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Abstract. This note provides a reference for some properties of the Thom
spectrum Mξ over ΩΣCP∞. Some of this material is used in recent work of
Kitchloo and Morava. We determine the Mξ-cohomology of CP∞ and show
that Mξ∗(CP∞) injects into power series over the algebra of non-symmetric
functions. We show that Mξ gives rise to a commutative formal group law
over the non-commutative ring π∗Mξ. We also discuss how Mξ and some real
and quaternionic analogues behave with respect to spectra that are related to
these Thom spectra by splittings and by maps.

Introduction

The map CP∞ = BU(1) → BU gives rise to a canonical loop map ΩΣCP∞ →
BU . Therefore the associated Thom spectrum has a strictly associative multiplica-
tion. But as is visible from its homology, which is a tensor algebra on the reduced
homology of CP∞, it is not even homotopy commutative. This homology ring
coincides with the ring of non-symmetric functions, NSymm. We show that there
is a map from the Mξ-cohomology of CP∞ to the power series over the ring of
non-symmetric functions, NSymm. This result is used in [MK] in an application of
Mξ to quasitoric manifolds.

AlthoughMξ maps toMU , there is no obvious map to it fromMU , so a priori it
is unclear whether there is a formal group law associated toMξ. However, analogues
of the classical Atiyah-Hirzebruch spectral sequence calculations for MU can be
made for Mξ, and these show that there is a ‘commutative formal group’ structure
related to Mξ∗CP∞, even though the coefficient ring Mξ∗ is not commutative
and its elements do not commute with the variables coming from the choices of
complex orientations. A formal group law in this context is an element F (x, y) ∈
Mξ∗(CP∞×CP∞) that satisfies the usual axioms for a commutative formal group
law. We describe the precise algebraic structure arising here in Section 3.

For MU the p-local splitting gives rise to a map of ring spectra BP → MU(p).
We show that despite the fact that Mξ(p) splits into (suspended) copies of BP ,
there is no map of ring spectra BP → Mξ(p). For the canonical Thom spectrum
over ΩΣRP∞, MξR, we show that the map of E2-algebra spectra HF2 → MO does
not give rise to a ring map HF2 → MξR.
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For a map of ring spectra MU → E to some commutative S-algebra E one
can ask whether a map of commutative S-algebras S ∧P(S) P(Σ

∞−2CP∞) → E
factors over MU . Here P(−) denotes the free commutative S-algebra functor.
It is easy to see that MU is not equivalent to S ∧P(S) P(Σ

∞−2CP∞) and we
show that there are commutative S-algebras for which such a factorization does
not exist. In the associative setting, the analoguous universal gadget would be
S �A(S) A(Σ

∞−2CP∞), where A(−) is the free associative S-algebra functor and
� denotes the coproduct in the category of associative S-algebras. It is obvious
that the homology of S �A(S) A(Σ

∞−2CP∞) is much bigger than the one of Mξ.
If we replace the coproduct by the smash product, there is still a canonical map
S ∧A(S) A(Σ

∞−2CP∞) → Mξ due to the coequalizer property of the smash prod-
uct. However, this smash product still has homology that is larger than that of Mξ.
Therefore the freeness of ΩΣCP∞ is not reflected on the level of Thom spectra.

1. The Thom spectrum of ξ

Lewis showed [LMSM, Theorem IX.7.1] that an n-fold loop map to BF gives
rise to an En-structure on the associated Thom spectrum. Here En is the product
of the little n-cubes operad with the linear isometries operad. For a more recent
account in the setting of symmetric spectra see work of Christian Schlichtkrull [Sch].

The map j : ΩΣCP∞ → BU is a loop map and so the Thom spectrum Mξ
associated to that map is an A∞ ring spectrum and the natural map Mξ → MU
is one of A∞ ring spectra, or equivalently of S-algebras in the sense of [EKMM].
Since the homology H∗(Mξ) is isomorphic as a ring to H∗(ΩΣCP

∞), we see that
Mξ is not even homotopy commutative. We investigated some of the properties of
Mξ in [BR].

