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Homotopical algebra – What for?

Often, we are interested in (co)homology groups.

H2(X ,Z) = [X ,CP∞] = [X ,BU(1)] classifies line bundles on a
space X .
Many geometric invariants of a manifold M can be understood via
its de Rham cohomology groups.
In order to calculate or understand such (co)homology groups, we
often have to perform constructions on the level of (co)chain
complexes: quotients, direct sums,...
For these constructions one needs models.
Homotopical algebra: Study of homological/homotopical questions
via model categories.
Definition given by Quillen in 1967 [Q].
Flexible framework, can be used for chain complexes, topological
spaces, algebras over operads, and many more – allows us to do
homotopy theory.
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Chain complexes, I

Let R be an associative ring and let ChR denote the category of
non-negatively graded chain complexes of R-modules.

The objects are families of R-modules Cn, n ≥ 0, together with
R-linear maps, the differentials, d = dn : Cn → Cn−1 for all n ≥ 1
such that dn−1 ◦ dn = 0 for all n.
Morphisms are chain maps f∗ : C∗ → D∗. These are families of
R-linear maps fn : Cn → Dn such that dn ◦ fn = fn−1 ◦ dn for all n.
The nth homology group of a chain complex C∗ is

Hn(C∗) = ker(dn : Cn → Cn−1)/im(dn+1 : Cn+1 → Cn).

ker(dn : Cn → Cn−1) are the n-cycles of C∗, ZnC∗, and
im(dn+1 : Cn+1 → Cn) are the n-boundaries of C∗, BnC∗.
Here, we use the convention that Z0C∗ = C0. Chain maps f∗
induce well-defined maps on homology groups Hn(f ):
Hn(f ) : Hn(C∗)→ Hn(D∗), Hn(f )[c] := [fn(c)].
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The homotopy category

A chain map f∗ is called a quasi-isomorphism if the induced map

Hnf : Hn(C∗)→ Hn(D∗)

is an isomorphism for all n ≥ 0.

For understanding homology groups of chain complexes we would
like to have a category ChR [qi−1] where we invert the
quasi-isomorphisms.
Such a category is usually hard to construct. (How can you
compose morphisms? How can you make this well-defined?...)
Model categories give such a construction.
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Model categories, I

A model category is a category C together with three classes of
maps

I the weak equivalences, (we)

I the cofibrations (cof ) and

I the fibrations (fib).

These classes are closed under compositions and every identity
map is in each of the classes.
An f ∈ fib ∩ we is called an acyclic fibration and a g ∈ cof ∩ we is
called an acyclic cofibration.

We indicate weak equivalences by
∼ // , cofibrations by // //

and fibrations by // // .
These classes of maps have to satisfy a lot of compatibility
conditions...



Model categories, I

A model category is a category C together with three classes of
maps

I the weak equivalences, (we)

I the cofibrations (cof ) and

I the fibrations (fib).

These classes are closed under compositions and every identity
map is in each of the classes.

An f ∈ fib ∩ we is called an acyclic fibration and a g ∈ cof ∩ we is
called an acyclic cofibration.

We indicate weak equivalences by
∼ // , cofibrations by // //

and fibrations by // // .
These classes of maps have to satisfy a lot of compatibility
conditions...



Model categories, I

A model category is a category C together with three classes of
maps

I the weak equivalences, (we)

I the cofibrations (cof ) and

I the fibrations (fib).

These classes are closed under compositions and every identity
map is in each of the classes.
An f ∈ fib ∩ we is called an acyclic fibration and a g ∈ cof ∩ we is
called an acyclic cofibration.

We indicate weak equivalences by
∼ // , cofibrations by // //

and fibrations by // // .
These classes of maps have to satisfy a lot of compatibility
conditions...



Model categories, I

A model category is a category C together with three classes of
maps

I the weak equivalences, (we)

I the cofibrations (cof ) and

I the fibrations (fib).

These classes are closed under compositions and every identity
map is in each of the classes.
An f ∈ fib ∩ we is called an acyclic fibration and a g ∈ cof ∩ we is
called an acyclic cofibration.

We indicate weak equivalences by
∼ // , cofibrations by // //

and fibrations by // // .

These classes of maps have to satisfy a lot of compatibility
conditions...



Model categories, I

A model category is a category C together with three classes of
maps

I the weak equivalences, (we)

I the cofibrations (cof ) and

I the fibrations (fib).

