(CO-)HOMOLOGY THEORIES FOR COMMUTATIVE
(5-)ALGEBRAS

MARIA BASTERRA AND BIRGIT RICHTER

The aim of this paper is to give an overview of some of the existing homo-
logy theories for commutative (S-)algebras. We do not claim any originality;
nor do we pretend to give a complete account. But the results in that field
are widely spread in the literature, so for someone who does not actually work
in that subject, it can be difficult to trace all the relationships between the
different homology theories. The theories we aim to compare are

e topological André-Quillen homology

e Gamma homology

e stable homotopy of I'-modules

e stable homotopy of algebraic theories

e the André-Quillen cohomology groups which arise as obstruction
groups in the Goerss-Hopkins approach

As a comparison between stable homotopy of I'-modules and stable homo-
topy of algebraic theories is not explicitly given in the literature, we will give
a proof of Theorem 2.1 which says that both homotopy theories are isomor-
phic when they are applied to augmented commutative algebras. This result
is well-known to experts.

The comparison results provided by Mike Mandell [M] and Basterra-McCar-
thy [B-McC] can be cobbled together to prove that Gamma cohomology and
the André-Quillen cohomology groups in the Goerss-Hopkins approach coin-
cide.
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patiently answered all our questions concerning André-Quillen cohomology of
E algebras.

1. DIFFERENT COHOMOLOGY THEORIES FOR COMMUTATIVE
(S-)ALGEBRAS

We will briefly describe the definitions of the above mentioned homol-
ogy theories, their range and the domain, on which they coincide. Here
range means, that some of them are defined for genuine commutative al-

gebras whereas others are homology theories for commutative S-algebras a
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la [EKMM]. These reduce to homology theories for algebras by considering
Eilenberg-MacLane spectra of commutative rings.

1.1. André-Quillen homology, AQ. To start with, we should mention the
algebraic predecessor of these theories, namely André-Quillen homology of
commutative algebras. The standard references for this homology theory
are [A], [Q2, Q1], and [W]. For a pointed model category, Quillen defined
the notion of homology of objects: he considers the subcategory of abelian
objects in that model category. If the inclusion of this subcategory in the
whole category has a left adjoint — called abelianization— then the homology
of an object is the left derived functor of abelianization. That is, one takes an
object, considers a cofibrant resolution and applies the abelianization functor
to that resolution.

Let k£ be a commutative ring with unit. For a commutative (simplicial) k-
algebra A this means to take a free simplicial resolution P, — A, to apply the
module of Kahler differentials to P,, and then define André-Quillen homology
of A with respect to the ground ring k£ and coefficients in an A-module M to
be

AQ.(Alk; M) = W*(Q}D*“c ®p, M).
The module Q}J*I i is called the cotangent complex of A over k and is denoted
by Ljk; this is well-defined, because the homotopy groups of Q}’*Ik do not
depend on the resolution.

For A as above let I denote the kernel of the multiplication map I :=
ker(A ®; A — A). Then the module of Kéhler differentials has an alterna-
tive description: the ideal I has an induced multiplication and the Kahler
differentials 2}, are isomorphic to 7/I?. The quotient //I* is the module of
indecomposables in I and is often denoted by Q(I).

André-Quillen homology vanishes in positive degrees for smooth algebras:
if A is smooth over k, then AQ, (A|k; M) = 0 for all * > 0 and AQq(A|k; M) =
Q}M  ®4 M. In particular, if A is étale over £, then André-Quillen homology
vanishes in all degrees.

Let AY(V') denote the ¢-th exterior power on a module V. Quillen [Q2, 8.1]
constructs a spectral sequence

(1.1) E? = Hy(AL ;) = Tor, 5k (A, A)

which starts with André-Quillen homology and its higher versions H, (AL 4)
and converges to Hochschild homology for commutative algebras A which are
k-flat.

The properties, which make André-Quillen homology actually a homology
theory, are a transitivity long exact sequence, i.e., for a triple of algebras
A — B — (' the following sequence is long exact:

o= AQu(B|A; M) = AQ,(C|A; M) — AQ,(C|B; M)
= AQu 1(BlA; M) — -+
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In addition, there is a flat-base change property: if A and B are two commu-
tative k-algebras and B is k-flat, then André-Quillen homology does not see
the difference between A ®; B relative to B and A relative to &

AQ.(A ®, B|B; M) = AQ.(Alk; M)

for all A ®; B-modules M. Similarly, if Tor*(4, B) = 0 for * > 0, then
André-Quillen homology of A ®; B relative to k splits as

AQ. (A ®y, Blk; M) = AQ.(Alk: M) @ AQ.(B|k; M).

The zeroth André-Quillen homology gives the module of Kéahler differentials;
the zeroth cohomology is therefore the module of derivations. The first André-
Quillen cohomology of A with coefficients in M classifies ‘infinitesimal exten-
sions’. To be more precise, AQ*(A|k; M) classifies surjections of k-algebras
m : E — A such that the kernel of 7 is isomorphic to M as an A-module.
Here M is considered as a trivial algebra M? = 0, and the kernel of m gets
its A-module structure from the inclusion into E, i.e., 7(e)m = em fore € E
and m in the kernel of 7.