For any commutative ring R, under the Thom isomorphism H∗(ΩΣCP
∞;R) ∼=

H∗(Mξ;R), the generator Zi corresponds to an element zi ∈ H2i(Mξ;R), where
we set z0 = 1. Thomifying the map i : CP∞ → ΩΣCP∞, we obtain a map
Mi : MU(1) → Σ2Mξ, and it is easy to see that

(1.1) Mi∗βi+1 = zi.

1.1. Classifying negatives of bundles. For every based space X, time-
reversal of loops is a loop-map from (ΩX)op to ΩX, i.e.,

¯( . ) : (ΩX)op → ΩX; w �→ w̄,

where w̄(t) = w(1− t). Here (ΩX)op is the space of loops on X with the opposite
multiplication of loops.

We consider BU with the H-space structure coming from the Whitney sum
of vector bundles and denote this space by BU⊕. A complex vector bundle of
finite rank on a reasonable space Y is represented by a map f : Y → BU and the
composition

Y
f ��BUop

⊕
¯( . ) ��BU⊕

classifies the negative of that bundle, switching the rôle of stable normal bundles
and stable tangent bundles for smooth manifolds.
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For line bundles gi : Y → CP∞ → BU⊕ (i = 1, . . . , n) we obtain a map

g = (gn, . . . , g1) : Y → Y n → (CP∞)n → (ΩΣCP∞)op → BUop
⊕

and the composition with loop reversal classifies the negative of the sum gn⊕· · ·⊕g1
as indicated in the following diagram.

Y ��

ḡ

��

g

��
Y n �� (ΩΣCP∞)op ��

¯( . )

��

BUop
⊕

¯( . )

��
ΩΣCP∞ �� BU⊕

In this way, the splitting of the stable tangent bundle of a toric manifold into a
sum of line bundles can be classified by ΩΣCP∞. For work on an interpretation of
π∗Mξ as the habitat for cobordism classes of quasitoric manifolds see [MK].

2. Mξ-(co)homology

We note that the composition of the natural map i : CP∞ → ΩΣCP∞ with
j : ΩΣCP∞ → BU classifies the reduced line bundle η−1 over CP∞. The associated
map Mi : Σ∞MU(1) → Σ2Mξ gives a distinguished choice of complex orientation

xξ ∈ M̃ξ
2
(CP∞), since the zero-section CP∞ → MU(1) is an equivalence.

We use the Atiyah-Hirzebruch spectral sequence

(2.1) E∗,∗
2 = H∗(CP∞;Mξ∗) =⇒ Mξ∗(CP∞).

As Mξ is an associative ring spectrum, this spectral sequence is multiplicative and
its E2-page is Z[[x]] ⊗ Mξ∗. As the spectral sequence collapses, the associated
graded is of the same form and we can deduce the following:

Lemma 2.1. As a left Mξ∗ = Mξ−∗-module we have

(2.2) Mξ∗(CP∞) = {
∑
i�0

aix
i
ξ : ai ∈ Mξ∗}.

The filtration in the spectral sequence (2.1) comes from the skeleton filtra-

tion of CP∞ and corresponds to powers of the augmentation ideal M̃ξ
∗
(CP∞)

in Mξ∗(CP∞). Of course the product structure in the ring Mξ∗(CP∞) is more
complicated than in the case of MU∗(CP∞) since xξ is not a central element.

In order to understand a difference of the form uxk
ξ − xk

ξu with u ∈ Mξm and
k � 1 we consider the cofibre sequence

ΣmCP k−1 ⊆ ΣmCP k → ΣmS2k.

Both elements uxk
ξ and xk

ξu restrict to the trivial map on ΣmCP k−1. The orienta-

tion xξ restricted to S2 is the 2-fold suspension of the unit of Mξ, Σ2i ∈ Mξ2(S2).
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Centrality of the unit ensures that the following square and outer diagram

ΣmS ∧ (Σ2S)∧k
u∧(Σ2i)∧k

��

twist

��

Mξ ∧ (Σ2Mξ)∧k

twist

��

����
���

���
���

Σ2kMξ

(Σ2S)∧k ∧ ΣmS
(Σ2i)∧k∧u �� (Σ2Mξ)∧k ∧Mξ

�������������

commute, so the difference uxk
ξ − xk

ξu is trivial. his yields

Lemma 2.2. For every u ∈ Mξm and k � 1, u and xk
ξ commute up to elements

of filtration at least 2k + 2, i.e.,

(2.3) uxk
ξ − xk

ξu ∈ (M̃ξ
∗
(CP∞))[2k+2].