These classes are closed under compositions and every identity
map is in each of the classes.
An f ∈ fib ∩ we is called an acyclic fibration and a g ∈ cof ∩ we is
called an acyclic cofibration.

We indicate weak equivalences by
∼ // , cofibrations by // //

and fibrations by // // .
These classes of maps have to satisfy a lot of compatibility
conditions...



Model categories, II

M1 The category C has all limits and colimits.

M2 (2-out-of-3): If f , g are morphisms in C such that g ◦ f is
defined, then if two of the maps f , g , g ◦ f are weak
equivalences, then so is the third.

M3 If f is a retract of g and g is in we, cof or fib, then so is f .

M4 For every commutative diagram

A
α //

i
��

X

q
��

B
β // Y

in C where i is a cofibration and q is an acyclic fibration or
where i is an acyclic cofibration and q is a fibration, a lift ξ
exists with q ◦ ξ = β and ξ ◦ i = α.

M5 Every morphism f in C can be factored as f = p ◦ j and q ◦ i ,
where j is an acyclic cofibration and p is a fibration, q is an
acyclic fibration and i is a cofibration.



Model categories, II
M1 allows us to make constructions.

M2: think of maps that induce isomorphisms on homology or
homotopy groups. These will automatically satisfy 2-out-of-3.
M3: f is a retract of g if it fits into a commutative diagram

U

f
��

//

IdU

%%
X

g
��

// U

f
��

V //

IdV

99Y // V

M4: The lift ξ in A
α //

i
��

X

q
��

B

ξ
??

β // Y

is not required to be unique!

M5: Can be used for constructing projective/injective resolutions,
CW-approximations etc.



Model categories, II
M1 allows us to make constructions.
M2: think of maps that induce isomorphisms on homology or
homotopy groups. These will automatically satisfy 2-out-of-3.

M3: f is a retract of g if it fits into a commutative diagram

U

f
��

//

IdU

%%
X

g
��

// U

f
��

V //

IdV

99Y // V

M4: The lift ξ in A
α //

i
��

X

q
��

B

ξ
??

β // Y

is not required to be unique!

M5: Can be used for constructing projective/injective resolutions,
CW-approximations etc.



Model categories, II
M1 allows us to make constructions.
M2: think of maps that induce isomorphisms on homology or
homotopy groups. These will automatically satisfy 2-out-of-3.
M3: f is a retract of g if it fits into a commutative diagram

U

f
��

//

IdU

%%
X

g
��

// U

f
��

V //

IdV

99Y // V

M4: The lift ξ in A
α //

i
��

X

q
��

B

ξ
??

β // Y

is not required to be unique!

M5: Can be used for constructing projective/injective resolutions,
CW-approximations etc.



Model categories, II
M1 allows us to make constructions.
M2: think of maps that induce isomorphisms on homology or
homotopy groups. These will automatically satisfy 2-out-of-3.
M3: f is a retract of g if it fits into a commutative diagram

U

f
��

//

IdU

%%
X

g
��

// U

f
��

V //

IdV

99Y // V

M4: The lift ξ in A
α //

i
��

X

q
��

B

ξ
??

β // Y

is not required to be unique!

M5: Can be used for constructing projective/injective resolutions,
CW-approximations etc.



Model categories, II
M1 allows us to make constructions.
M2: think of maps that induce isomorphisms on homology or
homotopy groups. These will automatically satisfy 2-out-of-3.
M3: f is a retract of g if it fits into a commutative diagram

U

f
��

//

IdU

%%
X

g
��

// U

f
��

V //

IdV

99Y // V

M4: The lift ξ in A
α //

i
��

X

q
��

B

ξ
??

β // Y

is not required to be unique!

M5: Can be used for constructing projective/injective resolutions,
CW-approximations etc.



Chain complexes, II

The category ChR has several model category structures. The one
we will use is: A chain map f : C∗ → D∗ is a

I weak equivalence, if f∗ is a quasi-isomorphism, i.e., H∗f∗ is an
isomorphism for all n ≥ 0,

I fibration, if fn : Cn → Dn is an epimorphism for all n ≥ 1,

I cofibration, if fn : Cn → Dn is a monomorphism with projective
cokernel for all n ≥ 0.

