �(�) ◦H (νX)

for � an H -map from X to Y [34, XI.4].

For the following, we recall the notion of a near-ring, see [27] for example.
Briefly, a near-ring is a group equipped with a second product which left or right
distributes over the group operation and is associative. Various extra conditions
are sometimes imposed such as the existence of a multiplicative unit. Dropping
the associativity requirement leads to the notion of a quasi-near-ring which
we refrain from using!

Remark 6.2. The structure (��X,μ⊕,�) for an associative H -space X
from Lemma 6.1 might be called a left (non-unital, non-associative) near-ring
in the homotopy category and we abbreviate that to homotopy near-ring. By
functoriality,H∗(��CP∞) ∼= NSymm inherits such a structure in the category
of graded Z-coalgebras. Dually, H ∗(��CP∞) ∼= QSymm is a co-near-ring in
the category of graded commutative rings.

Definition 6.3. Let R be a commutative ring with unit. We call

QW(R) := Rings(QSymm, R)

the near-ring of quasi-Witt vectors on R.

Note that these quasi-Witt vectors,QW(R) do not agree with Hazewinkel’s
noncommutative Witt vectorsM(R) of [17, p. 75]. Our coproducts are induced
by maps on spaces, hence they are homogeneous. Hazewinkel’s formula [17,
§ 12] gives a non-homogeneous coproduct. They might agree if we used a
K-theoretic analogue in place of our homological one.

From Selick [30, p. 84] we can deduce an explicit formula for the � product
on basic loops i(x): t �→ [t, x] ∈ �X for an associative H -space X. It will
send two of such basic loops i(x) and i(y) toμ⊕(i(y), i(x)·i(y), i(x)), where ·
is theH -product onX and ( ) denotes loop reversal. This allows us to calculate
Zi �Zj inH∗(��CP∞). We note that by construction the diamond product is
really defined on reduced homology. When x is a positive degree element of
H∗(��CP∞), we have

(6.3) 1 � x = 0 = x � 1.
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Recall that Z(t) =∑
i�0 Zit

i .

Proposition 6.4. The diamond product of the two generators Zi, Zj is

(6.4) Zi � Zj =
i∑
r=0

j∑
s=0

(
r + s
r

)
χ(Zj−s)Zr+sχ(Zi−r ).

In terms of generating functions this is equivalent to

(6.5) Z(s) � Z(t) = Z(t)−1Z(s + t)Z(s)−1.

Proof. Note that in order to apply Selick’s formula, we have to use the
diagonal

��CP∞ ×��CP∞ −→ (��CP∞)4.

On homology this corresponds to taking the coproduct of Zi and Zj , thus
Zi ⊗ Zj maps to

i∑
r=0

j∑
s=0

Zr ⊗ Zi−r ⊗ Zs ⊗ Zj−s .

We have to switch factors and apply the CP∞-H -multiplication to Zr ⊗ Zs
to give the term

(
r+s
r

)
Zr+s because the cohomology of CP∞ is primitively

generated. We now apply the loop-inversion antipode in H∗(��CP∞) to the
remaining factors, then finally, we use loop multiplications to obtain the result.

We can calculate products of the form u � (v1 . . . vn) with u, v1, . . . , vn all
of positive degree by using left distributivity (6.1) and (6.3). Here we denote
the loop product by juxtaposing homology elements, i.e., xy = x · y. For
example, if the coproduct on u is

�(u) = u⊗ 1+ 1⊗ u+
∑
r

u′r ⊗ u′′r ,

so that
∑

r u
′
r ⊗ u′′r is the reduced coproduct of u, then we have

(6.6) u � (v1v2) =
∑
r

(u′r � v1)(u
′′
r � v2).

In particular, for positive degree elements x, y, this gives

(6.7) Zi � (xy) =
i−1∑
r=1

(Zr � x)(Zi−r � y)
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for any loop productxy of positive degree elements inH∗(��CP∞). Similarly,
right distributivity (6.2) gives

(6.8) (xy) � Zi =
i−1∑
r=1

(x � Zr)(y � Zi−r ).

