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Abstract

In this paper, we investigate multiplicative properties of the classical Dold–Kan correspondence.
The inverse of the normalization functor maps commutative differential graded algebras to E∞-
algebras. We prove that it in fact sends algebras over arbitrary differential graded E∞-operads to
E∞-algebras in simplicial modules and is part of a Quillen adjunction. More generally, this inverse
maps homotopy algebras to weak homotopy algebras. We prove the corresponding dual results for
algebras under the conormalization, and for coalgebra structures under the normalization resp. the
inverse of the conormalization.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Dold–Kan correspondence [5, Theorem 1.9] states, that the normalization functor
N from the category of simplicial modules to non-negative chain complexes is part of an
equivalence of categories; we denote its inverse by D. The pair (N, D) gives rise to a Quillen
equivalence between the corresponding model categories. Shipley and Schwede proved
in [23, Theorem 1.1.(3)] that this equivalence passes to the subcategories of associative
monoids. The subject of this paper is to investigate to what extent commutative structures
are preserved by the functor D.
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The normalization functor is lax symmetric monoidal. In particular, it sends commutative
simplicial algebras to differential graded commutative algebras, and more generally it pre-
serves all algebra structures over operads: if a simplicial module X is an O-algebra, then NO
is an operad in chain complexes and NX is an NO-algebra. In [21] we proved that the functor
D sends differential graded commutative algebras to simplicial E∞-algebras. Conversely it
is clear that the normalization functor N maps an E∞-algebra to an E∞-algebra.

In positive characteristic there is no ‘reasonable’ model category structure on differential
graded commutative algebras: Don Stanley proved in [25, Section 9], that the category of
differential graded commutative algebras over an arbitrary commutative ring possesses a
model category structure, where the weak equivalences are the homology isomorphisms
and the cofibrant objects are ‘semi-free’ algebras (á la Quillen [19, II.4.11]). The fibrations
are then determined and it turns out that fibrations are not necessarily surjective in positive
degrees, i.e., the weak equivalences and fibrations are not determined by the forgetful functor
from differential graded commutative algebras to chain complexes alias differential graded
modules.

In order to avoid such problems it is advisable to replace the category of commutative
algebras with a homotopically invariant analog, i.e., to pass to the category of differential
graded E∞-algebras. But it does not immediately follow from the results in [21] that D
maps differential graded E∞-algebras to simplicial E∞-algebras. The aim of this paper is
to provide this result.

Mandell [18, Theorem 1.3] proved that there is a Quillen equivalence between the model
category of simplicial E∞-algebras and the model category of differential graded E∞-
algebras.As the homotopy categories in the E∞-context do not depend on the chosen operad,
Mandell chose operads which arise from the linear isometries operad L: in the simplicial
case he uses the free k-module on the singular simplicial set on the linear isometries operad
in topological spaces and in the differential graded context the normalized chains on this
simplicial operad [18, 2.1].

Mandell starts, however, with the normalization functor and he constructs an adjoint to
it. If we want to keep control over differential graded E∞-algebras while transferring them
to the simplicial setting, we should look out for a correspondence which takes the inverse
D as a starting point.

We develop a general operadic approach and define generalized parametrized endo-
morphism operads for any functor F between closed symmetric monoidal categories. One
important feature of the operads that arise in this way is that they preserve associativity: if
the functor F is lax monoidal then there is a map of operads from the operad of associative
monoids to the generalized endomorphism operad associated to F (see Theorem 4.4.1).

Using this set-up, we prove that the functor D sends E∞-algebras in the category of
differential graded modules to simplicial E∞-algebras and more generally, it preserves
homotopy algebra structure. We prove that D possesses a left adjoint which can be seen to
build a Quillen adjunction. If we start with strictly associative E∞-algebras then D preserves
this structure; therefore we get a Quillen adjunction on the level of strictly associative E∞-
algebras.

Prolonging D with the functor which associates the symmetric Eilenberg–MacLane spec-
trum to a simplicial module yields canonical E∞-monoids in the category of symmetric
spectra.
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As a second application we investigate to what extend the conormalization functor pre-
serves operad actions. In [9], Hinich and Schechtman studied the multiplicative behaviour
of the conormalization functor N∗ from cosimplicial abelian groups to cochain complexes.
They proved, that the conormalization of a commutative cosimplicial abelian group is a
May-algebra, i.e., possesses an operad action of an acyclic operad. In particular, it has
a structure of an E∞-algebra in the category of cochain complexes. Using generalized
parametrized endomorphism operads allows us to generalize this result and show, that N∗
behaves similar to D: it sends algebras over an operad O in the category of modules to weak
homotopy N∗O-algebras.

Having achieved some understanding of algebraic structures, we apply our methods to
coalgebra structures and their preservation under the functors D and N∗.

The structure of the paper is as follows: We start with providing the general set-up in
Sections 2 and 3 by constructing generalized endomorphism operads and parametrized
endomorphism operads for an arbitrary functor F : C → D between symmetric monoidal
categories. Parametrized endomorphism operads are generalized endomorphism operads
into which another operad is implanted. We hope that these general constructions will be of
independent interest. If C and D have appropriate model category structures, then Theorem
4.2.1 ensures that a Quillen adjunction with F as a right adjoint passes to a Quillen adjunction
on the level of algebras over operads.

From Section 5 we turn on to the case of the Dold–Kan correspondence. We mention the
standard construction of a left adjoint for D on the level of algebras. In Section 5.2 we apply
the concepts from Sections 2 and 3 to the functors involved in the Dold–Kan correspondence.
We use parametrized endomorphism operads of the functor D to provide concrete acyclic
operads, which ensure that the functor D sends E∞-algebras to E∞-algebras. In addition we
prove in Theorem 5.5.5 that D maps general homotopy algebras to weak homotopy algebras:
these are algebras over an operad which is weakly equivalent to the original operad but not
necessarily cofibrant.

It is straightforward to see, that D possesses a left adjoint functor on the level of E∞-
algebras and we show in Theorem 5.4.2 that this passes to the level of homotopy categories,
i.e., that the corresponding adjoint pair is a Quillen adjunction. In Theorem 5.5.5, we
generalize this result and show, that D induces a Quillen adjunction on the level of homotopy-
O-algebras, where O is an arbitrary operad in the category of modules. At the moment, we
are unable to prove that this Quillen adjunction is a Quillen equivalence.

Section 6 discusses the dual situation of the conormalization functor. We give an explicit
construction of the generalized (parametrized) endomorphism operad in these cases and
use it to prove that N∗ maps homotopy algebras to weak homotopy algebras.

Section 7 deals with our results for coalgebra structures: if an E∞-cooperad coacts on a
simplicial module A•, then there is an E∞-operad parametrizing a coalgebra structure on
the normalization of A• (cf. Theorem 7.3.2).

In order to assure, that our construction of homotopy algebra structures is homotopically
well-behaved, we use Markus Spitzweck’s notion of semi-model categories and the model
structures on operads and their algebras provided by Berger and Moerdijk. We will give a
short overview over these results in Section 8.

Notation: We will make frequent use of several categories and therefore we fix notation for
these. Let k be a fixed commutative ring with unit and let smod, resp. dgmod, be the category
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of simplicial k-modules, resp. differential graded k-modules which are concentrated in non-
negative degrees. Dually, cmod denotes the category of cosimplicial k-modules and �mod
is the category of cochain complexes which are concentrated in non-negative degrees.

We abbreviate the category of simplicial E∞-algebras to sE∞, its differential graded
analog is denoted by dgE∞. In the dual case cE∞ and �E∞ stand for the category of
cosimplicial, respectively, cochain E∞-algebras.We use dgca for the category of differential
graded commutative algebras.

Throughout the paper we use the notion of model categories and operads. Standard
references are the book by Hovey [10] for the first and the monograph by Kriz and May
[13] for the latter.

2. Generalized endomorphism operads

Let us consider two symmetric monoidal closed categories (C, ⊗, 1C) and (D, ⊗̂, 1D)

and a functor F : C → Dwhich we do not assume to be monoidal, but F should be coherent
with the units in the two monoidal structures, so we assume either that F applied to the unit
of C is isomorphic to the unit of D

F(1C)�1D (2.1)

or at least that F allows a map

1D → F(1C). (2.2)

If hom denotes the internal homomorphism object in D then for any object X ∈ D one
can build the endomorphism operad End(n) = hom(X⊗̂n, X). The following is a slight
variant of this operad.

2.1. The definition of EndF

Let us assume that the bifunctor

((C1, . . . , Cn), (C
′
1, . . . , C

′
n)) �→ hom(F (C1)⊗̂ · · · ⊗̂F(Cn), F (C′

1 ⊗ · · · ⊗ C′
n))

from (Cn)op ×Cn to D possesses a categorical end
∫
Cn hom(F ⊗̂n, F⊗n) in D for every n,

and let us denote this end by nat(F ⊗̂n, F⊗n). Following [15, IX.5] let w(C1,...,Cn) (or wn for

short) be the binatural transformation from the end nat(F ⊗̂n, F⊗n) to hom(F (C1)⊗̂ · · · ⊗̂
F(Cn), F(C1 ⊗ · · · ⊗ Cn)).

Definition 2.1.1. The generalized endomorphism operad with respect to the functor F is
defined as

EndF (n) := nat(F ⊗̂n, F⊗n) =
∫
Cn

hom(F (C1)⊗̂ · · · ⊗̂F(Cn), F (C1 ⊗ · · · ⊗ Cn)).

We define operad term in degree zero, EndF (0), to be F(1C). Thus if the functor F satisfies
the strong unit condition 2.1, then EndF (0) is isomorphic to 1D, which in turn is isomorphic
to the internal homomorphism object hom(1D, 1D) on the unit 1D.
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Morphisms in D from the unit 1D to hom(F (C), F (C)) correspond uniquely to elements
in the morphism set HomD(F (C), F (C)). We define the unit � : 1D → EndF (1) to be the
unique morphism corresponding to the family of maps 1D → hom(F (C), F (C)) which
are induced from the identity map on F(C) for every C in C.

The action of the symmetric group on n letters, �n, on EndF (n) is defined via the
universal property of ends. For any � ∈ �n we define twisted binatural transformations
hom(�, F (�−1)) ◦w(C�−1(1)

,...,C�−1(n)
) where the map w(C�−1(1)

,...,C�−1(n)
) is the given binat-

ural transformation from EndF (n) to

hom(F (C�−1(1))⊗̂ · · · ⊗̂F(C�−1(n)), F (C�−1(1) ⊗ · · · ⊗ C�−1(n)).

Note that the twisted transformations are maps from EndF (n) to hom(F (C1)⊗̂ · · · ⊗̂F(Cn),

F (C1 ⊗ · · · ⊗ Cn)).
In order to check that this gives a coherent family of transformations, we consider a

morphism f : (C1, . . . , Cn) → (C′
1, . . . , C

′
n) in Cn, i.e., an n-tuple of morphisms fi :

Ci → C′
i in C. We have to show that

hom(f ∗, id) ◦ hom(�, F (�−1)) ◦ w(C�−1(1)
,...,C�−1(n)

)

= hom(id, F (f )) ◦ hom(�, F (�−1)) ◦ w(C�−1(1)
,...,C�−1(n)

).

But on the one hand we have that

hom(f ∗, id) ◦ hom(�, F (�−1))

= hom(�, F (�−1)) ◦ hom(F (f�−1(1))⊗̂ · · · ⊗̂F(f�−1(n)), id)
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and on the other hand

hom(id, F (f )) ◦ hom(�, F (�−1))

= hom(�, F (�−1)) ◦ hom(id, F (f�−1(1)) ⊗ · · · ⊗ F(f�−1(n))).

The claim is then straightforward, because the transformations wn were coherent.
Therefore the universal property of ends (see for instance [15, IX,5]) ensures that there

is a unique map from EndF (n) to EndF (n) given by the above twisted transformations and
we define this to be the action of � on EndF (n).

Lemma 2.1.2. The sequence (EndF (n), n�0) with symmetric group action and units as
above defines an operad in D.

Proof. We have to give EndF (n), n�0 an operad composition

� : EndF (n)⊗̂EndF (k1)⊗̂ · · · ⊗̂EndF (kn) −→ EndF

(
n∑

i=1

ki

)
.

The fact that each single EndF (n) is an end allows us to take the binatural transformation
wn from EndF (n) to

hom
(
F(C1 ⊗ · · · ⊗ Ck1)⊗̂ · · · ⊗̂F(CkN(n)

⊗ · · · ⊗ C∑ ki
), F (C1 ⊗ · · · ⊗ C∑ ki

)
)

with kN(i) = (
∑i−1

j=1 kj ) + 1 and appropriate wki from EndF (ki) to

hom(F (CkN(i−1)
)⊗̂ · · · ⊗̂F(CkN(i)−1)), F (CkN(i−1)

⊗ · · · ⊗ CkN(i)−1)).