This does define a model category structure on ChR .
What are projective modules?
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Projective modules

Let R be a ring. A left R-module P is projective if for every
epimorphism π : M → Q of R-modules and every morphism
f : P → Q of R-modules there is an R-linear morphism ξ : P → M
that lifts f to M:

P

f
��

ξ

~~
M

π // // Q

If R = Z then the projective modules are exactly the free ones,
that is, P =

⊕
I Z.

If R is a field, then every module is projective.
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A light exposure to a typical argument

There are spheres and disks in ChR !

(Sn)m =

{
R, m = n,

0, otherwise.

The sphere complex has d = 0 for all m.

(Dn)m =

{
R, m = n, n − 1,

0, otherwise.

Here d : (Dn)n = R → R = (Dn)n−1 is the identity map.
Exercise: Calculate the homology groups of spheres and disks.
Show that every chain map from Sn to a chain complex C∗ picks
out an n-cycle c ∈ Zn(C∗) and that every chain map from Dn to a
chain complex C∗ picks out an element x ∈ Cn. Therefore there is
a canonical map in : Sn−1 → Dn.
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Lemma
1) A morphism in ChR is a fibration if and only if it has the lifting
property with respect to all maps 0→ Dn with n ≥ 1.
2) A morphism in ChR is an acyclic fibration if and only if it has the
lifting property with respect to all maps in : Sn−1 → Dn for n ≥ 0.

Proof: of 1): We assume that there is a lift ξ in the diagram

0
α //

��

X

p
��

Dn β //

ξ
>>

Y

for all n ≥ 1 and we have to show that pn is surjective for all n ≥ 1.
Any y ∈ Yn corresponds to β : Dn → Y , sending 1R ∈ Dn

n to y . A
lift ξ picks an element x ∈ Xn and the property pn ◦ ξn = βn
ensures that x is a preimage of y under pn, hence pn is surjective.
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Towards the homotopy category

When are two chain maps f∗, g∗ : C∗ → D∗ homotopic?

A chain homotopy H between f∗ and g∗ is a sequence of R-linear
maps (Hn)n∈N0 with Hn : Cn → Dn+1 such that for all n

dD
n+1 ◦ Hn + Hn−1 ◦ dC

n = fn − gn.

. . .
dC
n+2 // Cn+1

Hn+1

ww

dC
n+1 //

fn+1

��
gn+1

		

Cn

Hn

ww

dC
n //

fn
��

gn

		

Cn−1

Hn−1

ww

dC
n−1 //

fn−1

��
gn−1

		

. . .

. . .
dD
n+2 // Dn+1

dD
n+1 // Dn

dD
n // Dn−1

dD
n−1 // . . .

If f∗ is chain homotopic to g∗, then H∗f = H∗g .
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We can express this in a more “geometric” way.

The cylinder on C∗ is the chain complex cyl(C )∗ with
cyl(C )n = Cn ⊕ Cn−1 ⊕ Cn and with d : cyl(C )n → cyl(C )n−1

given by the matrix

d =

dn id 0
0 −dn−1 0
0 −id dn


The “top” and the “bottom” of the cylinder embed as

Cn → cyl(C )n, c 7→ (c , 0, 0)

and
Cn → cyl(C )n, c 7→ (0, 0, c).

There is also a map q : cyl(C )∗ → C∗ sending (c1, c2, c3) to
c1 + c3. These maps are chain maps.
Exercise: Two chain maps f∗, g∗ : C∗ → D∗ are chain homotopic if
and only if they extend to a chain map

f∗ + H∗ + g∗ : cyl(C )∗ → D∗.
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Cylinder objects in a model category

Let C be an object in a model category C. We call an object cylC
a cylinder object for C , if there are morphisms

C t C
i // cylC

q

∼
// C

that factor the fold map ∇ : C t C → C .

For C = ChR the categorical sum C∗ t C∗ is the direct sum
C∗ ⊕ C∗ and the fold map ∇ sends (c1, c2) to c1 + c2.
cyl(C )∗ as above is a cylinder object: we can take
i(c1, c2) = (c1, 0, c2) and q : cyl(C )∗ → C∗ as above.
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A cylinder object cylC is good, if i is a cofibration and it is very
good if in addition q is an acyclic fibration.