In particular,

Z1 � (xy) = 0,(6.9)

(xy) � Z1 = 0.(6.10)

The first of these is a special case of the more general

Lemma 6.5. If u is primitive, then for all positive degree elements x, y,

u � (xy) = 0,

i.e., the left diamond product with a primitive annihilates decomposables.

Proof. This follows immediately from Equations (6.3) and (6.6).

In the non-commutative algebra NSymm there are two natural families of
primitives analogous to the family (qn)n∈N from (5.1). We define∑

n�1

(−1)n−1Qnt
n−1 = Z(t)−1Z′(t),(6.11)

∑
n�1

(−1)n−1Q′nt
n−1 = Z′(t)Z(t)−1,(6.12)

whereZ′(t) is the derivative of the seriesZ(t). These two generating functions
are related through conjugation by the Z(t)-series. Multiplication by Z(t) on
the left (resp. right) gives the recursion formulae

Qn = Z1Qn−1 − Z2Qn−2 + · · · + (−1)nZn−1Q1 + (−1)n−1nZn,(6.13)

Q′n = Q′n−1Z1 −Q′n−2Z2 + · · · + (−1)nQ′1Zn−1 + (−1)n−1nZn.(6.14)

These families agree with Hazewinkel’s [18, pp. 328–329] up to sign. As the
antipode on the Zi is given by the generating function∑

i�0

χ(Zi)t
i = Z(t)−1,



232 andrew baker and birgit richter

we also obtain the formulae

Qn = (−1)n−1
n∑
j=1

jχ(Zn−j )Zj ,(6.15)

Q′n = (−1)n−1
n∑
j=1

jZjχ(Zn−j ).(6.16)

Proposition 6.6. The primitives Qn and Q′n can be expressed as

Qn = (−1)n−1Z1 � Zn−1, Q′n = (−1)n−1Zn−1 � Z1.

Proof. Using (6.5) and taking the derivative with respect to s at s = 0 we
obtain

Z1 � Z(t) = Z(t)−1Z′(t)− Z1,

which gives
Z1 � Zn−1 = (−1)n−1Qn.

Similarly, using the derivative with respect to t at t = 0 gives

Z(s) � Z1 = Z′(s)Z(s)−1 − Z1

and we get the corresponding formula for Q′n.

We can calculate the recursively defined ‘power’

Z�n1 = Z1 � (Z�(n−1)
1 ),

which is actually a spherical element since Z1 is spherical. An easy induction
on n yields

(6.17) Z�n1 = (−1)n−1(n− 1)!Qn.

Related formulae given in terms of (6.15) occur in [26, corollary 5.2] and
further spherical primitives are also determined there. We could also replace the
above recursion by the one involving (Z�(n−1)

1 )�Z1 which yields (−1)n−1(n−
1)!Q′n in place of (−1)n−1(n− 1)!Qn.

Now we give a modification of the above construction. For us, a spectrum
will mean a collection of spaces E = {En} and suitably related homeomorph-
isms σn,1:En −→ �En+1 with adjoint evaluation maps σ̃n,1:�En −→ En+1.
We obtain maps σn,m:En −→ �mEn+m as iterations of the maps σn,1 and we
denote the inverse of σn,m by φn+m,n.

Such structure is known to be present for many important ring spectra such
as those of complex K-theory which is our main concern, it is always present
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when E is an E∞ ring spectrum. We also write E′ = {E′n} for the 0-connected
cover of E, so E′0 is the connected component of the basepoint in E0.

Let U1(E) denote the component of E0 corresponding to 1 in the ring
π0(E) = π0(E0). Then U1(E) admits the structure of an H -space under the
restriction of μ0,0:E0 ∧ E0 −→ E0, and we denote this multiplication by μ.

There is a homotopy equivalence λ:U1(E) −→ E′0 which satisfies

(6.18) λ ◦ μ � (μ ◦ λ× λ) ∗ (λ ◦ pr1) ∗ (λ ◦ pr2),

where ∗ denotes the sum in E0 (loop product) and pr1, pr2 are the two projec-
tions fromU1(E)×U1(E). This is defined by shifting component by adding an
element in the (−1)-component ofE0. In terms of the cohomology ringE0(X)

for a connected space X, this says that the associated natural transformation

λ̄:U1(E)
0(X) = 1+ Ẽ0(X) −→ Ẽ0(X)

satisfies
λ̄(xy) = λ̄(x)λ̄(y)+ λ̄(x)+ λ̄(y).