Using the composition morphism

hom(D1, D2)⊗̂hom(D2, D3) → hom(D1, D3)

the morphisms

hom(D1, D2)⊗̂hom(D3, D4) → hom(D1⊗̂D3, D2⊗̂D4)

and the evaluation maps hom(D1, D2)⊗̂D1 → D2 in the symmetric monoidal category D
gives binatural transformations from EndF (n)⊗̂EndF (k1)⊗̂ · · · ⊗̂EndF (kn) to

hom
(
F(C1)⊗̂ · · · ⊗̂F

(
C∑n

i=1ki

)
, F

(
C1 ⊗ · · · ⊗ C∑n

i=1ki

))
.

Due to the universality of EndF (
∑

ki) this yields the desired composition map to
EndF

(∑
ki

)
in a unique way. The associativity of these compositions � follows from
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the associativity of the corresponding composition and evaluation maps on the internal
morphism objects hom in D.

The equivariance of the composition maps � with respect to the action of the symmetric
groups �n, n�1 and the unit condition are straightforward to check. �

We feel obliged to warn the reader that the assumption that we made at the beginning
of this section about the existence of ends is crucial. If the functor F does not start from
a small category, then in general the categorical end of natural transformations does not
have to exist in the category D, because one would actually deal with proper classes and
not sets. In the cases which we will consider, the functor F will be representable and
this will guarantee that the natural transformations EndF (n) are sets and in fact objects
in D.

2.2. Examples

Before we generalize the concept of generalized endomorphism operads to such an extent
that we can transfer operadic algebra structures, we want to mention some typical examples
of generalized endomorphism operads.

Example 2.2.1. In [20] we proved that the cubical construction of Eilenberg and MacLane
on a commutative ring is a differential graded E∞-algebra. The E∞-operad used in the
proof for this fact is built out of a generalized endomorphism operad.

Example 2.2.2. The starting point of the investigations of this paper is the property of the
inverse of the Dold–Kan-correspondence D to transform commutative differential graded
algebras into E∞-simplicial algebras (see [21]). In this case, the generalized endomorphism
operad of D is used to obtain that result. We defer details to Section 5.

Example 2.2.3. Using Satz 1.6 from Dold’s article [6] one can read off that the unnormal-
ized chain complex functor from simplicial abelian groups to chain complexes possesses
a comonoidal analog of a generalized endomorphism operad which is acyclic. This operad
is not an E∞ operad but receives a map from one. Therefore, it yields an E∞-comonoidal
structure on every chain complex associated to a cocommutative simplicial module.

Example 2.2.4. In Section 6 we will investigate the multiplicative behaviour of the conor-
malization functor N∗ from cosimplicial modules to cochain complexes with the help of
generalized parametrized endomorphism operads.

Example 2.2.5. An example close to the classical endomorphism operad of an object
is the following: Consider the full, though not closed, subcategory of powers of an ob-
ject C ∈ C, i.e., C⊗0 = 1C, C, C⊗2, . . . . Then we can build the generalized endomor-
phism operad which is built out of natural transformations from F ⊗̂n to F⊗n on that
subcategory.
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2.3. Augmentations

The operad EndF comes with a canonical augmentation map. We obtain a morphism

EndF (n)⊗̂EndF (0)⊗̂n⏐⏐⏐⏐�
hom(F (1C)⊗̂ · · · ⊗̂F(1C), F (1C ⊗ · · · ⊗ 1C))⊗̂F(1C))⊗̂n⏐⏐⏐⏐�

F(1C ⊗ · · · ⊗ 1C)�F(1C).

Note, that we do not obtain a map to the unit 1D in general.If F satisfies, however, the stronger
condition F(1C)�1D and EndF (0) is isomorphic to 1D, then we get an augmentation to
the unit 1D, which is nothing but the nth term of the operad Com of commutative monoids
in D.

3. Parametrized operads

3.1. The definition of parametrized operads

If one assumes that in addition to the functor F there is an operad O in C, then we can
construct an amalgamation of the operad EndF and the given operad O by implanting the
operad into the generalized endomorphism operad. Again, we assume that all mentioned
bifunctors posses ends in D.

Definition 3.1.1. A parametrized endomorphism operad with parameters F and O is the
end of the bifunctor from (Cn)op×Cn toDwhich maps a pair ((C1, . . . , Cn), (C′

1, . . . , C
′
n))

to

hom(F (C1)⊗̂ · · · ⊗̂F(Cn), F
⊗n(O(n) ⊗ C′

1 ⊗ · · · ⊗ C′
n)).

We will denote this operad by

EndOF (n) := nat(F ⊗̂n, F⊗n(O(n) ⊗ −))

=
∫
Cn

hom(F (C1)⊗̂ · · · ⊗̂F(Cn), F (O(n) ⊗ C1 ⊗ · · · ⊗ Cn)).

For n = 0 we set EndOF (0) to be F(O(0))�F(O(0) ⊗ 1C).

Similarly to the unparametrized case, the sequences (EndOF (n))n∈N have canonical com-
position maps. We consider the binatural transformations to obtain maps from
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EndOF (n)⊗̂ EndOF (k1) ⊗̂ · · · ⊗̂EndOF (kn) to the internal morphism object with domain
F(C1,1)⊗̂ · · · ⊗̂F(Cn,kn) and codomain

F(O(n) ⊗ (O(k1) ⊗ C1,1 ⊗ · · · ⊗ C1,k1) ⊗ · · · ⊗ (O(kn) ⊗ Cn,1 ⊗ · · · ⊗ Cn,kn))

for any
∑n

i=1ki-tuple of objects (C1,1, . . . , Cn,kn) in C. We use the natural symmetry-
isomorphism in the categoryC to collect the operad piecesO(n),O(k1), . . . ,O(kn) together.
As the given composition in the operad O is natural with respect to the entries from Cn, we
can use it to define the desired map to

hom

(
F(C1,1)⊗̂ · · · ⊗̂F(Cn,kn), F

((
O

(
n∑

i=1

ki

)
⊗ C1,1 ⊗ · · · ⊗ Cn,kn

)))
.

These maps are clearly binatural and hence give a composition map

� : EndOF (n)⊗̂EndOF (k1)⊗̂ · · · ⊗̂EndOF (kn) −→ EndOF

(
n∑

i=1

ki

)
.

The action of the symmetric groups is defined as follows: As in the unparametrized
case, we will specify the corresponding twisted binatural transformations. On an n-tuple
(C1, . . . , Cn) an element � ∈ �n permutes the incoming entries � : F(C1)⊗̂ · · · ⊗̂F(Cn) →
F(C�−1(1))⊗̂ · · · ⊗̂F(C�−1(n)); and on F(O(n)⊗C�−1(1) ⊗· · ·⊗C�−1(n)) we have a natural
action given by F(� ⊗ �−1). Taking these together, we define the twisted structure maps
as hom(�, F (� ⊗ �−1)) ◦ wC�−1(1)

,...,C�−1(n)
from EndOF (n) to hom(F (C1)⊗̂ · · · ⊗̂F(Cn),

F (O(n) ⊗ C1 ⊗ · · · ⊗ Cn)).
The unit of the operads is easily defined.A morphism from the unit 1D inD to hom(F (C),

F(O(1) ⊗ C)) corresponds by adjunction to a morphism in HomD(F (C), F (O(1) ⊗ C)).
We define the unit in the parametrized case �̃ : 1D → EndOF (1) to be the unique map that
is determined by the family of morphisms

1D −→ HomD(F (C), F (O(1) ⊗ C)),

where the maps are induced by the identity map on the objects F(C) decorated with the
unit �O of the operad O, i.e.,

w1
C ◦ �̃ : F(C)�F(1C ⊗ C)

F(�O⊗idC)−−−−−−→ F(O(1) ⊗ C).

3.2. Verification of the operad property

The proof that EndOF is actually an operad, is quite ugly. It is obvious that the action of
the symmetric groups interacts nicely with the composition and that the unit is actually a
unit. The tricky point is the associativity of the composition. In the following, we denote
the composition in EndOF by � and the operad composition in O by �O.
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Fact 3.2.1. The composition in the collection {EndOF (n)}n�0 is associative.

Proof. We have to prove, that the two possible ways of composition in EndOF , �(id; �, . . . , �)
and �(�; id . . . , id), coincide as maps

EndOF (n)⊗̂EndOF (m1)⊗̂ · · · ⊗̂EndOF (mn)⊗̂EndOF (�1,1)⊗̂ · · · ⊗̂EndOF (�n,mn)

−→ EndOF
(∑

�i,j

)
.

In the following we will need various kinds of binatural transformations wi from the ends
EndOF (i) to the internal morphism objects hom in D. Let (C1,1,1, . . ., Cn,mn,�n,mn

) be an
arbitrary

∑
i,j �i,j -tuple of objects in C.

For the first operad composition �(id; �, . . . , �), the transformations involved are

(1) w(Ci,j,1,...,Ci,j,�i,j
) from EndOF (�i,j ) to

hom(F (Ci,j,1)⊗̂ · · · ⊗̂F(Ci,j,�i,j
), F (O(�i,j ) ⊗ Ci,j,1 ⊗ · · · ⊗ Ci,j,�i,j

)).

(2) w(O(�i,1)⊗Ci,1,1⊗···⊗Ci,1,�i,1 ,...,O(�i,mi
)⊗Ci,mi ,1⊗···⊗Ci,mi ,�i,mi

) which ends in the internal mor-

phism object with target

F

⎛⎝O(mi) ⊗ O(�i,1) ⊗
⎛⎝ �i,1⊗

j=1

Ci,1,j

⎞⎠⊗ · · · ⊗ O(�i,mi
) ⊗

⎛⎝�i,mi⊗
j=1

Ci,mi,j

⎞⎠⎞⎠ .

Then the operad composition shuffles the operad entries to the front and uses the operad
composition �O in O to end up in terms like

F

⎛⎝O

⎛⎝ mi∑
j=1

�i,j

⎞⎠⊗ Ci,1,1 ⊗ · · · ⊗ Ci,mi,�i,mi

⎞⎠ .

(3) The final transformation from EndOF (n) in this case is

w(
O

(
m1∑
j=1

�1,j

)
⊗C1,1,1⊗···⊗C1,m1,�1,m1

,...,O

(
mn∑
j=1

�n,j

)
⊗Cn,1,1⊗···⊗Cn,mn,�n,mn

).

This transformation is followed again by shuffle maps and the operad composition �O
to end up in the internal morphism object

hom
(
F(C1,1,1)⊗̂ · · · ⊗̂F(Cn,mn,�n,mn

), F
(
O
(∑

�i,j

)
⊗ C1,1,1 ⊗ · · · ⊗ Cn,mn,�n,mn

))
.

For the operad compositions which are used between the second and third step we use
shuffle maps �i on every single entry

F

⎛⎝O(mi) ⊗ O(�i,1) ⊗
�i,1⊗
j=1

Ci,1,j ⊗ · · · ⊗ O(�i,mi
) ⊗

�i,mi⊗
j=1

Ci,mi,j

⎞⎠
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in order to bring the operad parts O(�i,j ) next to O(mi). The operad composition �O is then
applied in every single entry as well.

The second operad composition �(�; id . . . , id) uses

(1) the same binatural transformations from EndOF (�i,j ) to

hom(F (Ci,j,1)⊗̂ · · · ⊗̂F(Ci,j,�i,j
), F (O(�i,j ) ⊗ Ci,j,1 ⊗ · · · ⊗ Ci,j,�i,j

).

(2) From EndOF (mi) to the internal morphism operad we get as well

w(F(O(�i,1)⊗Ci,1,1⊗···⊗Ci,1,�i,1 ),...,F (O(�i,mi
)⊗Ci,mi ,1⊗···⊗Ci,mi ,�i,mi

)).

But here the operad product is deferred to the third step.
(3) For this product we use the binatural transformation

w(O(mi)⊗O(�i,1)⊗Ci,1,1⊗···⊗Ci,1,�i,1⊗O(�i,mi
)⊗Ci,mi ,1⊗···⊗Ci,mi ,�i,mi

|i=1,...,n)

and afterwards the operad parts O(mi) are shuffled to the front and

�O : O(n) ⊗ O(m1) ⊗ · · · ⊗ O(mn) −→ O(m1 + · · · + mn)

is applied. Finally a second shuffle map brings the partsO(�i,j ) next toO(m1+· · ·+mn)

and we apply �O to O(m1 + · · · + mn) and all the O(�i,j ).

Let wn∗∗ denote the binatural transformation from the second way of composition, i.e.,

w(O(mi)⊗O(�i,1)⊗Ci,1,1⊗···⊗Ci,1,�i,1⊗O(�i,mi
)⊗Ci,mi ,1⊗···⊗Ci,mi ,�i,mi

|i=1,...,n).