Let E be any associative S-algebra with an orientation class uE ∈ E2(CP∞).
The Atiyah-Hirzebruch spectral sequence for E∗CP∞ identifies E∗(CP∞) with the
left E∗-module of power series in uE as in the case of Mξ:

E∗(CP∞) = {
∑
i�0

θiu
i
E : θi ∈ E∗}.

The orientation class uE ∈ E2(CP∞) restricts to the double suspension of the unit
of E, Σ2iE ∈ E2(CP 1). Induction on the skeleta shows that for all n, E∗(CP

n) is
free over E∗ and we obtain that

E∗(CP
∞) ∼= E∗{β0, β1, . . .}

with βi ∈ E2i(CP
∞) being dual to ui

E . Let ϕ : Mξ → H ∧Mξ be the map induced
by the unit ofH = HZ, and let Θ: Mξ∗(CP∞) → (H∧Mξ)∗(CP∞) be the induced
ring homomorphism (in fact Θ is a monomorphism as explained below). Then

(2.4) Θ(xξ) =
∑
i�0

zix
i+1
H = z(xH),

where xH ∈ (H ∧Mξ)2(CP∞) is the orientation coming from the canonical genera-
tor ofH2(CP∞). The proof is analogous to that forMU in [Ad]. Note that H∧Mξ
is an algebra spectrum over the commutative S-algebra H which acts centrally on
H ∧Mξ. Hence xH is a central element of (H ∧Mξ)∗(CP∞). This contrasts with
the image of xξ in (H ∧Mξ)∗(CP∞) which does not commute with all elements of
(H ∧Mξ)∗.

We remark that the cohomology ring Mξ∗(CP∞) is highly non-commutative.
Using (2.4), and noting that coefficient zi ∈ H2i(Mξ) is an indecomposable in the
algebra H∗(Mξ), it follows that xξ does not commute with any of the zi. For
example, the first non-trivial term in the commutator

z1 z(xH)− z(xH) z1

is (z1z2 − z2z1)x
3
H �= 0.

Let NSymm denote the ring of non-symmetric functions. This ring can be
identified with H∗(ΩΣCP

∞). Using this and the above orientation we obtain
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Proposition 2.3. The map Θ induces a monomorphism

Θ: Mξ∗(CP∞) → NSymm[[xH ]].

Proof. The right-hand side is isomorphic to the H∧Mξ-cohomology of CP∞.
As Mξ is a wedge of suspensions of BP at every prime and as the map is also
rationally injective, we obtain the injectivity of Θ. �

Note that for any λ ∈ Mξ∗ we can express Θ(xξλ) in the form∑
i�0

zix
i+1
H λ =

∑
i�0

ziλx
i+1
H ,

but as the coefficients are non-commutative, we cannot pass λ to the left-hand side,
so care has to be taken when calculating in NSymm[[xH ]].

3. A formal group law over Mξ∗

The two evident line bundles η1, η2 over CP∞×CP∞ can be tensored together
to give a line bundle η1 ⊗ η2 classified by a map μ : CP∞ × CP∞ → CP∞ and by
naturality we obtain an element μ∗xξ ∈ Mξ2(CP∞ × CP∞). We also have

(3.1) Mξ∗(CP∞ × CP∞) =

{ ∑
i,j�0

ai,j(x
′
ξ)

i(x′′
ξ )

j : ai,j ∈ Mξ∗

}
as a left Mξ∗ = Mξ−∗-module, where x′

ξ, x
′′
ξ ∈ Mξ2(CP∞×CP∞) are obtained by

pulling back xξ along the two projections. We have

μ∗xξ = Fξ(x
′
ξ, x

′′
ξ ) = x′

ξ + x′′
ξ +

∑
i,j�1

ai,j(x
′
ξ)

i(x′′
ξ )

j ,

where ai,j ∈ Mξ2(i+j)−2. The notation Fξ(x
′
ξ, x

′′
ξ ) is meant to suggest a power

series, but care needs to be taken over the use of such notation. For example, since
the tensor product of line bundles is associative up to isomorphism, the formula