We can endow E′0 with the H -structure under which λ is an H -space equival-
ence. Then we obtain an induced equivalence of homotopy near-rings

��(λ):��U1(E) −→ ��E′0.

The evaluation map σ̃0,1:�E′0 −→ E′1 induces a loop map

θ0 := φ1,0 ◦�σ̃0,1:��E′0 −→ E′0,

whereE′0 forms a homotopy ring object with loop addition andμ′:E′0∧E′0 −→
E′0, the restriction of the multiplication to the 0-component of E0.

Theorem 6.7. The map θ0:��E′0 −→ E′0 induces a homotopy commut-
ative diagram of loop spaces

��U1(E) ∧��U1(E)
�−−−−→ ��U1(E)

↓
��λ∧��λ

↓
��λ

��E′0 ∧��E′0 �−−−−→ ��E′0

↓
θ0∧θ0

↓
θ0

E′0 ∧ E′0 μ′−−−−−→ E′0
and hence θ0 and the composition θ0 ◦��(λ) induce maps of homotopy near-
rings.
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Proof. We already know that the top square commutes. For the lower
square we consider the following diagram.

α∧ id∧ id

id∧α∧ id

(−1)∧ id∧ id

(−1)∧ id∧ id∧ id

id∧τ∧ id

τ∧ id

τ∧ id∧ id

id∧ id∧μ0,0

id∧β = σ̃ 0,2

α∧β σ̃ 0,1∧ σ̃ 0,1 μ1,1S2  �∼ S1 ∧ S1 S1 ∧ E0
′ ∧ S1 ∧ E0

′ E1
′ ∧ E1

′ E2
′

S1 ∧  S1 ∧ E0
′ ∧ E0

′

S1 ∧  S1 ∧ E0
′ ∧ E0

′

S1 ∧  S1 ∧ E0
′

S1 ∧ S1 ∧ E0
′ S1 ∧ E0

′ ∧ S1 ∧ E0
′ S1 ∧  S1 ∧ E0

′

As we have that

(id∧τ ∧ id) ◦ (τ ∧ id∧ id) ◦ (id∧α ∧ id) ◦ (τ ∧ id) = α ∧ id∧ id,

the lower left outer pentagon commutes. The maps τ ∧ id∧ id and (−1) ∧
id∧ id∧ id are homotopic thus the lower left inner pentagon commutes up to
homotopy. The top horizontal map is the smash product of α and β followed
by evaluation and multiplication. The upper left square commutes and the
upper right pentagon commutes up to homotopy. Therefore this composite is
homotopic to

σ̃0,2 ◦ (id∧ id∧μ0,0) ◦ ((−1) ∧ id∧ id∧ id)

◦ (id∧α ∧ id) ◦ ((−1) ∧ id∧ id) ◦ (id∧β)
and this composite is σ̃0,2 ◦�(α � β).

Corollary 6.8. Let R be a commutative ring for which H∗(E′0;R) is
R-flat. Then the maps θ0 and θ0 ◦ ��(λ) induce epimorphisms of near-ring
objects in R-coalgebras

H∗(��E′0;R) −→ H∗(E′0;R)←− H∗(��U1(E);R).

Proof. This follows immediately from the fact that the inclusion map
E′0 −→ ��E′0 is a right homotopy inverse for θ0.

Returning to our main example, we take E = ku and E′ = �2ku, thus
E0 = BU × Z and E′0 = BU . Notice that we have a map of H -spaces
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ν: CP∞ −→ U1(KU) = BU⊗ classifying line bundles. Our main conclusion
is contained in

Theorem 6.9. The map � = θ0 ◦ ��(λ ◦ ν): CP∞ −→ BU induces a
commutative diagram

��CP∞ ∧��CP∞ �−−−−→ ��CP∞

↓�∧� ↓�
BU ∧ BU ⊗−−−−−→ BU

and hence� induces a map of homotopy near-rings. Furthermore,� induces
an epimorphism �∗:H∗(��CP∞) −→ H∗(BU) of near-ring objects in Z-
coalgebras.