Similarly, we denote the binatural transformation from the first way of composition by wn∗ .
The defining property of an end ensures that

hom(id, F (�O ◦ �1 ⊗ · · · ⊗ �O ◦ �j )) ◦ wn∗∗
= hom(F (�O ◦ �1)⊗̂ · · · ⊗̂F(�O ◦ �j ), id) ◦ wn∗ . (3.1)

The term on the right-hand side is precisely the part of the first composition where the
first shuffles and compositions �O appear. Up to that stage, both compositions agree. But
after that stage, the only difference between �(id; �, . . . , �) and �(�; id . . . , id) can be de-
scribed as the evaluation applied to hom(id, F (�O(id; �O, . . . , �O))) on the one hand and
hom(id, F (�O(�O; id, . . . , id))) on the other hand as follows: Let � denote the final shuffle
permutation in the composition, so that

hom(id, F (�O ◦ �)) ◦ hom(id, F (�O ◦ �1 ⊗ · · · ⊗ �O ◦ �j ))

= hom(id, F (�O(id; �O, . . . , �O))).
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Therefore if we compose everything in Eq. (3.1) with hom(id, F (�O ◦ �) we obtain that

hom(id, F (�O(id; �O, . . . , �O)) ◦ wn∗,∗
= hom(id, F (�O ◦ �)) ◦ hom(F (�O ◦ �1)⊗̂ · · · ⊗̂F(�O ◦ �j ), id) ◦ wn∗ .

Here, the right-hand side of the equation agrees with the first composition, and as the operad
composition �O is associative the left-hand side equals

hom(id, F (�O(�O; id, . . . , id))) ◦ wn∗,∗
and this is precisely �(�; id, . . . , id).

Therefore, both ways of composition give the same map from

EndOF (n)⊗̂EndOF (m1)⊗̂ · · · ⊗̂EndOF (mn)⊗̂EndOF (�1,1)⊗̂ · · · ⊗̂EndOF (�n,mn)

to hom(F (C1,1,1)⊗̂ · · · ⊗̂F(Cn,mn,�n,mn
), F (O(

∑
�i,j ) ⊗ C1,1,1 ⊗ · · · ⊗ Cn,mn,�n,mn

)) and
this map is easily seen to be binatural. Therefore both compositions agree and give a well-
defined map to EndOF

(∑
�i,j

)
. �

Remark 3.2.2. Note that the operad composition in EndOF gives rise to an augmentation
map EndOF (n) → EndOF (0) = F(O(0)). If F satisfies the strong unit condition 2.1 we can

use the evaluation at 1D�1⊗̂n
D �F(1C)⊗̂n to obtain a map

EndOF (n)�EndOF (n)⊗̂1⊗̂n
D −→ F(O(n) ⊗ 1⊗n

C )�F(O(n)).

However, as F is not supposed to be (lax) symmetric monoidal, the image of an operad
under F does not have to be an operad again.

3.3. Transfer of algebra structures over operads

In situations where one considers a (lax) symmetric monoidal functor, algebra structures
over operads directly give operad structures on the image of the algebra. Parametrized
endomorphism operads help to transfer operad structures on objects C in C to operad
structures on F(C) without restrictions on the monoidal properties of the functor F except
the unit condition from (2.1) or (2.2).

Proposition 3.3.1. If C ∈ C is an O-algebra, then F(C) has a natural structure of an
algebra over EndOF .

Proof. The structure map � of the operad action of EndOF on F(C) is given by the compo-
sition
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Here � is the composition of wn : EndOF (n) → hom(F (C)⊗̂n, F (O(n) ⊗ C⊗n)) followed

by the evaluation map from hom(F (C)⊗̂n, F (O(n) ⊗ C⊗n))⊗̂F(C)⊗̂n to F(O(n) ⊗ C⊗n),
and 	 is the action of O on C. As C is an O-algebra there is an action map 	0 : O(0) → C.
The map from EndOF (0) = F(O(0)) to F(C) is therefore given by F(	0).

It is clear that the unit of the operad EndOF induces the unit action on C. The associativity
of the action follows from some associativity properties of evaluation maps. We leave the
details of this straightforward but tedious proof to the reader.

For the equivariance of the action, we have to show that the diagram

commutes.
For that, note that an action of a permutation � ∈ �n on EndOF (n) results in an action

of hom(�, F (� ⊗ �−1)) on the outcome of the binatural transformation wn. Combined
with the action of �−1 on F(C)⊗̂n this leads to an action of hom(id, F (� ⊗ �−1)) on
hom(F (C)⊗̂n, F (O(n) ⊗ C⊗n))⊗̂F(C)⊗̂n, thus the diagram above commutes. The natu-
rality of F and the fact that 	 is an operad action on C yield F(	) ◦ F(� ⊗ �−1) = F(	 ◦
(� ⊗ �−1)) = F(	). Consequently,

� ◦ (�⊗̂�−1) = F(	) ◦ � ◦ (�⊗̂�−1) = F(	) ◦ F(� ⊗ �−1) ◦ �

= F(	 ◦ (� ⊗ �−1)) ◦ � = F(	) ◦ � = �. �

Note that for any operad O the sequence (FO(n))n is a graded algebra over EndOF : The
evaluation EndOF (n)⊗̂FO(m1)⊗̂ · · · ⊗̂FO(mn) → F(O(n)⊗O(m1)⊗· · ·⊗O(mn)) can be
prolonged with F applied to the operad composition to yield an action map to FO(

∑n
i=1mi).

4. Quillen adjunctions

4.1. Adjoints to F on algebras over operads

In order to talk about adjunctions between categories of algebras over operads we will
assume that the categoriesC andD posses sums and coequalizers. Recall from Section 2 that
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we assume thatC andD are closed, therefore the functors C⊗—respectively D⊗̂—preserve
colimits for all C ∈ C and D ∈ D. We can associate a monad O to every operad O in C and
every O-algebra C ∈ C can be written as a coequalizer in the following way:

OO(C) ⇒ O(C) −→ C.

Let us denote the monad associated to the operad EndOF by EO
F . We also assume, that F

possesses a left adjoint G : D → C. The question is, whether we can construct a left
adjoint LO

F to F from the category of EndOF -algebras to the category of O-algebras

There is a standard procedure to construct such a functor.

Proposition 4.1.1. The functor F from O-algebras in C to EndOF -algebras in D has a left
adjoint for every operad O in C.

Proof. In the following we will omit the forgetful functor from algebras over an operad to
the underlying category

It is clear that LO
F applied to a free EndOF -algebra EO

F (X) on an object X ∈ D has to be
defined as O(G(X)), because the adjunction property dictates

HomEndOF -alg(E
O
F (X), F (B))�HomD(X, F (B))

� HomC(G(X), B)�HomO-alg(O(G(X)), B).

As the functor LO
F should become a left adjoint, it has to respect colimits. Thus, for an

arbitrary EndOF -algebra A we can define LO
F (A) by the following coequalizer diagram:

LO
F (EO

F (EO
F (A))) = (OG(EO

F (A))) ⇒ LO
F (EO

F (A)) = OG(A) −→ LO
F (A).

The maps in this diagram arise from the structure map of the EndOF -algebra A from EO
F (A)

to A and the second horizontal arrows on the left-hand side is given by the monad structure
of EO

F , namely EO
F (EO

F (A)) → EO
F (A) via the composition EO

F ◦ EO
F → EO

F in the monad.
The coequalizer diagram is split,

and therefore after applying HomEndOF -alg(−, B) the resulting diagram is a split equalizer.

The two equalizers HomO-alg(LO
F (A), B) and HomEndOF -alg(A, F (B)) have therefore to be

isomorphic. �
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We postpone discussions about (semi) model structures on operads and their algebras
Section 8. Let us assume the following properties of C and D

(1) The categories C,D are cofibrantly generated model categories.
(2) The categories of operads in C and D posses (semi) model category structures as

defined in 8.1.1 or 8.3.3.
(3) The categories of algebras over cofibrant operads in C and D posses a (semi) model

structure. An alternative to (3) can be.
(3′) The categories of algebras over operads with underlying cofibrant symmetric sequence

(compare Definition 8.0.3) posses a model structure.

In our situation, we consider the category of O-algebras for some operad O. We replace
O by a weakly equivalent operad QO which is cofibrant or whose underlying symmetric
sequence is cofibrant in order to apply Theorem 8.1.3 or 8.1.2.

We know, that F maps QO-algebras to algebras over EndQO
F . Depending on the situation

we replace that operad again by QEndQO
F where this replacement is either cofibrant or has

at least an underlying cofibrant symmetric sequence. In order to ease notation we abbreviate
QO to E and QEndQO

F to E′. Note that every EndQO
F -algebra is an E′-algebra by means

of the replacement map E′ → EndED . The category of E′-algebras is another semi-model
category and the construction above gives an adjoint functor pair between these categories.
The fibrations and acyclic fibrations are determined by the forgetful functors U : E-alg → C
and U ′ : E′-alg → D.

We will first discuss the general case of O-algebras and show, that the functor F to-
gether with its left adjoint LO

F gives rise to a Quillen adjoint pair, if the original adjunction
(G, F ) has been a Quillen pair already. Later in 5.7.1 and 6.5.1, we will deal with the
examples off the functors involved in the Dold–Kan correspondence, i.e., the normaliza-
tion adjunction (N, D) and the conormalization adjunction (D∗, N∗). In these examples
the situation is in fact so nice, that all operads in D, though not in C, posses (genuine)
model structures (cf. 8.3.4). In particular, we can use the corresponding parametrized endo-
morphism operads EndOD resp. EndON∗ for the Quillen adjunction instead of their cofibrant
replacements.

4.2. Quillen adjunction on the level of algebras over operads

Assume that our adjunction

is a Quillen pair, i.e., that F preserves fibrations and acyclic fibrations.
Our claim is that the functor F is part of a Quillen adjunction on the level of algebras for

every operad E as above. Let E denote the associated monad to the operad E and similarly
let E′ be the monad corresponding to the operad E′.
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Theorem 4.2.1. The adjunction (LE
F , F )

is a Quillen adjoint pair.

Proof. We will show that the functor F preserves fibrations and trivial fibrations. Let f :
A → B be a fibration ofE-algebras. Then the map U(f ) on underlying objects is a fibration
in the model category C. But the functor F is part of the Quillen adjunction G : C�D : F

and in this role as a right Quillen functor it perserves fibrations and acyclic fibrations in
these model structures. So the only thing that is to check is, that F(U(f )) gives rise to a
map of E′-algebras.

We will check, that F(U(f )) is a map of algebras over the operad EndEF ; as E′ → EndEF
is a map of operads, the claim then follows. This procedure is legitimate, because we start
with two EndEF -algebras FA and FB, so the E′-algebra structure on both of them is induced
by the map E′ → EndEF .

The identity map on the operad EndEF tensorized with an n-fold tensor product of F(f )

yields a morphism

nat(F ⊗̂n, F⊗n(E(n) ⊗ −))⊗̂(F (A)⊗̂n) −→ nat(F ⊗̂n, F⊗n(E(n) ⊗ −))⊗̂(F (B)⊗̂n).

The operad action of the endomorphism operad gives maps on each term to F(E(n)⊗A⊗n)

and F(E(n)⊗B⊗n) and by the very definition of this operad, these action maps are natural
in A and B. On this level f induces a map

F(id ⊗ f ⊗ · · · ⊗ f ) : F(E(n) ⊗ A⊗n) −→ F(E(n) ⊗ B⊗n).

Thus the naturality of the action map makes the following diagram commute:

E

E

E

E E

E

E

Then the underlying map of the morphism of E′-algebras U ′F(f ) is the same as FU(f )

and thus F(f ) is a fibration. That F(−) preserves acyclic fibrations follows by the same
sort of argument. �
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4.3. A Quillen adjunction for homotopy algebras

We want to obtain a similar result as above for the functor F applied to a general homotopy
O-algebra, i.e., a QO-algebra such that QO is a cofibrant replacement of O in the (semi)
model category structure of operads in C

∗�QO
∼−→O.

Similarly, in the category D, we take a cofibrant replacement of the parametrized endo-
morphism operad EndQ(O)

F or a replacement with underlying cofibrant symmetric sequence

∗�Q(EndQ(O)
F )

∼−→ EndQ(O)
F .

Then it is straightforward to see, that the statement of Theorem 4.2.1 transfers to our
situation and we obtain an adjunction on the level of homotopy categories.

Theorem 4.3.1. The functor F : Q(O)-algebras → Q(EndQ(O)
F )-algebras possesses a left

adjoint, LO
F , and this adjoint pair is a Quillen adjunction.

As the functor F is not lax symmetric monoidal, F(O) is no operad in general and the
operad Q(EndQ(O)

F ) will not be weakly equivalent to F(O) for arbitrary functors F. We will
later consider examples, however, where this is the case and where Theorem 4.3.1 above
gives an actual statement about homotopy algebras.

4.4. Maps from the operad of associative monoids

So far, we did not assume that the functor F : C → D preserves the monoidal structures
inC andD. But if F is at least a lax monoidal functor, we can transfer more algebra structures
to the images of algebras over operads than in the general case.