1.2. Topological André-Quillen homology, TAQ. Several authors (Wald-
hausen, McClure and Hunter, Kriz, and Robinson among others) initiated the
study of a corresponding theory in the category of E,, ring spectra before the
necessary foundations where in place. The construction of the category of
commutative S-algebras in [EKMM], a model category equivalent to the cat-
egory of E, ring spectra, allowed M. Basterra to mimic the construction
of Kéahler differentials and define topological André-Quillen (co)-homology.
We give a brief account of this theory in the following section. For a more
extensive description see [La] or the original account [B].

Let A be a commutative S-algebra and let B be an A-algebra over A. Then
one can build the pullback in the category of A-modules

I4(B) —
|
B A

and I 4(B) is called the augmentation ideal of B. Similarly, for a non-unital A-
algebra C (like I4(B)), the multiplication allows us to construct the pushout
in the category of A-modules

CApC *
]
C Q(C).

We call the outcome Q(C) the module of indecomposables.
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For every commutative A-algebra B, the smash product BA 4 B is naturally
augmented over B via the multiplication map. The topological André-Quillen
homology of B with respect to A is defined to be

TAQ(B|A) := (LQ)(RIB)(B A} B).

Here L stands for left and R for right derived functor.
For any B-module M, the topological André-Quillen homology groups of
B with coefficients in M are the homotopy groups of the TAQ spectrum

TAQ,(B|A; M) = 7, (TAQ(B|A) Ap M).

Topological André-Quillen homology has properties similar to algebraic
André-Quillen homology. For any triple of cofibrant commutative S-algebras
we have a transitivity long exact sequence and there is a ‘cofibrant base
change’ property [B, 4.2,4.3 & 4.6].

For a connective commutative S-algebra A, it is shown in [B, Theorem
8.1(Kriz)] that the usual Postnikov tower of A can be refined to a Postnikov
towers consisting of commutative S-algebras, such that the k-invariants live
in topological André-Quillen cohomology. This result can be used for an
obstruction theory for commutative S-algebra structures: assume for a con-
nective S-module A that there is a commutative S-algebra structure on the
n-th Postnikov stage. Then this structure can be lifted to a commutative
S-algebra structure on the (n + 1)-st stage, if the k-invariant for that stage
can be lifted to a k-invariant in topological André-Quillen cohomology.

Recall that given an E, space X, the suspension spectrum of X, the space
obtained by adjoining a disjoint point to X, is an S-module with an FE-ring
structure coming from the H-space structure. Hence, S A (X;) = ¥*°(X ) is
a commutative S-algebra. In work in progress, M. Basterra and M. Mandell
show that its cotangent complex is equivalent to X, the S-module associated
to the spectrum obtained from X using an infinite loop space machine (see
[EKMM, VIL3]).

More generally, given an augmented commutative A-algebra B there is a
reduced version of TAQ with TAQ(B|A) = (LQ4)(RI14)(B). Then, for an Ey
space X,

TAQAAX,|A) = ANX.

The authors use this fact and the weak equivalence of E..-ring spectra
MU AN MU — MU A BU, provided by the Thom isomorphism to calculate:

TAQ(MU|S) = TAQ(MU A BU,|MU) = MU A bu

i.e., the cotangent complex of MU, the complex cobordism S-algebra, is the
connective complex K-theory module.
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In [Mi], Minasian constructed a spectral sequence similar to the spectral
sequence (1.1) in the algebraic setting. It is of the form

s—1
EX o, (/\ ZTAQ(A|S)> for t>s>0.
hzsfl

=1

This spectral sequence converges to the reduced topological Hochschild hom-
ology of A. With the help of this spectral sequence, Minasian could prove [Mi,
Corollary 2.8] that for a connective cofibrant S-algebra A topological André-
Quillen homology vanishes, if and only if the reduced topological Hochschild
homology of A is trivial. Here, it is crucial to assume, that A is connective
(compare with the discussion at the end of the paper).

In [McC-Mi] McCarthy and Minasian developed a notion of TAQ-smooth
and THH-smooth commutative S-algebras and they could prove an analogue
of the Hochschild-Kostant-Rosenberg theorem for usual Hochschild-homology,
which states that Hochschild homology of smooth algebras is isomorphic to
the exterior powers of the modules of Kahler differentials.

The counterpart in the context of S-algebras of this theorem [McC-Mi,
Theorem 6.1] says, that for a THH-smooth R-algebra A in the category of
connective S-algebras, there is a natural equivalence of A-algebras

PA(XTAQ(A|R)) ~ THH(A|R)

between the free commutative A-algebra on XTAQ(A|R) and topological
Hochschild homology of A.

With the help of TAQ, one can distinguish certain classes of commutative
S-algebras. For instance, the algebraic notion of étaleness can be transferred
to étaleness for commutative S-algebras. John Rognes, Randy McCarthy and
others use the notion of TAQ-étale maps of S-algebras — maps A — B of S-
algebras with the property that TAQ(B|A; B) ~ * — andTHH-étale maps of
S-algebras — maps, such that the reduced topological Hochschild homology

'T'FI/H(B |A; B) is trivial — to transfer statements of classical algebra to the
theory of commutative spectra. In particular, Rognes applies these and other
notions in his work on Galois theory of commutative S-algebras.