Of course, H∗(BU) is already a (non-unital) ring object in Z-coalgebras.

7. The Thom spectrum of ξ

The map j :��CP∞ −→ BU is a loop map and hence the Thom spectrumMξ
of the virtual bundle ξ is an A∞ ring spectrum and the natural map Mξ −→
MU is one of A∞ ring spectra, or equivalently of S-algebras in the sense of
[11]. Since the homologyH∗(Mξ) is isomorphic as a ring toH∗(��CP∞), we
see thatMξ is not even homotopy commutative, let alone anE∞ ring spectrum
or equivalently a commutative S-algebra.

Let A ∗p be the mod p Steenrod algebra and let A ∗p /(Q0) be the quotient by
the two-sided ideal generated by the Bockstein Q0.

We also have in all cases,H ∗(BP ; Fp) ∼= A ∗p /(Q0) as A ∗p -modules, where
BP is the p-primary Brown-Peterson spectrum [2, II §16]. More generally,
any A ∗p -module on which Q0 acts trivially can be viewed as a A ∗p /(Q0)-
module. In particular, H ∗(MU ; Fp) becomes a free A ∗p /(Q0)-module in this
way, and therefore MU(p) splits as a wedge of suspensions of BP ’s. The
proof of this uses a result of Milnor and Moore [24, theorem 4.4] which only
requires the existence of an associative coalgebra structure. Although Mξ is
not a commutative ring spectrum we may still apply such an argument to its
cohomology.

Proposition 7.1. Let p be a prime. Then H ∗(Mξ ; Fp) is a free A ∗p /(Q0)-
module and hence Mξ(p) is a wedge of BP ’s.

Proof. The standard Milnor-Moore argument works since Mξ is a ring
spectrum and the map Mj :Mξ −→ MU induced from j gives rise to a
monomorphism Mj :H ∗(MU ; Fp) −→ H ∗(Mξ ; Fp). From this we can de-
duce that the copy of A ∗p /(Q0) on the stable Thom class of H ∗(MU ; Fp)
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maps isomorphically to one in H ∗(Mξ ; Fp). Obstruction theory now leads to
the existence of an equivalence Mξ(p) −→∨

λ �
2kλBP .

Of course, as described in [2], Quillen gave a multiplicative idempotent on
MU(p) leading to a precise description of such a splitting intoBP ’s. We expect
thatMξ has an adequate analogue of the universality for complex orientations
possessed by MU and required for Quillen’s approach. We will investigate
this in future work. We also remark that although the spectrumMξ appears to
be related to that studied in [3], the latter is not a ring spectrum.

Instead, we note some algebraic facts that are useful here. Fixing a prime p,
we set A ∗ = A ∗p and write A∗ for the dual Steenrod algebra. The dual of
A ∗p /(Q0) is the polynomial sub-Hopf algebra Fp[ζi | i � 1] ⊆ A∗ generated
by the conjugates ζi of the Milnor generators ξi and there is an isomorphism
of A∗-comodule algebras

H∗(BP ; Fp) ∼= Fp[ζi | i � 1].

There is also an isomorphism of A∗-comodules

H∗(Mξ ; Fp) ∼=
⊕
λ

�2kλFp[ζi | i � 1].

For any commutative ring R, under the Thom isomorphism

H∗(��CP∞;R) ∼= H∗(Mξ ;R),

the generator Zi corresponds to an element zi ∈ H2i (Mξ ;R) (we set z0 = 1).
Thomifying the map i: CP∞ −→ ��CP∞, we obtain a mapMi:�∞MU(1)
−→ �2Mξ and it is easy to see that

(7.1) Mi∗βi+1 = zi .