For every symmetric monoidal closed category C, the adjunction for the internal homo-
morphism object homC(−, −) gives a bijection

HomC(C, C)�HomC(C ⊗ 1C, C)

� HomC(C, homC(1C, C))

and therefore the identity morphism on each object C ∈ C gives rise to a map from C
to homC(1C, C). Using [2, 6.1.7] one sees that the composition with the forgetful functor
HomC(1C, −) from C to sets sends homC(1C, C) to Hom(1C, C), i.e., each object C gives
rise to a natural morphism in C from the unit 1C to C. We will denote this map by uC .

Theorem 4.4.1. Assume that the functor F is lax monoidal.

(1) The generalized endomorphism operad EndF possesses an operad map from the operad
Ass in D.

(2) If an operad O (with �-action) has an operad map from the operad of associative
monoids Ass in C, then there is a map of operads from Ass in D to EndOF .
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It is clear, that every image of a commutative monoid X under F is associative, so there is
an action of the operad Ass on F(X); but we claim that this action factors over the operad
EndF :

Proof of theorem 4.4.1. By assumption, F is lax monoidal, therefore there is a natural
transformation Υ2 : F(C)⊗̂F(D) → F(C ⊗ D) which obeys the associativity coherence
conditions from [2, 6.27,6.28].

Note that by adjunction the morphisms from 1D to hom(F (C1)⊗̂ · · · ⊗̂F(Cn), F (C1 ⊗
· · · ⊗Cn)) are in bijection with the morphisms in D from F(C1)⊗̂ · · · ⊗̂ F(Cn) to F(C1 ⊗
· · · ⊗ Cn) for any n-tuple (C1, . . . , Cn) ∈ Cn. The operad Ass in the category D in degree
n consists of the group ring 1D[�n]�∐

�∈�n
1D(�) and we first specify the image of the

component 1D(idn) with idn ∈ �n. Define the (n − 1)-fold iteration

Υn := Υ2 ◦ (Υ2⊗̂id) ◦ · · · ◦ (Υ2⊗̂id⊗̂n−2).

Applied to (C1, · · · , Cn) this gives a natural morphism in D from F(C1)⊗̂ · · · ⊗̂ F(Cn)

to F(C1 ⊗ · · · ⊗ Cn). We send the component 1D(�) of � ∈ �n to the element in
hom(F (C1)⊗̂ · · · ⊗̂F(Cn), F (C1 ⊗ · · · ⊗ Cn)) which is uniquely determined by Υn.�.
By the universal property of the end EndF , this gives maps Ass(n) −→ EndF (n) for all n
which together yield a map of operads from Ass to EndF .

If we start with an operad O which comes equipped with an operad map 
 : Ass −→ O,
then we obtain a map � : Ass −→ EndOF in the following way. The map 
 has as an
nth component a map 
(n) : 1C[�n] → O(n) whose values are determined by 
(n)

applied to the component 1C(idn) ∈ 1C[�n] of the identity permutation in �n. For any
n-tuple (C1, . . . , Cn) ∈ Cn we choose as a morphism in D from F(C1)⊗̂ · · · ⊗̂F(Cn) to
F(O(n)⊗C1⊗· · ·⊗Cn) the composition F(
(n)|1C(idn)⊗id)◦Υn applied to (C1, . . . , Cn).
We have to show that this gives a well-defined map, if we send the copy 1D�1D(�) for
� ∈ �n via � to the morphism (F (
(n)|1C(idn) ⊗ id) ◦ Υn).� in D. By the very definition
of the �n-action this morphism is

Hom(�, F (� ⊗ �−1)) ◦ F(
(n)|1C(idn) ⊗ id) ◦ Υn.

In terms of natural transformations, this maps F(C1)⊗̂ · · · ⊗̂F(Cn) via � to F(C�−1(1))

⊗̂ · · · ⊗̂F(C�−1(n)), applies then Υn which lands in F(C�−1(1) ⊗ · · · ⊗ C�−1(n)). With
F(
(n)|1C(idn) ⊗ id) this is transferred to F(O(n) ⊗ C�−1(1) ⊗ · · · ⊗ C�−1(n)). Finally,
the term F(� ⊗ �−1) brings the C�−1(i) in the old order and acts on the operad entry. As
(
(n)|1C(idn)).� is precisely 
(n)|1C(�), the claim follows. �

4.5. A homotopy Gerstenhaber structure for EndF

Gerstenhaber and Voronov describe in [7] a criterium which ensures that an operad O
(in vector spaces) receives an operad map from the operad of associative monoids Ass:
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the operad O has to have a multiplication m ∈ O(2). Let us denote the composition in the
operad by �. In order to qualify for a multiplication m ∈ O(2) must satisfy

m ◦ m = 0 with m ◦ m = �(m; id, m) − �(m; m, id),

i.e., the associator of m is trivial.

Theorem 4.5.1 (Gerstenhaber and Voronov [7, Theorem 3.4]). A multiplication m on an
operadO(n) in vector spaces defines the structure of a homotopy G-algebra on

⊕
n�0O(n).

The homotopy G-structure (see [7, Definition 2] for the precise definition) consists of a
product, braces and a differential. These data are easily defined with the help of � and m.
For w ∈ O(n) let |w| be n. Then the braces are defined as

w{w1, . . . , wn} =
∑

(−1)��(w; id, . . . , id, w1, id, . . . , id, wn, id, . . . , id), (4.1)

where the sum is taken over all possibilities to insert the wi into the operad composition
with the restriction that wi appears before wi+1 and � is an appropriate sign depending on
the positions of the wi .

The multiplication in
⊕

nO(n) is defined via m:

v • w := (−1)|v|+1�(m; v, w) for all v, w ∈
⊕

n

O(n) (4.2)

and the differential of an element w is

d(w) = m ◦ w − (−1)|w|w ◦ m. (4.3)

Assuming that the functor F : C → D is lax monoidal, we obtain a canonical multipli-
cation element in EndF (2) induced by the given natural transformation Υ2 : F(−)⊗̂F(−)

−→ F(− ⊗ −). If C and D are abelian symmetric monoidal categories with coproducts,
such that the coproducts are distributive with respect to the monoidal structure, then we can
form the graded object associated to EndF ,⊕

n�0

EndF (n).

By a homotopy G-structure on that we understand that
⊕

EndF (n) has braces, a multipli-
cation and a differential as in (4.1)–(4.3).

Theorem 4.5.2. With C and D as above and F being lax monoidal, the graded object⊕
nEndF (n) has a structure of a homotopy G-algebra. If O is an operad in C with a map

Ass → O then
⊕

nEndOF (n) is a homotopy G-algebra in D.

5. The inverse of the normalization

The classical Dold–Kan correspondence says that the normalization functor N from
simplicial modules to differential graded modules is an equivalence of categories
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with inverse D

N : smod�dgmod : D.

In particular the functor N is a left adjoint to D. The value of N on a simplicial k-module
X• in chain degree n is

Nn(X•) =
n−1⋂
i=0

ker(di : Xn −→ Xn−1),

where the di are the simplicial structure maps. The differential d : Nn(X•) → Nn−1(X•)
is given by the remaining face map (−1)ndn.

For two arbitrary simplicial k-modules A and B let A⊗̂B denote the degree-wise tensor
product of A and B, i.e., (A⊗̂B)n=An⊗kBn. Here, the simplicial structure maps are applied
in each component; in particular, the differential on N∗(A⊗̂B) in degree n is (−1)n(dn⊗dn).

On differential graded modules we take the usual monoidal structure with the tensor
product of two chain complexes (C1∗ ⊗ C2∗)n =⊕

p+q=nC
1
p ⊗ C1

q with differential d(c1 ⊗
c2) = dC1(c1) ⊗ c2 + (−1)|c1|c1 ⊗ dC2(c2).

Note that the functor D is compatible with the units in the monoidal structures on dif-
ferential graded modules and simplicial modules in the sense of condition (2.1): it sends
the chain complex (k, 0) which has the ground ring k in dimension zero and is trivial in all
other dimensions to the constant simplicial module k which is k in every simplicial degree
with the identity on k as structure maps.

In [21] we proved that the functor D sends differential graded commutative algebras to
algebras over an E∞-operad. In fact, we showed that the endomorphism operad EndD of
D is acyclic.

5.1. A left adjoint for D

Using 4.1.1 we know that the functor D has a left adjoint LD = LCom
D from the category

of EndD-algebras EndD-alg to the category of differential graded commutative algebras
dgca:

We denote the monad corresponding to the operad EndD by ED . The functor which assigns
the symmetric algebra on V to a differential graded module V is denoted by S. Then LD

applied to a free EndD-algebra O(X) on a simplicial module X has to be defined as S(N(X))

and for a general EndD-algebra A, LD(A) is given by the following coequalizer diagram:

LD(O(O(A))) = (SN(O(A))) ⇒ LD(O(A)) = SN(A) → LD(A).

5.2. The generalized endomorphism operad of D

We briefly recall the explicit form ofEndD: on an n-tuple of chain complexes (C1, . . . , Cn)

the functor D⊗̂n takes the external tensor product of the terms where D is applied to each
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single Ci , i.e., D⊗̂n(C1, . . . , Cn) = D(C1)⊗̂ · · · ⊗̂ D(Cn). The functor D⊗n is D applied
to the internal tensor product of the differential graded modules, that is, D⊗n(C1, . . . , Cn)

= D(C1 ⊗ · · · ⊗ Cn). In this case, the generalized endomorphism operad EndD of D is
explicitly given as follows: in simplicial degree � the nth operad part consists of the natural
transformations from D⊗̂n⊗̂k[�] to D⊗n

EndD(n)� = Nat(D⊗̂n⊗̂k[�], D⊗n).

We proved in [21, 4.1] that this operad (which was baptizedOD in [21]) has an augmentation
to the operad which codifies commutative simplicial rings and this augmentation map is a
weak equivalence.

5.3. The parametrized versions of EndD

We will consider a parametrized version of the generalized endomorphism operad EndD .
Let O be an arbitrary operad in the category of differential graded modules. By results from
the previous section we know:

Proposition 5.3.1. If X is a non-negative chain complex, which is an O-algebra then D(X)

is an algebra over the parametrized endomorphism operad EndOD .

In general, this result is a strict implication. For a typical algebra A over the operad EndOD
the normalization N(A) is in general no algebra over O. For instance for every differential
graded commutative algebra the image under D is an algebra over EndD�EndCom

D , but for
instance the normalization of a free EndD-algebra will not be strictly commutative.

5.4. E∞-structures are preserved by D

As there are many different notions of E∞ operads in the literature, let us specify what
we mean by that. Let us assume, that C is a symmetric monoidal model category C which
is cofibrantly generated (see [10, 2.1.3]). Then C has a canonical model category structure
on its related category of symmetric sequences, i.e., on sequences (C0, C1, . . .) where each
Cn has an action of the symmetric group �n. The model structure is such that a map f of
symmetric sequences is a weak equivalence resp. a fibration if each map fn : Cn → C′

n is
a weak equivalence resp. a fibration in C (see for instance [1, Section 3]). We discuss this
in more detail in Section 8 in 8.0.3.

Definition 5.4.1. An operad O in C is called an E∞ operad, if

(1) its zeroth term O(0) is isomorphic to 1C and the augmentation

ε : O(n)�O(n) ⊗ O(0)⊗n �−→O(0)

is a weak equivalence, and if
(2) its underlying symmetric sequence (O(n))n�0 is cofibrant.
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The fact which enables us to prove a comparison result is that the functor D is able to
convert E∞-algebras in the differential graded framework into E∞-algebras in the category
of simplicial modules. It remains to be shown that the parametrized version is again an
E∞-operad. For now, we drop the assumption that the underlying symmetric sequence is
cofibrant, but we will force this condition later by using cofibrant replacements. So we have
to prove:

Theorem 5.4.2. For any E∞-operadO the operad EndOD is weakly equivalent to the operad
of commutative monoids via its augmentation map.

Proof. In the proof of [21, Theorem 4.1] we identified the operad EndD with the total space
of a simplicial–cosimplicial gadget. Similarly EndOD can be expressed this way as

EndOD(n)�Tot nat˜ (D⊗̂n, D⊗n(O(n) ⊗ −)).

Herenat˜ (D⊗̂n, D⊗n)(�,m) are the natural transformations of functors from the n-fold product

of the category of differential graded modules, dgmodn, to the category of abelian groups,
from D⊗̂n in degree m to D⊗n in degree �,

nat˜ (D⊗̂n, D⊗n)(�,m) = Nat(D⊗̂n
m , D⊗n

� ).

We can use the Bousfield–Kan spectral sequence for the tower of fibrations from [3, IX,
Section 4] (see also [8, VIII, Section 1]) belonging to the skeleton filtration of the total space
to calculate the homotopy groups of our operad. The E2-page looks as follows:

E
p,q
2 = �p�q nat˜ (D⊗̂n, D⊗n(O(n) ⊗ −)).