1.3. Gamma homology, HI'. In the mid 90’s, Alan Robinson and Sarah
Whitehouse developed a homology theory for E,, algebras, called Gamma
homology (HT"). A published account of this work is [Ro-Wh]. The general
definition of Gamma homology is quite involved: they construct an analog of
the cotangent complex in the case of F-algebras: if A is a k-algebra over
some E, operad C and M is an A-module, then the realization of these data is
defined as the cofibre IC(A|k; M) of |[M(A|k; M)|" — My where |M(A|k; M)/’
is a quotient of P, ~, Cnt1®x, A¥"®@M; | M| has a natural filtration by taking
the k-th filtration to be everything that is the quotient of @, ., Cni1®A®"®
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M under the action of the symmetric groups and the other identifications
defined in [Ro-Wh, 2.8 (1),(2)]. The part M, is the bottom filtration piece.

For an F,, subalgebra A of B the cotangent complex is defined to be the
cofibre of

K(Alk; M) — K(B|k; M)

and Gamma homology is the homology of the cotangent complex. They pro-
vide a transitivity long exact sequence [Ro-Wh, 3.4] for a triple of inclusions
of E, algebras A < B — C and there is also a variant of Gamma homology
for cyclic Ew-algebras [Ro-Wh, 2.9]. In the special example of commutative
algebras (viewed as E,, algebras) there are several concrete chain complex
models for Gamma homology. Sarah Whitehouse gave one model in her the-
sis [Wh], and Alan Robinson uses a quasi-isomorphic one in [Rol]. We will
briefly give the description of the latter (compare [Rol, 2.5]).

For a commutative k-algebra A and an A-module M the complex for
Gamma homology, CT is the total complex of a bicomplex =, ., which in
bidegree (p, ¢) consists of

Epq = Liej,, @ k[Sq41]%? @ M @ A®TH.

Here, all tensor products are taken with respect to the ground ring k. The
k-module Lie) is the dual of the n-th part of the operad for Lie-algebras,
i.e., Lie, (without the dualization) is the free k-module on all Lie words on
n generators xy, ..., T, which contain each z; exactly once; this is a left-3,,-
module, where the action of 0 € X, on a word of length n is given by the
sign-action and the permutation of the variables x4, ..., z,.

The horizontal differential is just the differential in the two-sided bar con-
struction of the symmetric group, using the right action of ¥4, on Lie, ., and
the left-action on M ® A®?*! by permuting the tensor factors in A%+, The
vertical differential uses an action of certain standard surjection on Lie, .
For the precise definition see [Rol, 2.2-2.5]. In order to get a homotopy
invariant definition one should either insist that the algebra A is k-flat or
assume that A is replaced by a simplicial flat resolution and the complex =, .
is applied to that.

In the case of commutative algebras, Gamma homology vanishes on étale
extensions. There is a transitivity long exact sequence for a triple A - B —
C of algebras and there is a flat-base change theorem. Gamma homology
agrees with André-Quillen homology for algebras over the rational numbers
and in general, Gamma homology in degree zero gives the first Hochschild
homology group. The zeroth Gamma cohomology is the module of deriva-
tions and the first Gamma cohomology group is the module of ‘infinitesimal
extensions’, i.e., it is isomorphic to the first André-Quillen cohomology group.

Some calculations of Gamma homology can be found in [Ri-Ro]. In par-
ticular, for smooth algebras, for group rings and for truncated polynomial
algebras, there are explicit formulae for Gamma homology.
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For a commutative ring spectrum FE, Gamma cohomology groups of the
algebra of cooperations F,F contain information about the obstructions for
refining the given multipication on the ring spectrum to an E, ring structure.
Alan Robinson established this obstruction theory in [Rol]; an overview can
be found in this volume [Ro2]. For instance, the existence of the unique E,
structures on the Lubin-Tate spectra E, [Rol, Ri-Ro], on real and complex
K-theory, on the Adams summand and on the [,-adic completion of the

Johnson-Wilson spectra E/’(;) [B-R| can be proven this way.

1.4. Stable homotopy of I'-modules, 7. Let ' denote the skeleton of
the category of finite pointed sets with set of objects [n] = {0,...,n} with 0
as base point.

There is a well-known way to associate a spectrum to any covariant func-
tor F' from I' to some pointed category C which has a forgetful functor the
category Sets, of pointed sets. Let us call such an F' a left ['-object in C.
Such a functor F' can be prolonged to a functor from pointed simplicial sets
to simplicial C-objects by approximating an arbitrary pointed set by finite
pointed sets and by applying F' degreewise: for a pointed simplicial set X,
let F'(X,) be F(X,) in simplicial degree n.

For two pointed simplicial spaces X, and Y,, and for a left ['-object F
in C we obtain a map X, A F(Y,) — F(X. AY,): each element z € X,
defines a morphism z : Y, — (X, A Y.), by sending an element y in Y,, to
z(y) := [(z,y)], i-e., to the equivalence class of (z,y) in the smash-product.
This yields the desired transformation X, AF(Y,) — F(X,AY,) by naturality
of F'. In particular, we obtain maps

S'AF(S™) — F(S™)

such that the sequence (F(S™)),>o becomes a spectrum and we denote the
stable homotopy groups of that spectrum by 75¢(F).