Warning: In general, cylC won’t be functorial in C !
In ChR our cylinder object cyl(C )∗ won’t be good in general: i is
not a cofibration in general, because the cokernel of in is Cn−1

which won’t be projective in general. However, q is always
surjective in all degrees, hence a fibration.
Good and very good cylinder objects exist thanks to M5.
The map i : C t C → cylC has components i0 : C → cylC and
i1 : C → cylC given by the two maps C → C t C .
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Left homotopies

Two morphisms in a model category f , g : C → D are called left
homotopic, if there is a cylinder object cylC of C and a morphism
H : cylC → D such that H ◦ i0 = f and H ◦ i1 = g .

Problems:

I Being left homotopic is no equivalence relation in general.

I There is a dual notion of being right homotopic (using “path
objects” instead of cylinder objects) and these notions don’t
agree in general.

We need to restrict to nice objects!
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Digression: initial and terminal objects

Every chain complex C∗ receives a unique chain map f from the
trivial chain complex 0 with 0n = 0 for all n ≥ 0, the trivial abelian
group,

fn = 0: 0→ Cn, and it also has a unique chain map g : C∗ → 0,
sending everything to zero.
In the category of topological spaces every topological space X
receives a unique map from the empty topological space ∅ (by
convention) and for every one-point topological space {∗} there is
a unique continuous map p : X → {∗}.
Definition: An object i in a category C is called initial, if every
object C of C has a unique morphism f ∈ C(i ,C ). Dually, an
object t of C is called terminal, if for every object C of C there is a
unique morphism g ∈ C(C , t).
So, 0 is initial and terminal in the category ChR and ∅ is inital in
Top whereas any one-point space is terminal in Top.
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Cofibrant and fibrant objects

Initial objects and terminal objects exist in every model category.

Definition: An object C in a model category is cofibrant, if the
unique morphism i → C is a cofibration. Dually, an object P in a
model category is fibrant, if the unique morphism P → t is a
fibration.
In ChR every object is fibrant, but only those chain complexes C∗
with Cn projective for all n ≥ 0 are cofibrant.
For every object X in a model category, we can factor the unique
map i → X as

i //
f //QX

q

∼
// //X

with f ∈ cof and q ∈ fib ∩ we. We call this a cofibrant
replacement of X . (This can be made functorial in X .)
In ChR this gives projective resolutions of any R-module M viewed
as S0(M).
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The homotopy category of a model category

For a cofibrant object QX we can factor the unique map QX → t
as

QX //
∼
j //RQX

p // //t

with j ∈ cof ∩ we and p ∈ fib. Then we have an object RQX that
is both fibrant and cofibrant and has a zig-zag of weak equivalences

X QX
q

∼
oooo //

∼
j //RQX

Definition: The homotopy category, Ho(C), of a model category C
has as objects the objects of C and Ho(C)(X ,Y ) is the set of (left)
homotopy classes of maps from RQX to RQY .
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This is the right thing: There is a functor γ : C → Ho(C) with
γ(X ) = X and γ(f : X → Y ) = [RQf : RQX → RQY ].

Theorem: For any f in C we have: γ(f ) is an isomorphism in
Ho(C) if and only if f is a weak equivalence.

So Ho(C) is a model for C[we−1]!
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What are diagrams?
Take any small category D. That is a category whose objects
constitute an actual set and not a proper class. Let C be an
arbitrary category.

A D-diagram in C is a functor F : D → C: So for every object D of
D you have an object F (D) of C and for every morphism
f ∈ D(D1,D2) you get a morphism F (f ) : F (D1)→ F (D2). This
has to be consistent: for g ∈ D(D2,D3) we have
F (g) ◦F (f ) = F (g ◦ f ) and F (idD) = idF (D) for all objects D of D.
Examples:

I D = (2← 0→ 1) and C = ChR gives a diagram
F (2)← F (0)→ F (1) of chain complexes and chain maps.

I For D = (0→ 1→ 2→ . . .) and C = Top we get a sequence
F (0)→ F (1)→ F (2)→ . . . of topological spaces and
continuous maps.

I If S is any set, then we can consider it as a category whose
only morphisms are identity maps. A functor F : S → C for
any C is just an S-indexed family of objects.
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What are colimits?
Let F : D → C be a functor as above. Then a colimit of F is an
object colimDF of C that is “as close to the diagram that F
defines as it can be”.