In order to identify this E2-term we use the Yoneda lemma for multilinear functors [21,
Lemma 4.2]. The functor D is representable as Homdgmod(N(k�), X) =D(X)� and there-

fore we can rewrite nat˜ (D⊗̂n
� , D⊗n(O(n) ⊗ −)m) as

nat˜ (D⊗̂n
� , D⊗n(O(n) ⊗ −)m)�D(O(n) ⊗ N(k�) ⊗ · · · ⊗ N(k�))m. (5.1)

We can write O(n) as N(D(O(n))) and calculate the homotopy groups in the E2-tableau
as

�q(D(O(n) ⊗ N(k�) ⊗ · · · ⊗ N(k�))∗)��q((D(O(n))⊗̂k�⊗̂ · · · ⊗̂k�)∗).

The homotopy groups of k�⊗̂ · · · ⊗̂k� are trivial in all dimensions but zero. As O(n)

is weakly equivalent to the chain complex (k, 0), which is k in dimension zero and trivial
in all other dimensions, and as D preserves weak equivalences, we can conclude that the
homotopy groups are trivial in all dimensions but zero. The maps in cosimplicial direction
come from maps which concern the index � in the free k-module k� and they give trivial
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cohomotopy except in dimension zero. Thus the spectral sequence collapses and the operad
EndOD is acyclic.

The given augmentation of the operadO, ε : O(n) → k, composed with the augmentation
ε̃ : EndD(n) → EndD(0)�k of the operad EndD gives the augmentation of the amalga-
mated operad EndOD . The augmentation for EndD involves exactly the evaluation on tensor
powers of D(k)�D(k0); therefore the weak equivalence to the operad of commutative
monoids is given by the composition ε̃ ◦ ε. �

Remark 5.4.3. (1) Note, that argument (5.1) proves as well, that our operad exists as an

operad of simplicial k-modules, because the representability of D ensures thatnat˜ (D⊗̂n
� , D⊗n

(O(n) ⊗ −)m) is a set and therefore the corresponding totalization is a simplicial set. The
additional k-module structure is obvious.

(2) In addition, it is clear, that EndOD is not the empty set: the Alexander–Whitney map
AW [16] gives rise to natural transformations

AWn : D(C1)⊗̂ · · · ⊗̂D(Cn) −→ D(C1 ⊗ · · · ⊗ Cn).

In terms of the normalization, the Alexander–Whitney maps cares for a lax comonoidal
structure on the images under the functor N. For any two simplicial k-modules A and B we
have natural maps

AW : N(A⊗̂B) −→ N(A) ⊗ N(B).

As AW is given in terms of evaluation of front and back side as

AW(an ⊗ bn) =
n∑

i=0

d̃n−i (an) ⊗ di
0(bn)

with an ∈ An, bn ∈ Bn and d̃n−i = di+1 ◦ · · · ◦ dn, it is not lax symmetric monoidal.
Nevertheless, it suffices to obtain

AW 2 : D(C1)⊗̂D(C2)�DN(D(C1)⊗̂D(C2))
D(AW)−−−−−−→ D(ND(C1) ⊗ ND(C2))⏐⏐⏐⏐� �

D(C1 ⊗ C2).

Choosing fixed elements in O(n) gives then for instance non-trivial elements in EndOD(n).
But note, that one cannot cobble these choices together to obtain a map of operads O →
EndOD .

(3) Using Theorem 4.4.1 part (1) the operad EndD = EndCom
D possesses a map from the

operad of associative monoids Ass: One can send the identity map in Ass(n) to the n-fold
iteration of the Alexander–Whitney transformation and extend this map �n-equivariantly.
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(4) Again by Theorem 4.4.1 part (3) we see that EndOD gives associative E∞-structures
if O has been an E∞-operad in chain complexes with a map from Ass.

5.5. The functor D and general homotopy algebras

In the following we will always assume that our operads are reduced, i.e., O(0)�1C.
A map between reduced operads is always assumed to be the identity on the zeroth term.

So far we considered operads with an action of the symmetric groups. Recall that a non-
�-operad O′ in some symmetric monoidal category is a sequence of objects (O(n)′)n�0
which obeys the axioms of an operad with the sole difference that we do not require any
action of symmetric groups on O′.

Example 5.5.1. The non-�-version Ass′ of the operad of associative algebras in the cat-
egory of k-modules consists of the ground ring k in every operad degree. As algebras over
the operad Ass′ do not have to satisfy any equivariance condition, they are just unital as-
sociative algebras in the ordinary sense with the multiplication given by the unit of k in
Ass′(2).

An arbitrary non-�-operad P gives of course rise to an operad EndPD as well. We have
to view this operad as a non-� operad, because we cannot define any reasonable �-action
on this parametrized operad. In particular, if we start with an A∞-operad P, i.e., a non-�-
operad for which the augmentation P(n) → P(0) is a weak equivalence, we get an operad
which codifies homotopy associativity again:

Corollary 5.5.2. For any A∞-operad P, the parametrized endomorphism operad EndPD is
again an A∞-operad. Therefore the image of an arbitrary differential graded A∞-algebra
A∗ under D is a simplicial A∞-algebra.

To every non-� operad O′ in the category of k-modules one can associate an ordinary
operadOwith an action of symmetric groups by inducing up with the regular representation,
i.e.,

O(n) := k[�n]⊗kO
′(n).

As the category of k-modules is a full subcategory in the categories dgmod and smod we
obtain the following non-� analog of Theorem 4.4.1.

Corollary 5.5.3. Every non-�-operad O′ in the category of k-modules gives rise to a map
of non-�-operads from O′ to EndO

′
D .

Inducing the actions of the symmetric groups up, we obtain maps of (genuine) operads
from O to EndO

′
D . Here the symmetric group action on O′ in EndO

′
D is defined to be trivial.

In Example 5.5.1 we get a map of non-�-operads from Ass′ to EndD or if we prefer a
map from Ass to EndD which is the same as the one in Theorem 4.4.1.

Note, that the arguments in 5.5.2 work, because we consider operads, which are weakly
equivalent to the unit of the category of differential graded modules. If Õ is an operad in
differential graded modules which comes with an operad map to a reduced operad O then
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the augmentation map from EndÕD to DO is the composition of the operad map Õ → O

followed by the augmentation of the operad EndOD

EndOD(n)�EndOD(n)⊗̂D(k)⊗̂n wn−−−−−−→ hom(D(k)⊗̂n, D(O(n) ⊗ k⊗n))⊗̂D(k)⊗̂n⏐⏐⏐⏐�ev

D(O(n) ⊗ k⊗n)�D(O(n)).

For any operadO in the category dgmod which is concentrated in degree zero, D(O(n)) is
the constant simplicial object which hasO(n) in every degree and identity maps as simplicial
structure maps. Therefore, in this cases the sequence (D(O(n)))n defines an operad in the
category of simplicial k-modules and the map above is easily seen to be an operad map.

Definition 5.5.4. For an operad in the category of k-modules, O, and for any operad Õ in
dgmod which is weakly equivalent to O via a map of operads, we call an Õ-algebra a weak
homotopy-O-algebra.

Usually, one calls a cofibrant operad together with a map of operads down to O which is
a weak equivalence a homotopy O-operad and algebras over such operads would be called
homotopyO-algebras. Let us summarize the observations which we made above as follows:

Theorem 5.5.5. For any reduced operad Õ in dgmod which is weakly equivalent to an

operad O in the category of modules via a map of operads, the operad EndÕD has an operad
map to D(O), which is a weak equivalence, therefore

(1) every O-algebra X in dgmod gives rise to a weak homotopy-D(O)-algebra D(X) in
smod and

(2) the functor D maps every weak homotopy-O-algebra X in dgmod to a weak homotopy-
D(O)-algebra D(X) in smod.

5.6. Another way to pass differential graded homotopy algebras to spectra

In [21] we suggested a very straightforward way to pass from differential graded commu-
tative algebras to spectra. The inverse of the normalization D maps commutative algebras
to simplicial E∞-algebras. As there are lax symmetric monoidal models for a functor H
which associates a generalized Eilenberg–MacLane spectrum to a simplicial abelian group
[22], we proposed to take H of the operad EndD as an E∞-operad in spectra which gives
H(D(A∗)) an E∞-structure for any differential commutative algebra A∗. However, any
symmetric monoidal category of spectra which models the stable homotopy category and
fulfills some other reasonable properties has to have deficiencies [14] (see [1, 4.6.4]): as
a consequence, either it has a cofibrant unit or a symmetric monoidal fibrant replacement
functor, but not both. Therefore the operads in that symmetric monoidal category will have
no model structure [1, 3.1]. But all known models are known to be enriched in simplicial
sets or topological spaces; operads therein have a nice model structure and algebras over
cofibrant operads obtain a model structure as well.
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For defineteness, let us work in the category of simplicial symmetric spectra à la [12]
where we take the standard model for Eilenberg–MacLane spectra. Given a simplicial
abelian group B•, the nth term in the spectrum H(B•) is B•⊗̂Z̄[Sn], where we take the
1-sphere S1 as the quotient S1 = 1/�1 of the 1-simplex divided by its boundary and the
higher spheres Sn as iterated smash powers of S1 [12].

Theorem 5.6.1. (1) There is an operad in the category of simplicial sets which turns the
spectrum H(D(A∗)) into an E∞-monoid in the category of symmetric simplicial spectra.

(2) If A∗ is a homotopy O-algebra with O a reduced operad in modules, then there is an
operad in simplicial sets which gives H(D(A∗)) a weak homotopy H(D(O))-structure.

Proof. In both cases we take the parametrized generalized endomorphism operad, which is
an object in simplicial k-modules, as the corresponding operad in simplicial sets. We have
to define the action map. As the second claim includes the first claim, we will prove it.

Let K and L be two simplicial abelian groups with basepoint the zero element. There is
a natural map from the smash product to the tensor product of simplicial abelian groups

� : K ∧ L −→ K⊗̂L

which is induced by the natural map from the product to the tensor product. A map from a
tensor product of symmetric spectra X ∧ Y to a third spectrum Z is determined by a family
of �p ×�q -equivariant maps Xp ∧Yq → Zp+q (see [12, Section 2]) which commute with
the S-module structure.

On the mth term of our spectrum (EndOD(n)∧H(D(A∗))∧n) we therefore have to specify
equivariant maps

EndOD(n) ∧ H(D(A∗))r1 ∧ · · · ∧ H(D(A∗))rn −→ H(D(A∗))∑ ri .

To obtain these maps, we use the map � to send

EndOD(n)m ∧ (H(D(A∗))r1 ∧ · · · ∧ H(D(A∗))rn
)
m

to

EndOD(n)m ⊗ H(D(A∗)r1⊗̂ · · · ⊗̂D(A∗)rn)m

which is equal to

EndOD(n)m ⊗ (D(A∗)⊗̂Z̄[Sr1 ]⊗̂ · · · ⊗̂D(A∗)⊗̂Z̄[Srn ])m.

Shuffling the factors D(A∗) to the left and using the smashing map on spheres we finally
arrive at

EndOD(n)m ⊗ D(A∗)m ⊗ · · · ⊗ D(A∗)m ⊗ (Z̄[Sr1+···+rn ])m.

Taking simplicial degrees together we can apply our action map of EndOF (n) on the n
copies of D(A∗) to arrive at H(D(A∗)), such that all transformations involved are pre-
serve the monoidal structure. As the S-module structure only affects the Z̄[Sri ]-factors, the
constructed map yields a well-defined action of the operad EndOD on H(D(A∗)). �
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Remark 5.6.2. Note, that the E∞ structure we get on H(D(A∗)) for a differential graded
commutative algebra A∗ preserves the strict associativity of A∗, because the operad map
from the operad of associative simplicial k-modules Ass to EndD still induces an action of
Ass on HD(A∗).

5.7. Model structures on differential graded modules and simplicial modules

We will consider the so-called projective model category structure on differential graded
modules, alias non-negatively graded chain complexes. Here all modules are taken over
some commutative ring k with unit. Already Quillen made this structure explicit in [19,
II.4]; more recent accounts are [23, Section 4] and [10, 2.3]. The projective model structure
is cofibrantly generated by

• the set of generating cofibrations I = {Sn−1 −→ Dn, n�1} and
• the set of generating acyclic cofibrations J = {0 −→ Dn, n�1}.

The disk chain complex Dn has (Dn)p = k for k = n, n − 1 and is trivial in all other
degrees. Its only non-trivial differential is the identity on k. The sphere chain complex Sn

is concentrated in degree n where it is the ground ring k. Chain maps from the n-sphere to a
chain complex correspond to the n-cycles in that chain complex, whereas chain maps from
the n-disk correspond to the degree-n part of the chain complex.

Fibrations are maps of chain complexes which are surjective in positive degrees, and
weak equivalences are maps which induce isomorphisms on homology groups. Cofibrations
are then determined by having the left lifting property with respect to acyclic
fibrations.

This model structure is inherited from the model structure on simplicial modules. Inher-
ited means, that a map of simplicial modules is a fibration, cofibration or weak equivalence
if and only if the normalization of this map is a fibration, cofibration or weak equivalence
in differential graded modules.