For a commutative ring with unit £, a left [-module is a functor from I' to
the category of k-modules. Teimuraz Pirashvili showed in [P, Prop.2.2], that
the groups m**(F) are isomorphic to the derived functors Torl (¢, F') of the
tensor product t®r F'. Here t is a contravariant functor from I' to k-modules,
which is given by t[n] = Homges, ([1], k). The Tor-groups in turn have been
identified with the homology groups of the first layers in the Goodwillie tower
for F in [Ri2, Theorem 4.5].

If one considers the particular case of the left I'-module £(A|k; M) which
is given by [n] —» M ® A®" for any commutative k-algebra A and any A-
module M, then we obtain stable homotopy groups associated to an algebra
and a module. Here a map of finite pointed sets f : [n] — [m] induces
multiplication in A, insertion of the unit or the action of A on M: the map f
sends an element qy®Ra; Q- - Qa, € MQA®" to byR@b; R+ - -®b,, € M QA®™
where each b; is a product [] ()= %> where we interpret this to be the unit

of A whenever f~'(i) = @.
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There is a visible relationship to Hochschild homology: recall the usual
specific chain complex for Hochschild homology. The underlying simplicial
set looks like

M—MRA=——M®@AR®A

Here the face maps induce the multiplication in the algebra A respectively
the action of A on M.

Taking the simplicial model for the 1-sphere which consists of n+1 elements
in degree n it is visible, that Hochschild homology of A with coefficients in
M is the homotopy of L(A|k; M) evaluated at S'. This gives a stabilization
map from Hochschild homology to stable homotopy of L(A|k; M)

m L(A|k; M)(SY) — colim,m, o L(Alk; M)(S"™) = 75 [ (L(A|k; M)).

As stable homotopy splits tensor products of I'-modules into sums (see [P,
4.2]) in the following way

mH(F®G)=r(F)® G0 ® F[0] ® m)Y(G)

we obtain, that stable homotopy of L(k[z;,i € I]|k; k) for an arbitrary index-
ing set I is isomorphic to @, wf*(L(k[z]|k; k)); therefore, stable homotopy of a
free simplicial resolution of an algebra gives as many copies of 75 (L(k[z]|k; k))
as there are generators in the resolving algebra. This additivity property leads
to an Atiyah-Hirzebruch spectral sequence (compare [Ril]) for stable homo-
topy of augmented commutative algebra, which is of the form

B, = AQ.(Alk; ' (L(k[z]|k; k) = ' (L(Alk; k).

The algebra k[z] is the free commutative algebra on one generator and might
be interpreted as the ‘base point’ in this context.

We will meet this spectral sequence again in Schwede’s [Sch2] stable homo-
topy of the algebraic theory of augmented commutative algebras.

1.5. Stable homotopy of algebraic theories, 7/. We will describe this
approach by Stefan Schwede in some detail, because we will later give a
proof of Theorem 2.1, which compares stable homotopy of the algebraic the-
ory of augmented commutative k-algebras to stable homotopy of the functor
L(—|k; k). Note that our category I" is denoted by I'? in [Sch2].

The model for the category of connective spectra used in this approach
is the symmetric monoidal category of I'-spaces, i.e., functors from I' to the
category sSets of simplicial sets which send [0] to a one-point simplicial set.
The monoidal structure is given by a smash-product whose definition and
properties can be found in [Ly].

Start with a pointed simplicial algebraic theory. This is a pointed simplicial
category T which has the same objects as the category of finite pointed sets
[' and which has a functor from I'°? to 7 which preserves products and is
the identity on objects. Note that the object [n] is the n-fold product of the
object [1] in the category I'?P.
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If you do not feel comfortable with algebraic theories, then think of the
morphisms from [n] to [1] as all possible n-ary operations in the theory, i.e.,
in our example of augmented commutative k-algebras. Such a morphism
gives an operation from A" to A for every such algebra A. For any theory 7T,
T -algebras are product-preserving simplicial functors from 7 to the category
sSets, of pointed simplicial sets. Therefore these functors are determined by
their value on [1]. For the theory of augmented commutative k-algebras, a
functor G : T — sSets, corresponds to an algebra A as above by G[1] = A.

Schwede establishes in Theorem [Sch2, 3.1] a simplicial model category
of T-algebras. The simplicial structure allows to talk about suspensions of
objects: for any T -algebra A, the suspension XA is the geometric realization
of the simplicial object that sends the simplicial object {0 < ... < m} to the
m-fold coproduct [],, A of A.

Spectra of T-algebras can now be defined by the suspension functor as
sequences of T-algebras (4,) together with maps p2 : ¥4, — A,,1. Maps
of spectra f : (A,) — (B,) are strict maps in the sense that pZ o X(f,) =
fry10 04

Theorem [Sch2, 4.3] states that the category of spectra of T-algebras, called
Sp(T), is a closed simplicial model category. To any theory 7, one can
associate a monoid in the symmetric monoidal category of ['-spaces, T*, such
that there is an equivalence between the homotopy category of modules over
T* and the homotopy category of connective spectra (cf. [Sch2, 4.4]).

Stable homotopy of 7 -algebras can be defined as the homotopy groups of
the suspension spectrum of any 7 -algebra

nl (A) == mH(EX(A)).