(3.2a) Fξ(Fξ(x
′
ξ, x

′′
ξ ), x

′′′
ξ ) = Fξ(x

′
ξ, Fξ(x

′′
ξ , x

′′′
ξ ))

holds in Mξ∗(CP∞ × CP∞ × CP∞), where x′
ξ, x

′′
ξ , x

′′′
ξ denote the pullbacks of xξ

along the three projections. When considering this formula, we have to bear in
mind that the inserted expressions do not commute with each other or coefficients.
We also have the identities

Fξ(0, xξ) = xξ = Fξ(0, xξ),(3.2b)

Fξ(x
′
ξ, x

′′
ξ ) = Fξ(x

′′
ξ , x

′
ξ).(3.2c)

Let x̄ξ = γ∗xξ denotes the pullback of xξ along the map γ : CP∞ → CP∞ classify-
ing the inverse η−1 = η̄ of the canonical line bundle η. Then x̄ξ ∈ Mξ2(CP∞) and
there is a unique expansion

x̄ξ = −xξ +
∑
k�1

ckx
k+1
ξ

with ck ∈ Mξ2k. Since η ⊗ η̄ is trivial, this gives the identities

Fξ(xξ, x̄ξ) = 0 = Fξ(x̄ξ, xξ)

and so

(3.2d) Fξ(xξ,−xξ +
∑
k�1

ckx
k+1
ξ ) = 0 = Fξ(−xξ +

∑
k�1

ckx
k+1
ξ , xξ).
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To summarize, we obtain the following result.

Proposition 3.1. The identities (3.2) together show that Fξ(x
′
ξ, x

′′
ξ ) defines a

commutative formal group law over the non-commutative ring Mξ∗.

Remark 3.2. Note however, that most of the classical structure theory for
formal group laws over (graded) commutative rings does not carry over to the
general non-commutative setting. For power series rings over associative rings where
the variable commutes with the coefficients most of the theory works as usual. If
the variable commutes with the coefficients up to a controlled deviation, then the
ring of skew power series still behaves reasonably (see for example [D]), but our
case is more general.

4. The splitting of Mξ into wedges of suspensions of BP

In [BR] we showed that there is a splitting of Mξ into a wedge of copies of
suspensions of BP locally at each prime p. In the case of MU the inclusion of the
bottom summand is given by a map of ring spectra BP → MU(p). However, for
Mξ this is not the case.

Proposition 4.1. For each prime p, there is no map of ring spectra BP →
Mξ(p)

Proof. We give the proof for an odd prime p, the case p = 2 is similar. We
set H∗ = (HFp)∗.

Recall that

H∗(BP ) = Fp[t1, t2, . . .]

where tr ∈ H2pr−2(BP ) and the A∗-coaction on these generators is given by

ψ(tn) =

n∑
k=0

ζk ⊗ tp
k

n−k,

where ζr ∈ A2pr−2 is the conjugate of the usual Milnor generator ξr defined in [Ad].
The right action of the Steenrod algebra satisfies

P1
∗ t1 = −1, P1

∗ t2 = −tp1, Pp
∗ t2 = 0.

Assume that a map of ring spectra u : BP → Mξ(p) exists. Then P1
∗u∗(t1) =

u∗(−1) = −1, hence w := u∗(t1) �= 0. Notice that

P1
∗ (w

p+1) = −wp, Pp
∗ (w

p+1) = −w.