The model category of simplicial modules is easily seen to be left and right proper, i.e.,
pushouts along cofibrations and pullbacks along fibrations preserve weak equivalences. The
Quillen equivalence (N, D) between these model categories therefore yields a proper model
structure on differential graded modules.

We can apply the Berger–Moerdijk criterium (8.2.2, [1, Proposition 4.1]) for the existence
of model structures on the category of algebras over operads in simplicial modules and
differential graded modules.

Theorem 5.7.1. Let O be a reduced operad in dgmod. The adjunction (LO
D, D) passes to a

Quillen adjunction between the model categories of Q(O)-algebras and EndQO
D -algebras,

where QO is a cofibrant replacement of the operad O.

Remark 5.7.2. Of course, we would like to clarify whether this Quillen adjunction is in fact
a Quillen equivalence. It is straightforward to see that the unit of the adjunction id → D◦LO

D

is a weak equivalence on free algebras, but so far we have not been able to extend this result
to arbitrary cofibrant objects.
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Remark 5.7.3. Schwede and Shipley provide in [23, Theorem 1.1 (3)] a Quillen equiv-
alence between the category of simplicial k-algebras and differential graded k-algebras.
However, they use the normalization as one of the Quillen functors and the Quillen equiv-
alence does not involve the functor D.

6. The conormalization functor

6.1. Cosimplicial modules and cochain complexes

On unbounded differential graded k-modules there is still a model structure (see [10,
2.3]) but here

• the fibrations are maps of chain complexes which are surjective in every degree,
• the weak equivalences are again maps which induce isomorphisms on homology groups,

and
• the cofibrations are determined by the left lifting property with respect to acyclic fibra-

tions.

We can still use the generating cofibrations and acyclic cofibrations, but now we need sphere
to disk inclusions {Sn−1 −→ Dn} for all integers n, and inclusions from the trivial module
to disks {0 −→ Dn} in all degrees as well.

Taking the model structure on unbounded chain complexes, it is clear that the category of
unbounded cochain complexes has a cofibrantly generated model structure as well. We can
view unbounded cochain complexes (C∗, �C) as unbounded chain complexes (C̃∗, dC̃

) with
C̃∗ = C−∗. They inherit generating cofibrations and acyclic cofibrations from the category
of chain complexes, namely codisks (Dn)n∈Z with D̃n = D−n and cospheres (Sn)n∈Z

with S̃n = S−n. A homomorphisms 
 of cochain complexes of k-modules from Dn to
some cochain complex (C∗, �C) therefore picks an element c ∈ Cn and its coboundary
�C(c) ∈ Cn+1:

Therefore we obtain the following useful representation of the nth degree part of a cochain
complex

Cn�Hom�mod(Dn, C
∗).

Under this identification the cochain complexes which are concentrated in non-negative
degrees correspond to chain complexes concentrated in degrees �0. Fibrations in that
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inherited model structure are given by surjective maps. That fibrations have to be surjective
can be easily seen, because we have to lift the acyclic cofibrations 0 −→ Dn for all n�0.
It is straightforward to check, that this model structure is right and left proper.

Again, we can transfer this model structure on cochain complexes in non-negative degrees
to a model structure on cosimplicial modules via the Dold–Kan equivalence (D∗, N∗). As
the original model structure was proper, the transferred one is proper as well.

The Dold–Kan correspondence between the category of cosimplicial k-modules cmod
and the category of cochain complexes of k-modules concentrated in non-negative degrees
�mod is of the following form: the conormalization functor (compare [3, X.7.1] or [8,
VIII.1]) on a cosimplicial module A• is given as

Nn(A•) =
n−1⋂
i=0

ker(�i : An −→ An−1),

where the �i are the cosimplicial structure maps. The differential is then given by the
alternating sum � =∑n

i=0(−1)i�i . Equivalently, the conormalization can be expressed as
a quotient, namely

Nn(A)�An/
∑

�i (An−1). (6.1)

6.2. Alexander–Whitney and shuffle transformations

Dual to the case of chain complexes and simplicial modules, the Alexander–Whitney
map will give rise to the monoidal structure on normalized cochains whereas shuffle maps
constitute a lax symmetric comonoidal transformation.

The Alexander–Whitney map: The Alexander–Whitney map on normalized cochains is a
transformation

aw :
⊕

p+q=n

Np(A•) ⊗ Nq(B•) −→ Nn(A•) ⊗ Nn(B•). (6.2)

We define its (p, q)-component awp,q from Ap ⊗ Bq to An ⊗ Bn as

awp,q : Ap ⊗ Bq � a ⊗ b �→ �̃
q
(a) ⊗ (�0)p(b),

where �̃
q

is the composition �n−1 ◦ · · · ◦ �p of the ‘last’ coface maps. Dualizing the proof
for chain complexes and simplicial modules yields, that aw = ⊕

p,qawp,q gives rise to a
map of cochain complexes, i.e., on summands we get

� ◦ awp,q = awp+1,q ◦ � ⊗ id + (−1)pawp,q+1 ◦ id ⊗ �.

With the help of the reformulation in (6.1) it is straightforward to check that aw gives a
well-defined transformation on the associated conormalized cochain complexes.
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The shuffle-transformations: For the comonoidal structure we will consider the shuffle-
transformation. We start with an element a ⊗ b in Nn(A•⊗̂B•) which is a submodule of
An ⊗ Bn. In order to reduce the degrees of a and b use the structure maps �i : An →
An−1 (resp. Bn → Bn−1)

sh : a ⊗ b �→
∑

�∈SH(p,q)

sign(�)�s1 ◦ · · · ◦ �sq (a) ⊗ �t1 ◦ · · · ◦ �tp (b),

where � is a (p, q)-shuffle permutation, which is determined by its sequences of values
t1 < · · · < tp and s1 < · · · < sq . Note that the order of the structure maps �sj and �tj increases
from left to right. The map sh gives a transformation of cochain complexes and passes to
the conormalization.

Note, that dual to the case of chain complexes, the composition sh ◦ aw = id whereas the
composition aw ◦ sh is only homotopic to the identity.

The conormalization has an inverse D∗ : �mod −→ cmod. Therefore the value of N∗
on any cosimplicial module A• in cochain degree n is given as

Nn(A•) = Hom�mod(Dn, N
∗(A•))�Homcmod(D

∗(Dn), A
•).

6.3. The generalized endomorphism operad for N∗

Let us first introduce the internal hom-object in the category of cochain complexes.

Definition 6.3.1. Let C∗ and D∗ be two cochain complexes of k-modules. The cochain
complexes of homomorphisms hom′(C∗, D∗) in cochain degree n is

hom′(C∗, D∗)n :=
∏
��0

Homk−mod(C
�, D�+n).

The coboundary map � evaluated on such a sequence of morphisms �=(��)��0 is (�(�))�=
(�hom(�))� = ��+1 ◦ �C + (−1)n+1�D ◦ ��.

Remark 6.3.2. The above cochain complex is in general not bounded. In the following we
will use the truncated variant with

hom(C∗, D∗)n :=
⎧⎨⎩

∏
��0Homk−mod(C

�, D�+n) for n > 0,

cocycles in
∏

��0Homk−mod(C
�, D�) for n = 0,

0 for n < 0.

This cochain complex has the same cohomology ashom′(C∗, D∗) in degrees greater or equal
to zero. We will establish a spectral sequence which converges weakly to the cohomology
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groups of hom(C∗, D∗) for any two cochain complexes C∗ and D∗. We interpret our cochain
complex as the total complex of the following homological second quadrant bicomplex X∗,∗

Thus, Xp,q = Homk−mod(C
q, D−p) and the total complex is given by

Tot(X∗,∗)−� =
∏

p+q=−�

Xp,q =
∏

p+q=−�

Homk−mod(C
q, D−p)

=
∏
q

Homk−mod(C
q, D�+q).

Filtering the bicomplex X∗,∗ by columns gives a standard spectral sequence with E1-term

E
p,q
1 = H vert

q (Xp,∗)

and E2-term

E
p,q
2 = H hor

p H vert
q (X∗,∗)

with horizontal homology H hor∗ and vertical homology H vert∗ . As our bicomplex is concen-
trated in the second quadrant the filtration by columns is complete and exhaustive; therefore
the associated spectral sequence weakly converges to the homology of the associated prod-
uct total complex [26, p. 142].

6.4. Preservation of homotopy structures

Hinich and Schechtman proved in [9] that the conormalization functor maps commutative
cosimplicial rings to algebras over an acyclic operad; in particular every conormalization of
such a ring can be viewed as an E∞-algebra in the category of cochain complexes. However,
if one wants to generalize their approach in order to deal with homotopy algebras, one has to
modify the construction. They consider the endomorphism operad of the functor N∗ and in
their context the nth part of the Hinich–Schechtman operad HS(n) consists of the natural
transformations from the n-fold tensor power of N∗ to N∗

HS(n) = nat(N∗⊗n
, N∗).

As the target consists of one single copy of the functor N∗ there is no space for implementing
operad actions. But it will turn out that parametrized generalized endomorphism operads
can handle this problem.
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We will construct the generalized endomorphism operad EndN∗ for the conormalization
functor N∗ : cmod −→ �mod and its parametrized version EndON∗ for an arbitrary operadO
in the category of cosimplicial modules. To this end we use the internal hom-object defined
before.

Let (N∗)⊗n be the functor from cmodn to �mod which sends any n-tuple (A•
1, . . . , A

•
n) of

cosimplicial k-modules to the tensor product of cochain complexes N∗(A•
1)⊗· · ·⊗N∗(A•

n)

and let (N∗)⊗̂n : cmodn → �mod be the functor which applies N∗ to the tensor product of
the A•

i :

(N∗)⊗̂n(A•
1, . . . , A

•
n) := N∗(A•

1⊗̂ · · · ⊗̂A•
n).

Proposition 6.4.1. The generalized endomorphism operad EndN∗ for the functor N∗ is
given by

EndN∗(n) := nat((N∗)⊗n, (N∗)⊗̂n),

i.e., EndN∗(n) in cochain degree m consists of the natural transformations from (N∗)⊗n to
(N∗)⊗̂n which raise degree by m�0:

EndN∗(n)m =
{∏

��0nat
(
((N∗)⊗n)�, ((N∗)⊗̂n)�+m

)
for m > 0,

cocycles in
∏

��0nat
(
((N∗)⊗n)�, ((N∗)⊗̂n)�

)
for m = 0.

As N∗ satisfies the unit condition 2.1, we define EndN∗(0) to be the cochain complex
which consists of the ground ring k concentrated in degree zero.

Let us comment on the existence of this object: we saw that the conormalization functor
is representable as Nm(A•) = Homcmod(D

∗(Dm), A•). Applying the multilinear Yoneda
lemma again we see that we can write the natural transformations from the functor (N∗)⊗n

in cosimplicial degree s to the functor (Nt )⊗̂n in cosimplicial degree t as

nat
(
(N∗⊗n

)s, (Nt )⊗̂n
)

=
∏

r1+···+rn=s

Nt (D∗(Dr1)⊗̂ · · · ⊗̂D∗(Drn))

and this is clearly a set. Taking the total complex of this gives our operad.
Before we analyze the cohomology of the operad EndN∗ , let us investigate how the

representability via the cochain complexes Dm work in detail: Any cochain complex C∗ in
degree m is isomorphic to the cochain homomorphisms from Dm to C∗. Such a morphism

 picks an element 
m(1) = c ∈ Cm. The coboundary of c is then given by 
m+1(1).
Interpreted as a map from Dm+1 to Dm the coboundary corresponds to the map which
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sends the generator in degree m+2 to zero and the generator in degree m+1 to the generator
in degree m + 1 in Dm:

...
...

m + 2 : k → 0

id↑ ↑
m + 1 : k

id→ k

↑ id↑
m : 0 → k

In this way we get a complex of cochain complexes

D∗ := (· · · −→ Dm+1 −→ Dm −→ Dm−1 −→ · · ·).

Lemma 6.4.2. Any n-fold tensor product of the complex of codisk cochain complexes
(D⊗n∗ , n�1) is acyclic, i.e., it is quasiisomorphic to the complex (k, 0) which is the ground
ring k concentrated in degree zero.

Proof. It is obvious from the definition of D∗ that it is acyclic, because its defining sequence
is exact. Its homology in degree zero is given by D0 divided by the boundaries coming from
D1 and thus only D0

0�k remains in degree zero. The claim then follows from the Künneth
theorem because all modules involved are free and (D0

0)
⊗n�(k, 0). �

Theorem 6.4.3. The operad EndN∗ is acyclic.

Proof. In order to calculate the cohomology groups of our operad EndN∗ , we apply the
spectral sequence constructed in 6.3 to the unbounded variant of our cochain complex of
natural transformations

End′
N∗(n)m =

∏
��0

nat
(
((N∗)⊗n)�, ((N∗)⊗̂n)�+m

)
for all m ∈ Z.