Having a nice model category around, it makes also sense to talk about Quillen
homology which is defined ([Sch2, 5.1]) as:

H.(A) =m(Xg);  HoA; M) =7 (M ®r,, Xg)-

Here (—)¢ is the cofibrant replacement, (—),, denotes the abelianization of a
T-algebra, and M is a right simplicial module over a certain simplicial ring
T,- In a similar way as connective spectra of T -algebras are equivalent to
T*-modules, the category of abelian objects in T -algebras is equivalent to
modules over T,;.

This simplicial ring T, can be described in a more explicit way: there is
a linearization functor L (see [Sch2, 5.2]) from I'-spaces to simplicial abelian
groups. Let Z[S,] denote the free abelian group of the pointed simplicial set S,
with the relation that the base point is equivalent to zero. The linearization
takes a ['-space ' and assigns

L(F) = coker((p1)s + (p2)« — V. : Z[F[2]] — Z[F[1]])
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to it. Here the p; and p, are the projections

2 2 2

N ™~

1 1 1 1 1

1

0o— 0 o0—0 and V is the folding map o—o.

The simplicial ring Ty, is isomorphic to L(7*); in particular, if the theory
is discrete, then the description of 7,;, as the linearization of T shows that
Tup reduces to mo(T?%) in that case (cf. [Sch2, 5.2]).

The suspension spectrum of a 7 -algebra can be identified with a different
spectrum, which is closer related to the stabilization process for I'-spaces. In
[Sch2, 5.1] an alternative to the suspension spectrum is described: define the
functor

$2(A) : T —> T —algebras

by 3¥°(A)[n] := [],, A. Surjective maps of finite pointed sets induce folding
maps or the projection of components and injective maps of finite pointed
sets induce inclusion maps on the coproduct. This functor has the following
properties

e The spectrum associated to the I'-space ¥°(A) is equivalent to the
suspension spectrum of A.
e The abelianization of an arbitrary 7-algebra is isomorphic to the lin-
earization L(X*°(A)).
Schwede constructs a universal coefficient spectral sequence and an Atiyah-
Hirzebruch spectral sequence. The latter has the following shape:

E. = Hy(A;m,W) = Wyie(A).

Here W is a right T°-module and W-homology is defined to be the homotopy
of the derived smash product of W with the suspension spectrum of A, W AL,
YXA.

In particular, for W = T® we obtain a spectral sequence which starts with
André-Quillen homology of A with coefficients in the homotopy groups of T°*
converging to the stable homotopy of A

E}, = Hy(A,x](T*) = n],,(A).

2. COMPARISON RESULTS

As promised, we will describe the relationship between the different homo-
logy theories for commutative (S-)algebras. Except for the first theorem, we
will not give proofs of the comparison results, because these can be found in
the literature.

We will start with the two homology theories arising from I'-spaces which
have their range of definition in purely algebraic objects:
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Theorem 2.1. Stable homotopy of the T'-module L(A|k; k) of an augmented
unital commutative k-algebra A is isomorphic to stable homotopy of A, 7] (A)
for the theory T of commutative augmented k-algebras.

Proof. We will identify the two ['-spaces which give stable homotopy of al-
gebraic theories on the one hand and stable homotopy of L(A|k; k) on the
other hand. So let A be an arbitrary augmented commutative k-algebra. The
model ¥*°(A) of the suspension spectrum looks as follows: the object [n] € '
is sent to the n-fold coproduct [], A of A. In the category of commutative
algebras, this is the same as the n-fold tensor product of A with itself, A®".

Order-preserving injective maps of finite pointed sets induce the insertion
of units on both functors. Let us distinguish surjective maps of finite pointed
sets with the property that the preimage of the basepoint zero is only zero
from all other surjective maps. Maps of the first kind induce the folding
map on the coproduct (which is multiplication), and maps of the second kind
involve the projection of components in the coproduct to the basepoint, which
is the ring k. Consequently, in the first case elements in A are just multiplied
whereas in the other case there is an additional action of A on k£ by the
augmentation.

The I'-module L(A|k; k) sends the object [n] to the n-fold tensor product
A®" and from the definition of £ in part 1.4 it follows that maps of finite
pointed sets induce the same maps on this I'-module. Therefore the two I'-
spaces are isomorphic and the defining spectra for stable homotopy in both
cases agree. U

Corollary 2.2. The Atiyah-Hirzebruch spectral sequence for stable homotopy
of the algebraic theory of augmented commutative k-algebras coincides with
the one for stable homotopy of the functor L(—|k; k).

Proof. Stable homotopy of T for the theory of augmented commutative k-
algebras is isomorphic to the singular k-homology of the Eilenberg-MacLane
spectrum of the integers, because T* is stably equivalent to Hk ALY HZ (see
[Sch2, 7.9]). The result [Ril, 3.1] (or [Ri-Ro, 3.2]) identifies Hk,HZ with
stable homotopy of L(k[z]|k; k), so there is an isomorphism on the level of
E?-terms.