Also, Pp
∗u∗(t2) = 0. This shows that u∗(t2) cannot be equal to a non-zero multiple

of wp+1. Therefore it is not contained in the polynomial subalgebra of H∗(Mξ(p))

generated by wp+1 and thus it cannot commute with w. This shows that the
image of u∗ is not a commutative subalgebra of H∗Mξ(p) which contradicts the
commutativity of H∗BP . �

Remark 4.2. Note that Proposition 4.1 implies that there is no map of ring
spectra from MU to Mξ, because if such a map existed, we could precompose it
p-locally with the ring map BP → MU(p) to get a map of ring spectraBP → Mξ(p).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SOME PROPERTIES OF Mξ 7

5. The real and the quaternionic cases

Analogous to the complex case, the map RP∞ = BO(1) → BO gives rise to a
loop map ξR : ΩΣRP

∞ → BO, and hence there is an associated map of associative
S-algebras MξR → MO on the level of Thom spectra. There is a splitting of MO
into copies of suspensions of HF2. In fact a stronger result holds.

Proposition 5.1. There is a map of E2-spectra HF2 → MO.

Proof. The map α : S1 → BO that detects the generator of the fundamental
group of BO gives rise to a double-loop map

Ω2Σ2S1 = Ω2S3 → BO.

As the Thom spectrum associated to Ω2S3 is a model of HF2 by [Mah] with an
E2-structure [LMSM], the claim follows. �

Generalizing an argument by Hu-Kriz-May [HKM], Gilmour [G] showed that
there is no map of commutative S-algebras HF2 → MO.

The E2-structure on the map from Proposition 5.1 cannot be extended to ξR.
On the space level,

H∗(ΩΣRP
∞;F2) ∼= TF2

(H̄∗(RP
∞;F2)),

where Hn(RP
∞;F2) is generated by an element xn.

Proposition 5.2. There is no map of ring spectra HF2 → MξR.

Proof. Assume γ : HF2 → MξR were a map of ring spectra. We consider
γ∗ : (HF2)∗HF2 → (HF2)∗MξR. Note that (HF2)∗MξR is the free associative F2-
algebra generated by z1, z2, . . . with zi in degree i being the image of xi under the
Thom-isomorphism.

Under the action of the Steenrod-algebra on HF2-homology Sq1∗(z1) = 1 and
hence Sq1∗(z

3
1) = z21 by the derivation property of Sq1∗.

In the dual Steenrod algebra we have Sq1∗(ξ1) = 1 and Sq2∗(ξ2) = ξ1 and
Sq1∗(ξ2) = 0.

Combining these facts we obtain

(5.1) Sq1∗(γ∗(ξ1)) = γ∗(Sq
1
∗ξ1) = γ∗(1) = 1,

in particular γ∗(ξ1) �= 0 and thus γ∗(ξ1) = z1.
Similarly,

Sq2∗γ∗(ξ2) = γ∗(Sq
2
∗ξ2) = γ∗ξ1 = z1 �= 0.

The image of γ∗ generates a commutative sub-F2-algebra of (HF2)∗MξR. The
only elements in (HF2)∗MξR that commute with z1 are polynomials in z1. Assume
that γ∗ξ2 = z31 . Then

0 = γ∗Sq
1
∗ξ2 = Sq1∗(z

3
1) = z21 �= 0,

which is impossible. Therefore, γ∗ξ2 does not commute with z1, so we get a con-
tradiction. �

Note that Proposition 5.2 implies that there is no loop map Ω2S3 → ΩΣRP∞

that is compatible with the maps to BO since such a map would induce a map of
associative S-algebras HF2 → MξR.

A quaternionic model of quasisymmetric functions is given by H∗(ΩΣHP∞).
Here, the algebraic generators are concentrated in degrees that are divisible by 4.
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The canonical map HP∞ = BSp(1) → BSp induces a loop-map ξH : ΩΣHP∞ →
BSp and thus gives rise to a map of associative S-algebras on the level of Thom
spectra MξH → MSp.

Of course, the spectrum MSp is not as well understood as MO and MU . There
is a commutative S-algebra structure on MSp [May, pp. 22, 76], but for instance
the homotopy groups of MSp are not known in an explicit form.