In our case, the E1-term calculates the vertical homology of the complex Xp,q = nat
(((N∗)⊗n)p, (N ⊗̂n)−q), but each of these groups Xp,q is isomorphic to

N−q

⎛⎝ ⊕
r1+···+rn=p

D∗(Dr1)⊗̂ · · · ⊗̂D∗(Drn)

⎞⎠ .

Thus, homology in vertical direction is the homology of

N−q

( ⊕
r1+···+rn=∗

D∗(Dr1)⊗̂ · · · ⊗̂D∗(Drn)

)
.
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As the functor D∗ is part of an equivalence of categories which gives rise to a Quillen
equivalence of the corresponding model categories and as the functor D∗ preserves the
monoidal structure up to weak equivalence, these homology groups are isomorphic to the
homology of

N−q

(
D∗

( ⊕
r1+···+rn=∗

Dr1 ⊗ · · · ⊗ Drn

))
�N−qD∗(D⊗n∗ )

and we saw in the lemma above that the complex D⊗n∗ is exact. Therefore, on the E2-term
we are left with the horizontal homology in direction of the conormalization applied to the
constant cosimplicial object which consists of k in every degree. Therefore the cohomology
of the cochain complex End′

N∗(n) is isomorphic to k concentrated in degree zero.
As the truncated cochain complex EndN∗(n) has the same cohomology as End′

N∗(n) in
non-negative degrees we obtain that H ∗EndN∗(n)�(k, 0). That this isomorphism is given
by the augmentation map corresponds to the fact that the evaluation map is precisely given
by the evaluation on the n-fold ⊗̂-product of the constant cosimplicial object which is k in
every degree; this object is isomorphic to

D∗(H∗D∗)⊗̂ · · · ⊗̂D∗(H∗D∗) = D∗(k, 0)⊗̂ · · · ⊗̂D∗(k, 0)

and this isomorphism causes the spectral sequence to collapse. �

Given an arbitrary operad O in the category of cosimplicial modules one can prove in a
similar manner that the parametrized generalized endomorphism operad with parameter O,
EndON∗ , is weakly equivalent to the cochain complex N∗(O) which is however no operad in
general.

Proposition 6.4.4. The operad EndON∗ in cochain complexes is defined as

EndON∗(n) := nat((N∗)⊗n, N∗⊗̂n
(O(n)⊗̂−))

with EndON∗(0) being N∗(O(0)).

If an operad P in cosimplicial modules has an augmentation to a reduced operad O which
is constant in the cosimplicial direction then EndPN∗ has a natural augmentation to the operad
N∗(O).

Corollary 6.4.5. The operad EndON∗ is weakly equivalent as a cochain complex to N∗(O).
For operads O concentrated in degree zero, the functor N∗ maps O-algebras to weak
homotopy O-algebras and (weak) homotopy O-algebras to weak homotopy O-algebras.

6.5. Quillen adjunctions for the conormalization

Castiglioni and Cortiñas [4] show that the Dold–Kan correspondence passes to an equiv-
alence between the homotopy category of cosimplicial rings and the homotopy category
of cochain rings. We will provide a Quillen adjunction (LO

N∗ , N∗) for every operad in
cosimplicial modules.
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Using the Berger–Moerdijk model structure from (8.2.2, [1, Proposition 4.1]) again we
get the following result:

Theorem 6.5.1. The adjunction (D∗, N∗)gives rise to an adjoint pair of functors (LO
N∗ , N∗)

between the category of O-algebras and the category of EndON∗ -algebras. If O is
reduced and cofibrant then this adjunction is a Quillen pair on the corresponding model
structures.

7. Coalgebra structures

We saw that parametrized endomorphism operads transfer algebra structures over oper-
ads. Dually one can ask which constructions would help to save some aspects of coalgebra
structures.

If X is a cocommutative comonoid in the category C, i.e., there is a comultiplication
� : X → X ⊗ X which commutes with the natural symmetry operator in the symmet-
ric monoidal structure C, then the image of X under F is a coalgebra over the operad
CoendF which we define in degree n as the end of the bifunctor which maps a tuple
((C1, . . . , Cn), (C

′
1, . . . , C

′
n)) to

Hom(F (C1 ⊗ · · · ⊗ Cn), F (C1)⊗̂ · · · ⊗̂F(Cn)).

However, in our examples, we do not know how to control the homotopy type of the
above operads. This is why we will have to find a way around these constructions.

7.1. (Co)algebra structures via (co)actions of (co)operads

If one consider operads and cooperads, there are several possibilities how an action or
coaction can arise. In the following we set K = k1 + · · · + kn. If O is an operad with
composition maps � (in some symmetric monoidal category C),

(1a) it can act on an algebra X, i.e., there are action maps ϑn : O(n) ⊗ X⊗n −→ X which
are compatible with the operad composition (see [13, I, 2.1]).

(1b) It can coact on an algebra X, thus we have coaction maps �n : X⊗n −→ O(n) ⊗ X

such that the following diagram commutes



312 B. Richter / Journal of Pure and Applied Algebra 206 (2006) 277–321

(1c) An operad can also parametrize a coalgebra structure via an action, i.e., there are maps
ϑn : O(n) ⊗ X −→ X⊗n such that

commutes.
(1d) And finally there can be a coaction of O turning something into a coalgebra over O,

namely structure maps �n : X −→ O(n) ⊗ X⊗n such that

commutes.
A lax symmetric monoidal functor such as N or D∗ preserves algebra structures as in

(1a), but it can destroy the other (co)algebra structures.
Dually, a cooperad, i.e., a sequence of objects (O(n))n with decomposition maps

� = �n,k1,...,kn : O
(

n∑
i=1

ki

)
= O(K) −→ O(n) ⊗ O(k1) ⊗ · · · ⊗ O(kn)

gives rise to dual actions and coactions.

(2a) There can be an action of the cooperad O on an algebra un : O(n) ⊗ X⊗n −→ X with
a coherence condition dual to the one in (1d).

(2b) Dually, O can coact on an algebra with structure maps vn : X⊗n −→ O(n) ⊗ X. Here
the coherence condition is dual to (1c).

(2c) An action of O can be given by action maps

un : O(n) ⊗ X −→ X⊗n

such that the coherence property dual to (1b) is fulfilled.
(2d) Last but not least, O can coact with vn : X −→ O(n) ⊗ X⊗n to give a coalgebra

structure on X such that the coaction map is coassociative in the sense of the dual of
(1a).
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7.2. Endomorphism operads parametrized by cooperads

LetO be a cooperad in the categoryD and let F : C → D be a functor between symmetric
monoidal categories, then the following categorical end (if it exists) defines an operad
in D:

Definition 7.2.1. We denote by EndF
O(n) the end

nat(O(n)⊗̂F ⊗̂n, F⊗n) =
∫
Cn

hom(O(n)⊗̂F(C1)⊗̂ · · · ⊗̂F(Cn), F (C1 ⊗ · · · ⊗ Cn))

in D.
As the proof of the operad property is similar to the one for EndOF we will omit it and

will just specify the operadic composition map

� : EndF
O(n)⊗̂EndF

O(k1)⊗̂ · · · ⊗̂EndF
O(kn) −→ EndF

O(K)

with K = k1 + · · · + kn.
In every closed symmetric monoidal category D one has partial composition maps

hom(A⊗̂B, C)⊗̂hom(D, B) −→ hom(A⊗̂D, C).

We use the maps w,

wn : EndF
O(n) −→ hom

⎛⎝O(n)⊗̂
n⊗̂

j=1

F

⎛⎝ kj⊗
i=1

C
j
i

⎞⎠ , F (C1
1 ⊗ · · · ⊗ Cn

kn
)

⎞⎠
and

wki : EndF
O(ki) −→ hom(O(ki)⊗̂F(Ci

1)⊗̂ · · · ⊗̂F(Ci
ki

), F (Ci
1 ⊗ · · · ⊗ Ci

ki
))

for arbitrary objects C
j
i ∈ C. With the help of the partial composition maps we can send

the ⊗̂-product of these internal homomorphism objects to

hom

⎛⎝O(n)⊗̂
n⊗̂

i=1

O(ki)⊗̂F(Ci
1)⊗̂ · · · ⊗̂F(Ci

ki
), F (C1

1 ⊗ · · · ⊗ Cn
kn

)

⎞⎠ .

A shuffle map followed by the decomposition map � of our cooperad O in the contravariant
part then yields a map to hom(O(K)⊗̂⊗̂i,jF (Ci

j ), F (
⊗

i,jC
i
j )). The universal property of

ends gives a composition

� : EndF
O(n)⊗̂EndF

O(k1)⊗̂ · · · ⊗̂EndF
O(kn) −→ EndF

O(K).

7.3. (Co)algebra structures and the Dold–Kan correspondence

The functor N : smod → dgmod maps cocommutative coalgebras to E∞-coalgebras
[21]: the functor N applied to the operad NEndD is an operad again and for every
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cocommutative coalgebra A• in simplicial modules the action map from NEndD(n)⊗NA•
to (N(A•))⊗n is

However, it is not clear that this transfers to operadic coalgebra structures in general. If a
simplicial k-module A• has a coalgebra structure with respect to an action by an operad O,
then there is a map

NO(n) ⊗ NEndD(n) ⊗ N(A•) −→ NA⊗n•

defined in a similar manner as above, but as the actions of NO and NEndD do not necessarily
commute, this need not give rise to an NO⊗NEndD-structure on N(A•). A similar warning
concerns the functor D∗.

However, we can impose combined actions and coactions on images under D and N∗.
Note that D and N∗ are lax cosymmetric comonoidal, hence they preserve cooperads and
coalgebra structures.

Theorem 7.3.1. If X ∈ dgmod is an algebra over a cooperad O with respect to a coaction
as in 7.1 (2b) then there are combined action and coaction maps

EndD(n)⊗̂D(X)⊗̂n −→ D(X⊗n) → D(O(n) ⊗ X) → D(O(n))⊗̂D(X)

of the operad EndD and the cooperad D(O).
Similarly, an algebra A• ∈ cmod over a cooperadP leads to an EndN∗ -N∗(P)-structure

on N∗(A•).

In the following, we will just discuss the properties of the functor D. We leave it to the
reader to draw the analogous conclusions for N∗.

Theorem 7.3.2. If A has a coaction map A → O(n)⊗̂A⊗̂n with respect to a cooperad O
in simplicial modules then the normalization of A is an NEndD

O -algebra. If O is in addition
degreewise projective, then NEndD

O (n) is acyclic if each O(n) is. In particular, if A is an
E∞-coalgebra, then N(A) is one as well.

Proof. The structure map for the action first uses the coaction map on A

id ⊗ N(�n) : N(EndD
O (n)) ⊗ N(A) −→ N(EndD

O (n)) ⊗ N(O(n)⊗̂A⊗̂n).
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The n-fold ⊗̂-product of the unit map � : A → DNA then sends this to N(EndD
O (n)⊗̂O(n)

⊗̂DNA⊗̂n) and from there the action map of EndD
O followed by the counit � sends the

outcome to NA⊗n.
If O(n) is degreewise projective, we can use the adjunction

hom(O⊗̂D(X1)⊗̂ · · · ⊗̂D(Xn), D(Y1 ⊗ · · · ⊗ Yn))

�hom(O(n), hom(D(X1)⊗̂ . . . ⊗̂D(Xn), D(Y1 ⊗ · · · ⊗ Yn))

to control the homotopy groups of EndD
O . The above isomorphism gives an induced iso-

morphism of ends between hom(O(n), EndD(n)) and our operad terms EndD
O (n). So the

homotopy groups of the operad part EndD
O (n) are isomorphic to the homotopy of hom(O(n),

EndD(n)) and following [3, 3.3] we can write this as �∗Tot hom˜ (O(n), EndD(n)) where

hom˜ (O(n), EndD(n))�,m = homk-mod(O(n)�, EndD(n)m).

Therefore the Bousfield–Kan spectral sequence has as E
p,q
2 -term

E
p,q
2 = �p�q hom˜ (O(n), EndD(n)).

As O(n) was assumed to be degreewise projective and as we know that EndD(n) is acyclic,
the homotopy groups in simplicial direction q give hom˜ (O(n), k) and the homotopy groups

of EndD
O are trivial. �

8. (Semi) Model categories of algebras over operads

For an arbitrary operad it is unlikely that there will be a ‘well-behaved’ model category
structure on the category of algebras over this operad. For instance in an arbitrary sym-
metric monoidal model category (C, ⊗, 1C) the operad of commutative monoids given by
Com(n) = 1C will not have a model category structure, in which the fibrations and weak
equivalences are determined by the forgetful functor from the category of commutative
monoids in C to the underlying category C. Even for ‘nice’ operads such as E∞-operads
there was no known model category structure for the algebras over such operads for quite a
long time. Mandell provided such a structure in cases where one can rely on operads which
are built out of the linear isometries operad [17].