Working in mod p homology and using the standard formula for the (left)
coaction ψ [2], we obtain∑

i�0

ψ(zi)t
i+1 =

∑
j�0

ξ(t)j+1 ⊗ zj ,

where
ξ(t) =

∑
k�0

ξkt
pk .



quasisymmetric functions from a topological point of view 237

We now introduce elements wi ∈ H2i (Mξ ;R) by requiring that they satisfy
the functional equation

(7.2)
∑
i�0

zi

(∑
j�0

wj t
j+1

)i+1

= t,

where we treat t as a variable that commutes with everything in sight. This
amounts to an infinite sequence of equations of the general form

(7.3) wn + · · · + zn = 0 (n � 1),

where the intermediate terms involve the elements zi, wi with i = 1, . . . , n−1
andw0 = 1. Hence we can recursively solve this system of equations for thewn
and the solution is obviously unique. Mapping intoH∗(MU ;R)we obtain the
usual generatorsmi ∈ H2i (MU ;R) described in [2] and these can be expressed
explicitly using the Lagrange inversion formula. But it is not obvious in what
sense such a formula exists within the non-commutative context where we are
working.

Now we focus on the case ofH∗(Mξ ; Fp) and investigate the A∗-coactionψ
on the elementswi . We will make heavy use of the fact thatψ is multiplicative,
i.e., for homogeneous elements u ∈ H2r (Mξ ; Fp) and v ∈ H2s(Mξ ; Fp) with

ψ(u) =
∑
i

xi ⊗ ui ∈ A∗ ⊗H∗(Mξ ; Fp),

ψ(v) =
∑
j

yj ⊗ vj ∈ A∗ ⊗H∗(Mξ ; Fp),

where ui, vj ∈ H∗(Mξ ; Fp) and xi, yj ∈ A∗, we have

ψ(uv) =
∑
i,j

xiyj ⊗ uivj ∈ A∗ ⊗H∗(Mξ ; Fp).

Let us write w̃i = ψ(wi) and

w̃(t) =
∑
i�0

w̃i t
i+1 ∈ (A∗ ⊗H∗(Mξ ; Fp))[[t]].

Then from (7.2) we have

(7.4)
∑
i�0

(1⊗ zi)[(ξ ⊗ 1)(w̃(t))]i+1 = t,
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where t and all elements of A∗ ⊗ 1 commute with everything. Of course,

(ξ ⊗ 1)(w̃(t)) =
∑
r�0

(ξr ⊗ 1)(w̃(t))p
r

.

Now unravelling the coefficients we find that the w̃i satisfy a sequence of
equations of same general form as (7.3):

w̃n + · · · + 1⊗ zn = 0 (n � 1),

and clearly this has a unique solution. Now consider the series

(ζ ⊗ 1)(1⊗ w)(t) =
∑
r�0

(ζr ⊗ 1)[(1⊗ w)(t)]pr .

Using (7.2), we obtain∑
i�0

(1⊗ zi)[(ξ ⊗ 1)(ζ ⊗ 1)(1⊗ w(t))]i+1 =
∑
i�0

(1⊗ zi)(1⊗ w(t)i+1)

=
∑
i�0

1⊗ ziw(t)i+1 = t,

hence we have

(7.5)
∑
i�0

ψ(wi)t
i+1 =

∑
j�0

ζj ⊗ w(t)pj .

This has the same form as the coaction on the mi in H∗(MU ; Fp) as given
in [2], although the non-commutativity means that the explicit formulae for
ψ(wn) are more complicated. In particular, the simple formula

ψ(mpr−1) =
∑

0�i�r
ζi ⊗mpipr−i−1

is replaced by one involving many more terms.

8. The homology of THH(Mξ)

The following is a description of the result of applying the Bökstedt spectral
sequence to Mξ and of some things we learned from [6]. In his influential
unpublished preprint [7] (see for instance [22, 3.1] for a published account),
Marcel Bökstedt developed a spectral sequence for calculating the homology
of the THH-spectrum of a strictly associative spectrum.
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The spectral sequence for the integral homology of the associative spectrum
Mξ has as its E2-page the Hochschild homology of H∗(Mξ), so we have

E2
s,t = HHs,t (H∗(Mξ)) �⇒ Hs+t (THH(Mξ)).