6. Associative versus commutative orientations

We work with the second desuspension of the suspension spectrum of CP∞.
Such spectra are inclusion prespectra [EKMM, X.4.1] and thus a map of S-modules
from S = Σ∞S0 to Σ∞−2CP∞ := Σ−2Σ∞CP∞ is given by a map from the zeroth
space of the sphere spectrum to the zeroth space of Σ∞−2CP∞ which in turn is

a colimit, namely colimR2⊂W ΩWΣW−R2

CP∞. As a map 
 : S → Σ∞−2CP∞ we
take the one that is induced by the inclusion S2 = CP 1 ⊂ CP∞.

The commutative S-algebra S∧ (N0)+ = S[N0] has a canonical map S[N0] → S
which is given by the fold map. We can model this via the map of monoids that
sends the additive monoid (N0, 0,+) to the monoid (0, 0,+); thus S[N0] → S is a
map of commutative S-algebras.

We get a map S[N0] → A(Σ∞−2CP∞) by taking the following map on the nth
copy of S in S[N0]. We can view S as S ∧ {∗}+ where {∗} is a one-point space.
The n-fold space diagonal gives a map

δn : S = S ∧ {∗}+ → S ∧ {(∗, . . . , ∗)︸ ︷︷ ︸
n

}+ � S∧n

which fixes an equivalence of S with S∧n. We compose this map with the n-fold
smash product of the map 
 : S → Σ∞−2CP∞. The maps


∧n ◦ δn : S → (Σ∞−2CP∞)∧n → A(Σ∞−2CP∞)

together give a map of S-algebras

τ : S[N0] → A(Σ∞−2CP∞).

Note, however, that S[N0] is not central in A(Σ∞−2CP∞). Thus the coequalizer

S ∧S[N0] A(Σ
∞−2CP∞)

does not possess any obvious S-algebra structure. Furthermore, there is a natural
map

S ∧S[N0] A(Σ
∞−2CP∞) → Mξ,

but this is not a weak equivalence since the HZ-homology of the left-hand side is
the quotient by the left ideal generated by z0−1 and thus it is bigger than HZ∗Mξ
which is the quotient by the two-sided ideal generated by z0 − 1.

In the commutative context the pushout of commutative S-algebras is given by
the smash product. Hence there is a natural morphism of commutative S-algebras

P̃(Σ∞−2CP∞) = S ∧P(S) P(Σ
∞−2CP∞) → MU,
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where P̃(Σ∞−2CP∞) is the pushout in the following diagram of commutative S-
algebras

P(S) ��

��
�

P(Σ∞−2CP∞)

��
S �� P̃(Σ∞−2CP∞).

Here, we use the identity map on S to induce the left-hand vertical map of commu-
tative S-algebras and the inclusion of the bottom cell of Σ∞−2CP∞ to induce the

top map which is a cofibration and therefore P̃(Σ∞−2CP∞) is cofibrant. However,

the map P̃(Σ∞−2CP∞) → MU is not a weak equivalence as the next result shows.

Lemma 6.1. The canonical map of commutative S-algebras

P̃(Σ∞−2CP∞) → MU

is an equivalence rationally, but not globally. Furthermore, there is a morphism of
ring spectra

MU → P̃(Σ∞−2CP∞)

which turns MU into a retract of P̃(Σ∞−2CP∞).

Proof. Let k be a field. The Künneth spectral sequence for the homotopy
groups of

Hk ∧ (P̃(Σ∞−2CP∞)) � Hk ∧PHk(Hk) PHk(Σ
−2Hk ∧ CP∞)

has E2-term

E2
∗,∗ = Torπ∗(PHk(Hk))

∗,∗ (k, π∗(PHk(Σ
−2Hk ∧ CP∞))).

When k = Q, π∗(PHQ(HQ)) is a polynomial algebra on a zero-dimensional class
x0 and

(6.1) π∗(PHQ(Σ
−2HQ ∧ CP∞)) ∼= Q[x0, x1, . . .],

where |xi| = 2i. Thus

π∗(HQ ∧ (P̃(Σ∞−2CP∞)) ∼= Q[x1, x2, . . .] ∼= HQ∗(MU).