This is not only an additive isomorphism but will lead to an isomorphism of
spectral sequences. Let us denote the linearization functor from the category
I" to the category of k-modules which sends a set [n] to the free module £™ by
¢ (in order to distinguish it from the functor L used above). The identifica-
tion of 7f'(L(k[x]|k; k)) with Hk,HZ in [Ril] uses the fact, that the functor
L(k[z]|k; k) can be identified with the linearization functor composed with
the infinite symmetric product functor Sym* from k-modules to k-modules.
Stable homotopy of any such composed functor G o/ is isomorphic to the sta-
ble derived functors L:* of Eilenberg and MacLane. See for instance Betley’s
paper [Be] for a proof of this last claim.
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Schwede proves in [Sch2, 7.9] an equivalence between T"* and the composite
functor Hk o Sym, where Sym is the infinite symmetric product functor on
pointed spaces. Therefore we get a natural stable weak equivalence of I'-
spaces and the claim follows. O

The second comparison result relates Gamma homology, a homology theory
for commutative rings, which at first sight has nothing to do with functors
from finite pointed sets to modules, to stable homotopy of I'-modules. The
proof of Theorem 1 in [P-R] uses an enlargement of the domain of definition
for Gamma homology to all I-modules. See also [Ro2] for a proof.

Theorem 2.3. [P-R| Gamma homology of any commutative k-algebra A with
coefficients in an A-module M is isomorphic to stable homotopy of the I'-
module L(A|k; M).

The second result obtained by Basterra and McCarthy compares topolog-
ical André-Quillen homology — a homology theory for genuine S-algebras —
with Gamma homology — a homology theory for algebras.

Theorem 2.4. [B-McC, 4.2] Gamma homology is isomorphic to TAQ of the
corresponding Filenberg-MacLane spectra for flat algebras, i.e., if A is k-flat,
then

TAQ, (H(A)|H (k); H(A)) = HT, (Alk; A).
Using the ‘hyperhomology’ spectral sequence from [EKMM, 4.1] for the
H(A)-modules TAQ(H (A)|H (k); H(A)) and H(M) for an A-module M
E;, = Tor, (TAQ.(H(A)|H(k); H(A)), M)
= Tor,\ (TAQ(H (A)|H (k); H(A)), H(M)) = TAQ,.,(H (A) |H (k); H(M))

P+q

on the one hand and the corresponding spectral sequence for modules on the
other hand for the chain complex CT,(A|k; M) = CT,(Alk; A) ®4 M, we can
extend this isomorphism. The theorem above yields an isomorphism on the
level of spectral sequences and we obtain that

(2.1) TAQ.(H (A)|H (k); H(M)) = HT,(A|k; M)

for k-flat A. Similarly, the corresponding spectral sequences for Ext-groups
ensure, that

(2.2) TAQ"(H (A)|H (k):; H(M)) = HI*(Alk; M)

for k-projective A.
In the flat case we obtain an equivalence of all these theories

TAQ. (H(A)|H (k); H(A)) = HT, (Alk; A) 2= 7%(L(Alk; A))
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and for A an augmented k-flat algebra we get isomorphisms between all these
homology theories:

TAQ.(H (A)|H(k); H(k))
_— T
HT, (Al|k; k) S (L(Alk; k))

! (4)

The last comparison theorem which we will mention is a result by Mike Man-
dell. He relates topological André-Quillen cohomology of spectra to TAQ in
a differential graded resp. simplicial setting of E.,-algebras.

Let £ be again an arbitrary commutative ring with unit. Mandell defines
in [M, 1.1] André-Quillen (co)homology for E-differential graded k-algebras
— which we will call AQg, . — and for simplicial E-algebras — here denoted
by AQig.. -

Theorem 2.5.

(1) [M, 1.8] The normalization functor N from simplicial k-modules to
differential graded k-modules transforms AQZy_ into André-Quillen
homology of differential graded Eoo-algebras: for any simplicial Fy
k-algebra A and any A-module M there is a natural isomorphism

AQs, (Alk; M) = AQqgp,, (N (A)[k; N(M)).

This isomorphism can be extended to simplicial Ey-algebras relative
to another algebra: if f: A — B is a map of simplicial E-algebras,
then

AQs,, (B|A; M) = AQqgp,, (N (B)|N(A); N(M)).

If the homotopy groups of the module M are concentrated in non-
positive degrees then André-Quillen cohomology with coefficients in
M resp. in N(M) is concentrated in non-negative degrees.

(2) [M, 7.8-7.10] Let R be a connective and cofibrant commutative S-
algebra. There is a functor = from the category of Es R-algebras
to differential graded FEo.-algebras and there is a functor R from the
homotopy category of modules over Z(A), for A an Ey-algebra over
R, to the homotopy category of R-modules such that

TAQ"(A|R; R(M)) = AQj, e, (E(A)|E(R); M).
A similar result applies to any map f: A — B of E.-R-algebras:
TAQ"(B|A; R(M)) = AQq,g, (E(B)[=(A); M).

In the cases of coefficients in an Filenberg-MacLane spectrum, the iso-
morphism specializes to something very concrete: let A be a connective
E-algebra over R and let N be a module over my(A). Then for any
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E(A)-module M with Hy(M) =2 N and trivial other homology groups
we obtain

TAQ"(A[R; H(N)) = AQjys,. (2(A)[Z(R); M).