Definition: A colimit of F over D is an object colimDF of C
together with morphisms τD : F (D)→ colimDF in C such that for
all f ∈ D(D1,D2)

F (D1)
τD1 //

��

colimDF

F (D2)

τD2

99

commutes. Furthermore, if C is any other object of C with
morphisms ηD : F (D)→ C such that

ηD2 ◦ F (f ) = ηD1 ∀ f ∈ D(D1,D2)

then there is a unique morphism ξ : colimDF → C with
ξ ◦ τD = ηD for all objects D of D.
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Examples of colimits

I Colimits for D = (2← 0→ 1) are called pushouts. In ChR

the pushout of F (2)← F (0)→ F (1) is the chain complex

(F (2)⊕ F (1))/ ∼

where ∼ identifies the image of F (0) in F (1) and F (2).

This fit into a diagram

F (0) //

��

F (2)

τ2

��
F (1)

τ1 // (F (2)⊕ F (1))/ ∼

For τ0 : F (0)→ (F (2)⊕ F (1))/ ∼ you take the map from
F (0) to (F (2)⊕ F (1))/ ∼ in the diagram (they are both the
same).
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Examples of colimits – continued

I For a diagram of the form F (0)→ F (1)→ F (2)→ . . . in Top
the colimit is given by

⊔
n≥0 F (n)/ ∼ where ∼ identifies

x ∈ F (m) with the image of x in F (n) under the maps in the
sequence for m ≤ n. Such colimits are called sequential
colimits.

I A colimit over a diagram indexed on a set S viewed as a
category is the coproduct of the objects F (s), s ∈ S and is
denoted by

⊔
S F (s). For sets or topological spaces you get

the disjoint union of the F (s), for chain complexes you get⊕
S F (s).
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Homotopy invariance

Slogan: Homotopy colimits are homotopy invariant colimits

What does that mean?
Usual colimits are not homotopy invariant:
Take the pushout of

Sn //

��

∗

∗

Here Sn = {x ∈ Rn+1, |x | = 1} is the unit sphere in Rn+1.
An explicit formula for the pushout is ∗ t ∗/ ∼ where the two
points are glued together, so

Sn //

��

∗

��
∗ // ∗

is a pushout diagram.
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But the unit (n + 1)-disk Dn+1 = {y ∈ Rn+1, |y | ≤ 1} is
contractible, so homotopy equivalent to a point ∗.

The pushout of

Sn //

��

Dn+1

Dn+1

is Sn+1.
Thus replacing ∗ by the homotopy equivalent Dn+1 changed the
homotopy type of the pushout.
That’s bad, if you want to work up to homotopy...
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What should a homotopy colimit do for us?

In a model category all colimits exist by assumption. We can
actually view the colimit as a functor

colimD : CD → C

where CD denotes the category of functors from D to C. It is left
adjoint to the constant functor

∆: C → CD, ∆(C )(D) = C ∀D

and ∆ sends any morphism in D to the identity map on C .

We want to transform this into a functor

hocolimD : Ho(CD)→ Ho(C)

...at least, if CD possesses a model category structure and thus a
homotopy category, Ho(CD). (Warning: Ho(CD) 6= Ho(C)D!)
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Model category definition of hocolims

Assume that CD possesses a model category structure. Then if the
colimit functor colimD preserves cofibrations and if the functor ∆
preserves fibrations, then there is an adjoint pair of functors

Ho(CD)
hocolimD//

Ho(C)
R∆
oo

Recipe for hocolimDF :

1. Take your diagram F and its cofibrant replacement

i // //Q(F )
∼ // //F in CD.

2. The colimit colimDQ(F ) models hocolimDF .
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Why are we not happy with that?

Usually, model structures on diagram categories CD are
complicated.
The cofibrant replacement of a diagram in CD is not just given by
the cofibrant replacement of each F (D), but is way more involved.
How do we get explicit models?
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Bousfield-Kan, Hirschhorn, Rodŕıguez-González

I 1972: Bousfield and Kan constructed models for homotopy
colimits for diagrams in simplicial sets; those are
combinatorial models of topological spaces.

I People observed that the Bousfield-Kan construction transfers
to many other settings “with a simplicial structure” (see
Hirschhorn’s book [H]).

I Rodŕıguez-González [RG] gave a systematic account on the
question, when there is a Bousfield-Kan model of a homotopy
colimit.



Examples of homotopy colimits, I

The double mapping cylinder.