NowH∗(Mξ) is a tensor algebra T V , where V is the free Z-module generated
by the elements zi for i � 1, thus H∗(Mξ) is free as an associative algebra
and the Hochschild homology vanishes except for homological degrees zero
and one. Moreover,

HH0(H∗(Mξ)) =
⊕
m�0

V ⊗m/Cm,

HH1(H∗(Mξ)) =
⊕
m�1

(V ⊗m)Cm,

where V ⊗m/Cm and (V ⊗m)Cm denote the coinvariants and invariants respect-
ively for the action of the cyclic group Cm. As there are just two non-trivial
columns, this spectral sequence collapses placing the part arising as the coin-
variants in total even degree and the part coming from the invariants in total
odd degree. We note that for each degree m, a basis of V ⊗m consists of the
tensors of length m in the zi and this is a permutation basis for the action of
Cm. Therefore V ⊗m decomposes as a direct sum of Cm-modules correspond-
ing to the orbits of the action and for each of these it is straightforward to see
that the coinvariants and invariants are both free of rank one over Z. Hence
HH0(H∗(Mξ)) andHH1(H∗(Mξ)) are finitely generated free abelian groups
in each bidegree and thereforeH∗(THH(Mξ)) consists of such groups in each
degree.

Andrew Blumberg, Ralph Cohen and Christian Schlichtkrull [6] give a
nice description of topological Hochschild homology of Thom spectra. Let
BF denote the classifying space for spherical fibrations. Given a based map
f :X −→ BBF , which induces a loop map from the based loop space �X to
BF , they describe THH(Mf ) as the Thom spectrum associated to the com-
posite

LX −→ LBBF � BF × BBF id×η−−−→ BF × BF −→ BF.

Here,L(−) denotes the free loop space on a space. In particular, the homology
of THH(Mf ) is the homology of the free loop space on X if we actually start
with a map to BSF .

Let ad:�CP∞ −−→ BBU be the adjoint of the inclusion j : CP∞ =
BU(1) −−→ BU .
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In our case, the map to BF factors over BU and thus over BSF and we
obtain that THH(Mξ) is the Thom spectrum associated to

L�CP∞ Lad−−→ LBBU = L(SU) � �SU × SU = BU × SU −→ BU

because η becomes null homotopic here.
Goodwillie’s result [13, Theorem V.1.1] identifies the S1-equivariant homo-

logy of the free loop space with cyclic homology of the chains on the based
(Moore) loop space. The corresponding result for Hochschild homology reads
in our case

H∗(L�CP∞) ∼= HH∗(C∗(��CP∞)).

Thus the E2-term of associated hyperhomology spectral sequence has the same
form as that of the Bökstedt spectral sequence. We give a general comparison
result for this situation.

Let X = �Y be a loop space with torsion-free homology and with a loop
map f :X −→ BSF . Assume that Y is path connected and well-pointed. We
can consider the associated Bökstedt and hyperhomology spectral sequences
for X and its Thom spectrum Mf .

Proposition 8.1. There is an isomorphism between the hyperhomology
spectral sequence and the Bökstedt spectral sequence induced by an isomorph-
ism of exact couples.

Proof. For the hyperhomology spectral sequence we have to consider the
bicomplex with (p, q)-term (C̄q(C∗(�Y)))p where C̄∗ denotes the reduced
Hochschild complex. We take the s-filtration of the total complex by consid-
ering

Fs(hyper)n =
⊕
p+q=n
q�s

(C̄q(C∗(�Y)))p.

The corresponding exact couple then consists of the terms

D(hyper)s,t = Hs+tFs(hyper)∗,

E(hyper)s,t = Hs+t (Fs(hyper)∗/Fs−1(hyper)∗) = (C̄s(H∗(�Y)))t .
For the Bökstedt spectral sequence, we use the skeletal filtration of THH(Mf ).
This gives rise to another exact couple with

D(Bö)s,t = Hs+t (THH [s](Mf )),

in which THH [s](Mf ) denotes the s-skeleton of the realization of the simplicial
spectrum THH(Mf ). Since topological Hochschild homology gives rise to a
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proper simplicial spectrum we can apply [11, X.2.9] in order to identify the
filtration quotients and get

E(Bö)s,t ∼= Hs+t (�s(Mf ∧Mf ∧ · · · ∧Mf︸ ︷︷ ︸
s

)).

Here, Mf is the cofibre of S −→ Mf . Therefore we obtain

E(Bö)s,t ∼= (Cs(H∗(Mf )))t .
The Thom isomorphism yields an isomorphism between the two exact couples
and its multiplicativity ensures that the higher differentials are preserved as
well.
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