The above isomorphisms preserves more structure than the mere additive
module structure: all three kinds of André-Quillen cohomology mentioned in
the theorem possess transitivity sequences and long exact sequences for short
exact and the isomorphisms respects them ([M, 1.9 and 13.2]).

The identification of topological André-Quillen cohomology of spectra with
a cohomology theory for differential graded objects made it for instance pos-
sible to find a concrete example for an S-algebra, which is TAQ-étale but not
THH-étale (see [McC-Mi]). This example (and its chain model — which is
just the cochain algebra on the n-th Eilenberg-MacLane space on the field
with p elements for n > 1) are necessarily not connective, because Minasian’s
work in [Mi] proves that both notions coincide for connective commutative
S-algebras.

Paul Goerss and Mike Hopkins develop an obstruction theory for the exis-
tence of E-structures on ring spectra (see [GH2]). The obstruction groups
that arise in that context are André-Quillen cohomology groups of algebras
over simplicial F, algebras. More precisely, the obstructions for FE., struc-
tures on a commutative ring spectrum E' live in

AQ*(E.E|E,; E,)

where AQ means that one views the graded commutative commutative algebra
E,FE of cooperations as a constant simplicial F, algebra.

It is a natural question to ask, what the relationship is between these
obstruction groups and the ones developed by Alan Robinson (see [Ro2] and
[Rol]). In his approach, the obstruction groups live in Gamma cohomology
of the algebra of cooperations

HI*(E,E|E.; E,).

In the following we sketch an argument, why the obstruction groups in
the two approaches are actually isomorphic. Let k£ be a commutative ring
with unit, let A be a unital commutative k-algebra which is projective as
a k-module and let M be an A-module. The rough idea of the proof is to
combine Mike Mandell’s results [M] with the comparison result in [B-McC]|
to obtain the desired isomorphism.

The Goerss-Hopkins groups do not actually depend on the choice of a sim-
plicial F, operad, neither do the simplicial André-Quillen groups in Mandell’s
work. André-Quillen cohomology in both contexts is defined via a cofibrant
resolution in the category of simplicial E,, algebras. Here the used model
categories (in [M, 3.3 resp. [GH2, 4.1]) agree: the weak equivalences are
given by maps which induce an isomorphism on homotopy groups and the
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fibrations are maps which lead to surjective maps in positive degrees after
normalization.
Therefore we obtain

AQ™(Alk; M) = AQ;y_ (Alk; M)

where the first groups denote the Goerss-Hopkins groups and the latter Man-
dell’s groups. As A, k and M are viewed as constant simplicial objects, the
result 2.5 yields an isomorphism of these groups with André-Quillen cohom-
ology groups in the category of differential graded E, algebras:

AQ:EOO (Alk; M) = AngEm (Alk; M).

These cohomology groups have a relationship with topological André-Quillen
cohomology of Eilenberg-MacLane spectra in the following way.

First of all, in the case of constant coefficients M, the functor R from
differential modules over A into modules over H A reduces to

R(M) ~ H(M).

An argument for this can be found in [M, 7.10]. So the cohomology groups
on the level of E, ring spectra

TAQ"(H(A)|H (k); H(M))
|

are isomorphic to AQy,p, (E(H(A))|E(H (k)); M) and we have to compare
these groups to AQj, s, (Alk; M).
As the algebra Z(H(A)) is connected, there is a natural map to Ho(Z(H (A))
= A. This map
p:E(H(A) — A
is a map of differential graded E, algebras and is the unique map which gives
the inverse of the isomorphism

A =7 H(A) = Hy(H(A)) = Hy(Z(H(A)))

on homology. The functor = is a composition C, o I', where I" is a CW ap-
proximation functor in the category of E., H(k)-algebras and C, is a cellular
chains functor. By construction [M, 10.3] there is a canonical weak equiva-
lence
v:T(H(A)) — H(A).

The cellular chain functor constructed in [M, §9] does not change the hom-
ology which for Eilenberg-MacLane spectra gives the ordinary homotopy
groups. Therefore ¢ is a weak equivalence of E, algebras:

H,Z(H(A) = r,T(H(4)) = 7, H(A) = A.

Topological André-Quillen cohomology of commutative H (k)-algebras in
the category of E, H(k)-algebras is isomorphic to usual topological André-
Quillen cohomology of commutative H (k)-algebras. Taking all these steps to-
gether, the Goerss-Hopkins groups AQ*(A|k; M) are isomorphic to
TAQ"(H(A)|H (k); H(M)).
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Using the comparison result from [B-McC] and adapting it to cohomology
as above (2.2) we get an isomorphism of the latter to Gamma cohomology. In
fact, for the comparison result we do not need A to be projective over k. The
comparison of Gamma homology and topological André-Quillen homology
works for flat algebras. To transfer this to cohomology, we just have to
have that the universal coefficient spectral sequence collapses. So for such
commutative k-algebras A and A-modules M we obtain:

Theorem 2.6. The Goerss-Hopkins André-Quillen cohomology groups
AQ*(Alk; M) are isomorphic to Alan Robinson’s Gamma cohomology groups
HT*(A|k; M).