We saw that ordinary pushouts in
topological spaces are not homotopy invariant.
Consider a diagram

X0

g

��

f // X2

X1

of topological spaces and continuous maps. (I.e. F (i) = Xi ).
Replace X0, the space you use for gluing, by the cylinder
X0 × [0, 1].
The homotopy colimit of the diagram can be expressed as

(X1 t X0 × [0, 1] t X2)/ ∼

where you glue points (x0, 0) ∈ X0 × [0, 1] to g(x0) and (x0, 1) to
f (x0).
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topological spaces are not homotopy invariant.
Consider a diagram

X0

g

��

f // X2

X1

of topological spaces and continuous maps. (I.e. F (i) = Xi ).
Replace X0, the space you use for gluing, by the cylinder
X0 × [0, 1].
The homotopy colimit of the diagram can be expressed as

(X1 t X0 × [0, 1] t X2)/ ∼

where you glue points (x0, 0) ∈ X0 × [0, 1] to g(x0) and (x0, 1) to
f (x0).



Examples of homotopy colimits, II

For a sequential diagram of topological spaces
X0 → X1 → X2 → . . . the telescope is an explicit model of
hocolimN0X :

1. Replace every Xn by the cylinder Xn × [n, n + 1].

2. Glue the points (xn, n + 1) ∈ Xn × [n, n + 1] to the points
(fn(xn), n + 1) ∈ Xn+1 × [n + 1, n + 2].

3. This gives a telescope⊔
n≥0

Xn × [n, n + 1]

 / ∼ .



Example: hocolim in non-negative chain complexes
Let D be any small category and let F : D → ChR be any functor.
Rodŕıguez-González describes an explicit model of hocolimDF :

1. We consider morphisms in the category D. Let N(D)n be the

set of morphisms D0
f1 //D1

f2 // . . .
fn //Dn . Here, by

convention N(D)0 is the set of objects of D.

2. If we denote an element of N(D)n as above as
f = (fn, . . . , f1), then we can define

di (fn, . . . , f1) :=


(fn, . . . , f2), i = 0,

(fn, . . . , fi+2, fi+1 ◦ fi , fi−1, . . . , f1), 0 < i < n,

(fn−1, . . . , f1), i = n.

3. Thus di erases the object Di , so in d0 f1 is omitted because its
source is gone, in dn fn is omitted because it lost its target,
and all the inner di force a composition because the
intermediate object disappeared.

4. We call D0 the source of f = (fn, . . . , f1) and denote it by sf .
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We can build a double chain complex out of our diagram and out
of the above construction:

Each F (D) is a chain complex with a differential
d : F (D)n → F (D)n−1. We can build

δ :
⊕

f ∈N(D)n

F (sf )→
⊕

g∈N(D)n−1

F (sg)

by using the alternating sum
∑n

i=0(−1)idi of the di ’s above.
The resulting double complex looks as follows:



We can build a double chain complex out of our diagram and out
of the above construction:
Each F (D) is a chain complex with a differential
d : F (D)n → F (D)n−1.

We can build

δ :
⊕

f ∈N(D)n

F (sf )→
⊕

g∈N(D)n−1

F (sg)

by using the alternating sum
∑n

i=0(−1)idi of the di ’s above.
The resulting double complex looks as follows:



We can build a double chain complex out of our diagram and out
of the above construction:
Each F (D) is a chain complex with a differential
d : F (D)n → F (D)n−1. We can build

δ :
⊕

f ∈N(D)n

F (sf )→
⊕

g∈N(D)n−1

F (sg)

by using the alternating sum
∑n

i=0(−1)idi of the di ’s above.

The resulting double complex looks as follows:



We can build a double chain complex out of our diagram and out
of the above construction:
Each F (D) is a chain complex with a differential
d : F (D)n → F (D)n−1. We can build

δ :
⊕

f ∈N(D)n

F (sf )→
⊕

g∈N(D)n−1

F (sg)

by using the alternating sum
∑n

i=0(−1)idi of the di ’s above.
The resulting double complex looks as follows:



. . .

δ
��

. . .

−δ
��

. . .

⊕
(f1)∈N(D)1

F (s(f1))0

δ

��

⊕
(f1)∈N(D)1

F (s(f1))1
doo

−δ
��

. . .
doo

⊕
D∈D F (D)0

⊕
D∈D F (D)1

doo . . .
doo

The associated total complex is a model for the homotopy colimit.
This is rather involved, but explicit and useful for constructions.
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