However, when k = Fp for a prime p, the freeness of the commutative S-
algebras P(S) and P(Σ∞−2CP∞)) implies that (HFp)∗(P(Σ

∞−2CP∞)) is a free
(HFp)∗(P(S))-module and thus the E2-term reduces to the tensor product in ho-
mological degree zero. Note that this tensor product contains elements of odd
degree, but (HFp)∗(MU) doesn’t.

Using the orientation for line bundles given by the canonical inclusion

Σ∞−2CP∞ → P̃(Σ∞−2CP∞),

we have a map of ring spectra

ϕ : MU → P̃(Σ∞−2CP∞).

The inclusion map CP∞ = BU(1) → BU gives rise to the canonical map
σ : Σ∞−2CP∞ → MU and with this orientation we get a morphism of commutative
S-algebras

θ : P̃(Σ∞−2CP∞) → MU,

such that the composite θ ◦ ϕ ◦ σ agrees with σ, hence θ ◦ ϕ is homotopic to the
identity on MU . �
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Using topological André-Quillen homology, TAQ∗(−), we can show that the
map of ring spectra ϕ cannot be rigidified to a map ϕ̃ of commutative S-algebras
in such a way that the composite θ ◦ ϕ̃ is a weak-equivalence. By Basterra-
Mandell [BM],

TAQ∗(MU |S;HFp) ∼= (HFp)∗(Σ
2ku),

while [BGR, proposition 1.6] together with subsequent work of the first named
author [Ba] gives

TAQ∗(P̃(Σ
∞−2CP∞)|S;HFp) ∼= (HFp)∗(Σ

∞−2CP∞
2 ),

where CP∞
2 = CP∞/CP 1 is the cofiber of the inclusion of the bottom cell.

Proposition 6.2. For a prime p, there can be no morphism of commutative
S(p)-algebras

θ(p) : MU(p) → (P̃Σ∞−2CP∞)(p)

for which σ(p) ◦ θ(p) is a weak equivalence. Hence there can be no morphism of
commutative S-algebras

θ : MU −→ P̃Σ∞−2CP∞

for which σ ◦ θ is a weak equivalence.

Proof. It suffices to prove the first result, and we will assume that all spectra
are localised at p. Assume such a morphism θ existed. Then by naturality of the
functor of Kähler differentials, ΩS , there are (derived) morphisms of MU -modules
and a commutative diagram

ΩS(MU)
θ∗

��

∼

��
ΩS(P̃Σ

∞−2CP∞) σ∗
�� ΩS(MU)

which by [BM] induce a commutative diagram in TAQ∗(−;HFp) of the following
form:

H∗(Σ
2ku;Fp)

θ∗
��

∼=

		
H∗(Σ

∞−2CP∞
2 ;Fp) σ∗

�� H∗(Σ
2ku;Fp).

It is standard that

Hn(Σ
∞−2CP∞

2 ;Fp) =

{
Fp if n � 2 and is even,

0 otherwise.

On the other hand, when p = 2,

H∗(ku;F2) = F2[ζ
2
1 , ζ

2
2 , ζ3, ζ4, . . .] ⊆ A(2)∗

with |ζs| = 2s − 1, while when p is odd

Σ2ku(p) ∼
∨

1�r�p−1

Σ2r�,

where � is the Adams summand with

H∗(�;F2) = Fp[ζ1, ζ2, ζ3, . . .]⊗ Λ(τ̄r : r � 2),

for |ζs| = 2ps − 2 and |τ̄s| = 2ps − 1. Hence no such θ can exist. �
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Proposition 6.3. There are commutative S-algebras E which possess a map
of commutative S-algebras

P̃(Σ∞−2CP∞) → E

that cannot be extended to a map of commutative S-algebras MU → E.

Proof. Matthew Ando [An] constructed complex orientations for the Lubin-
Tate spectra En which are H∞-maps MU → En. However, in [JN], Niles Johnson
and Justin Noël showed that none of these are p-typical for all primes up to at
least 13 (and subsequently verified for primes up to 61). For any p-typical orienta-
tion there is a map of ring spectra MU → En, but this map cannot be an H∞-map
and therefore is not a map of commutative S-algebras. �
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