REFERENCES
[A] M. André, Homologie des algébres commutatives, Die Grundlehren der mathe-
matischen Wissenschaften, 206, Springer Berlin-New York (1974) xv+341 pp.
[B-R] A. Baker & B. Richter, I'-cohomology of rings of numerical polynomials and
E, structures on K-theory, preprint (2003), available at the arXiv
[B] M. Basterra, André-Quillen cohomology of commutative S-algebras, J. Pure

Appl. Algebra 144 2 (1999), 111-143.

[B-McC] M. Basterra & R. McCarthy, I'-homology, topological André-Quillen homology
and stabilization, Topology Appl. 121 3 (2002), 551-566.

[Be] S. Betley, Stable derived functors, the Steenrod algebra and homological algebra
in the category of functors, Fund. Math. 168 (2001), 279-293.

[EKMM] A.D. Elmendorf, I. Kriz, M.A. Mandell & J.P. May, Rings, modules, and alge-
bras in stable homotopy theory, with an appendix by M. Cole, Mathematical
Surveys and Monographs, 47, AMS, Providence, RI (1997)

[GH1] P.G. Goerss & M.J. Hopkins, André-Quillen (co-)homology for simplicial al-
gebras over simplicial operads, Une dégustation topologique: homotopy theory
in the Swiss Alps (Arolla, 1999), Contemp. Math. 265, Amer. Math. Soc.,
Providence, RI, (2000), 41-85,

[GH2] P.G. Goerss & M.J. Hopkins, Moduli Spaces of Commutative Ring Spectra, this
volume

[La] A. Lazarev, Cohomology theories for highly structured ring spectra, this volume

[L] J. L. Loday, Cyclic homology, Appendix E by Maria O. Ronco. Second edi-

tion. Chapter 13 by the author in collaboration with Teimuraz Pirashvili,
Grundlehren der Mathematischen Wissenschaften 301 Springer-Verlag, Berlin
(1998) xx+513 pp.

[Ly] M. Lydakis, Smash-products and T'-spaces, Math. Proc. Camb. Phil. Soc. 126
(1999) 311-328.
M] M.A. Mandell, Topological André-Quillen cohomology and E., André-Quillen

cohomology, Advances in Mathematics 177 no. 2, (2003) 227-279.
[McC-Mi] R. McCarthy & V. Minasian, HKR theorem for smooth S-algebras, Journal of
Pure and Applied Algebra 185 (2003) 239-258.

[Mi] V. Minasian, André-Quillen spectral sequence for THH, Topology Appl. 129
(2003), 273-280.

[P] T. Pirashvili, Hodge decomposition for higher order Hochschild homology, Ann.
Sci. Ecole Norm. Sup. (4) 33 2 (2000), 151-179

[P-R] T. Pirashvili & B. Richter, Robinson- Whitehouse complex and stable homotopy,

Topology 39 3 (2000), 525-530.



(CO-)HOMOLOGY THEORIES FOR COMMUTATIVE (S-)ALGEBRAS 17

[Q1] D: Quillen, Homotopical Algebra, Lecture Notes in Mathematics, 43 Springer-
Verlag, Berlin-New York (1967), iv+156 pp.
[Q2] D. Quillen, On the (co-) homology of commutative rings, Applications of Cate-

gorical Algebra, Proc. Sympos. Pure Math., Vol. XVII, New York, 1968, AMS,
Providence, R.I. (1970), 65-87.

[Ril] B. Richter, An Atiyah-Hirzebruch spectral sequence for topological André-
Quillen homology, J. Pure Appl. Algebra 171 1 (2002), 59-66.
[Ri2] B. Richter, Taylor towers for I'-modules, Ann. Inst. Fourier (Grenoble) 51 4

(2001), 995-1023

[Ri-Ro] B. Richter & A. Robinson, Gamma-homology of group algebras and of polyno-
mial algebras, to appear in the Proceedings of the 2002 Northwestern Confer-
ence on Algebraic Topology, eds. P. Goerss, M. Mahowald & S. Priddy

[Rol] A. Robinson, Gamma homology, Lie representations and E., multiplications,
Invent. Math. 152 2 (2003), 331-348
[Ro2] A. Robinson, Classical obstructions and S-algebras, this volume

[Ro-Wh] A. Robinson & S. Whitehouse, Operads and T'-homology of commutative rings,
Math. Proc. Cambridge Philos. Soc. 132 2 (2002), 197-234.

[Sch1] S. Schwede, Spectra in model categories and applications to the algebraic cotan-
gent complex, J. Pure Appl. Algebra 120 1 (1997), 77-104

[Sch2] S. Schwede, Stable homotopy of algebraic theories, Topology 40 1 (2001), 1-41

[W] C. Weibel, An introduction to homological algebra, Camb. studies in advanced
math. 38, Cambridge University Press, Cambridge, (1994), xiv+450 pp.

[Wh] S. Whitehouse, Gamma (co)homology of commutative algebras and some related

representations of the symmetric group, Thesis, University of Warwick (1994)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEW HAMPSHIRE IN DUR-
HAM, KINGSBURY HALL, DURHAM, NEW HAMPSHIRE 03824, USA
email-address: basterra@cisunix.unh.edu

MATHEMATISCHES INSTITUT DER UNIVERSITAT BONN, BERINGSTRASSE 1,
53115 BONN, GERMANY email-address: richter@math.uni-bonn.de