For a general operads one cannot expect to obtain a full model category structure on the
algebras over the operad.We will briefly discuss two approaches to that problem: first we will
introduce the Spitzweck’s concept of semi-model structures in order to deal with the most
general situations. In the second part we will focus on the work by Berger and Moerdijk,
they establish genuine model structures in more specific cases. We will make explicit how
this approach can be used in our examples of the Dold–Kan correspondence where we have
(co)chain complexes and (co)simplicial modules as underlying model categories. Let us
briefly recall the definition of symmetric sequences and their model structure.
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Definition 8.0.3. Let C be a category. The category of symmetric sequences has as objects
sequences of objects of C, (C0, C1, C2, . . .) such that the nth object Cn has a right action of
the symmetric groups on n letters, �n. Morphisms are sequences of equivariant morphisms.
Equivalently, the category of symmetric sequences is the category of functors from � to
C, where � is the small category with objects n = {1, . . . , n}, 0 = � and morphisms being
bijections of finite sets.

If C is a model category Berger and Moerdijk [1, Section 3] take the model structure
on symmetric sequences (called ’collections’, loc. cit.) which defines fibrations and weak
equivalences by the forgetful functor down to sequences of objects. If C is cofibrantly
generated with generators I for the cofibrations and J for the trivial cofibrations, there is a
cofibrantly generated model structure on symmetric sequences with generators (I [�n])n,
respectively (J [�n])n (see [24] for details); it is easy to see that both structures agree in
this situation.

8.1. Semi-model category structures

Hovey introduced the notion of semi-model structures and applied the concept to the case
of algebras over a commutative monoid in [11, Theorem 3.3]. In [24], Spitzweck defined
‘semi-model category structures’ and constructed them on the category of O-algebras, if O
is either a ‘cofibrant’ operad or at least if the underlying sequence (O(n))n�0 of objects
O(n) with �n-actions is cofibrant in the model category of symmetric sequences. To ob-
tain statements about the homotopy category it suffices to have a semi-model category at
hand.

Definition 8.1.1 (Spitzweck [24, p. 5]). Let (C, ⊗, 1C) be a closed symmetric monoidal
model category, let D be any category, and let F : C → D be a left adjoint. The category
D with specified classes of weak equivalences, fibrations and cofibrations is a semi-model
category with these classes if the following conditions are satisfied:

• The right adjoint preserves fibrations and trivial fibrations.
• The category D is bicomplete, satisfies the two-out-of-three axiom for the weak equiv-

alences and the retract axiom for all three classes.
• Cofibrations in D have the left lifting property with respect to acyclic fibration and

acyclic cofibrations whose domain is cofibrant have the left lifting property with respect
to fibrations.

• Every map in D can be functorially factored into a cofibration followed by an acyclic
fibration. If the domain of the map is cofibrant then it has a functorial factorization into
an acyclic cofibration and a fibration.

• Cofibrations in D whose domain is cofibrant become cofibrations in C and the initial
object in D is mapped to a cofibrant object.

• Fibrations and acyclic fibrations are closed under pullbacks in D.

Let C be in addition a cofibrantly generated model category with generating cofibrations
I and generating acyclic cofibrations J. Let O be an arbitrary operad in C with an underlying
cofibrant symmetric sequence, e.g. an E∞-operad, and let O be the associated monad. There
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is a forgetful functor U from the category of O-algebras to the category C and a left adjoint,
which maps an object C ∈ C to the free O-algebra O(C) generated by C.

Theorem 8.1.2 (Spitzweck [24, Theorems 4.7, 2.9]). The category of O-algebras is a semi-
model category with weak equivalences and fibrations defined via the forgetful functor and
generating cofibrations O(I ) and generating acyclic cofibrations O(J ).

Remark 8.1.3. A cofibrant operad gives rise to a similar semi-model category structure
[24, Theorem 4.3].

The model categories in our examples are the categories of non-negative chain complexes,
of simplicial modules, of non-negative cochain complexes and of cosimplicial modules.
They all satisfy the assumption of Theorem 8.1.2, but we will see, that we can actually get
(genuine) model structures on the target of the functors D and N∗.

8.2. The Berger–Moerdijk model structures

We will briefly recall the results of [1] on model category structures on operads, respec-
tively, on algebras over operads.

Assume C is a monoidal model category. Let (C, ⊗, 1C) denote the monoidal structure.
There is always a factorization 1C

∐
1C → H

∼−→ 1C. If there is such a factorization such
that H is a Hopf-object, i.e., has a multiplication and comultiplication which fit together in
the canonical way [1, Section 1], then C is said to admit a Hopf interval.

Berger and Moerdijk proved the following criterium:

Theorem 8.2.1 (Berger and Moerdijk [1, Theorem 3.1]). Let C be as above such that the
model structure on C is cofibrantly generated, the model category of objects over the unit
1C has a monoidal fibrant replacement functor and C admits a commutative Hopf-interval.
Then the category of reduced operads has a cofibrantly generated model category structure,
where a map f : O → P is a fibration or weak equivalence if f (n) : O(n) → P(n) is a
fibration or weak equivalence in C for all n.

Under some mild extra assumptions, the category of algebras over operads possesses a
model structure as well.

Proposition 8.2.2 (Berger and Moerdijk [1, Propostion 4.1]). Let C be a cofibrantly gen-
erated monoidal model category such that the unit 1C is cofibrant and C has a monoidal
fibrant replacement functor for the objects over 1C. Then

(a) If there exists an operad map j : P → P ⊗ O and an interval in C which is a O-
coalgebra, then the category of P-algebras has a model structure.

(b) If there exists an interval inCwith a coassociative comultiplication, then �-split operads
posses a model structure for their algebras.

(c) If there is an interval in C which is coassociative and cocommutative, then for all
operads there is a model structure for their algebras.
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In all these cases, the fibrations and weak equivalences in the model structures are deter-
mined by the forgetful functor.

An operad O is �-split, if is it a retract of O ⊗ Ass.
Their result implies for instance that cofibrant operads in unbounded chain complexes

allow a model structure for their algebras. In the category of simplicial sets or simplicial
modules groups algebras over an arbitrary operad posses a model structure (see [1, Remark
4.2]).

8.3. Operads and algebras in cochain complexes

In this part we use notation that was introduced at the beginning of Section 6. For cochain
complexes which are concentrated in non-negative degrees we have to provide a factoriza-
tion of the folding map S0 ⊕S0 −→ S0 into a cofibration followed by a weak equivalence,

S0 ⊕ S0�H
∼−→ S0

such that H is a commutative Hopf-object in the category of cochain complexes.
But cofibrations in the category of cochain complex do not have to satisfy any condition

in their zeroth degree, so we can take H = S0 which is a canonical Hopf-object with
commutative multiplication k⊗kk�k and cocommutative comultiplication k�k⊗kk. So
we have proved the following result:

Proposition 8.3.1. The category of cochain complexes which are concentrated in non-
negative degrees possesses a commutative Hopf-interval.

Furthermore, it is easy to see that this model category has a monoidal fibrant replacement
functor over the unit.

Proposition 8.3.2. For every cochain complex X∗ ∈ �mod over S0 there is a functorial
factorization

X∗ ∼
� R(X∗)�S0.

Proof. Adding a zero codisk D0 does not change the cohomology and is a cofibration.
There is a well-defined projection down to S0 sending the generator in degree zero of D0
to the generator in S0

0 and sending D1
0 to zero. Therefore we set R(X∗) := X∗ ⊕ D0. This

is clearly functorial and monoidal using the following map as monoidal transformation:

(X∗ ⊕ D0) ⊗ (Y ∗ ⊕ D0)
�−−−−−−→ X∗ ⊗ Y ∗ ⊕ X∗ ⊗ D0 ⊕ D0 ⊗ Y ∗ ⊕ D0 ⊗ D0⏐⏐⏐⏐� id ⊕ 0 ⊕ 0 ⊕ 0

(X∗ ⊗ Y ∗) ⊕ D0. �

For the category of cochain complexes, the requirements of [1, Theorem 3.1] are therefore
fulfilled and we obtain the following result:
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Theorem 8.3.3. Reduced operads in the category of cochain complexes posses a cofibrantly
generated model category structure, such that a map f : O → P is a fibration or weak
equivalence, if for all n�1 the map f (n) : O(n) → P(n) is a fibration or weak equivalence
of cochain complexes.

As the interval H = S0 is naturally coassociative and cocommutative we get model
category structures on algebras as well because the criterium [1, Proposition 4.1.(c)] applies.

Proposition 8.3.4. The category of algebras over an arbitrary operad in non-negative
cochain complexes is a model category with fibrations and weak equivalences given by the
forgetful functor. In particular the category of EndN∗ -algebras is a model category.

Remark 8.3.5. It is tempting to try to transfer this result directly to the category of cosim-
plicial modules with the help of the functor D∗, but the unit � : id → D∗N∗ is not monoidal.
Take A• = D∗(S1) and consider cosimplicial degree one. We know that D1(S1) = k, but
D1(N∗D∗(S1)

⊗2)�D1(S2)�0. Thus in the diagram

the upper composition factors over zero whereas the lower unit �D∗(S1)⊗̂D∗(S1)
is non-trivial,

because it fits into the following commutative diagram:

and the non-trivial homotopy group is concentrated in degree one. Therefore the composition

A• �−→ D∗N∗A• −→ D∗(N∗A• ⊕ D0) −→ D∗(S0)�k̄

will not yield a monoidal fibrant replacement of A• in general.

8.4. Remarks on cofibrancy

In Theorems 5.4.2 and 6.4.3 we constructed operads EndD and EndN∗ which have operad
maps to the operad of commutative monoids, such that this augmentation is a weak equiva-
lence. This might seem alarming for somebody who is used to work with actual homotopy
invariant information.

Sometimes one runs into difficulties if the operad is not cofibrant in a stronger sense. If O
is an operad then a homotopy O-algebra usually is an algebra over a cofibrant resolution of
O in an appropriate model category of operads. So a homotopy Com-algebra in that strong
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sense is an algebra over Q(Com), where Q(Com) is a cofibrant replacement of the operad
of commutative monoids.

In our examples, a theorem of Berger and Moerdijk ensures that it makes no difference
whether we work with (old-fashioned) E∞-operads or with operads of the form Q(Com).

Theorem 8.4.1 (Berger and Moerdijk [1, 4.5]). If cofibrant operads have a model structure
for their algebras via the forgetful functor in the sense of [1, 2.5], if C is left proper and
the unit 1C is cofibrant. Let O be an arbitrary operad in C. Then for every operad Õ

∼−→O
which has a cofibrant symmetric sequence and has a model structure for its algebras à la
[1, 2.5] there is a Quillen equivalence between the category of Õ-algebras and the category
of Q(O)-algebras.

The model category of simplicial modules is (left) proper, hence every operad has such
a model structure for its algebras. Consequently, the model category of a �-cofibrant re-
placement of EndOD is Quillen equivalent to the model category of Q(EndOD)-algebras. For
non-negative cochain complexes the situation is similar and the model category of algebras
over a �-cofibrant replacement of EndON∗ is Quillen equivalent to the model category of
Q(EndON∗)-algebras. In particular, the homotopy categories agree in both cases.

Note, that the underlying symmetric sequence of a cofibrant operad is again cofibrant. A
proof for this fact is a direct transfer of an argument in [1, 4.3] to our setting. So there are
no problems to induce an action of an E∞-operad in either sense on D(X) and N∗(A•) for
E∞-algebras X and A•.

Acknowledgements

I thank BjZrn Dundas, and Rainer Vogt for helpful comments on the subject. A discussion
with Benoit Fresse drew my attention to the case of the conormalization functor.

References

[1] C. Berger, I. Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv. 78 (4) (2003)
805–831.

[2] F. Borceux, Handbook of Categorical Algebra 2, Categories and Structures, Encyclopedia of Mathematics
and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994, xviii+443pp.

[3] A.K. Bousfield, D.M. Kan, Homotopy Limits, Completions and Localizations, Springer Lecture Notes in
Mathematics, vol. 304, 1987 (2nd printing).

[4] J.L. Castiglioni, G. Cortiñas, Cosimplicial versus dg-rings: a version of the Dold–Kan correspondence,
J. Pure Appl. Algebra. 191 (2004) 119–142.

[5] A. Dold, Homology of symmetric products and other functors of complexes, Ann. Math. 68 (1) (1958)
54–80.

[6] A. Dold, Über die Steenrodschen Kohomologieoperationen, Ann. Math. 73 (2) (1961) 258–294.
[7] M. Gerstenhaber,A.A.Voronov, Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices

3 (1995) 141–153.
[8] P.G. Goerss, J.F. Jardine, Simplicial Homotopy Theory, Progress in Mathematics, vol. 174, BirkhäuserVerlag,

Basel, 1999, xvi+510pp.



B. Richter / Journal of Pure and Applied Algebra 206 (2006) 277–321 321

[9] V.A. Hinich, V.V. Schechtman, On homotopy limit of homotopy algebras, in: K-theory, Arithmetic and
Geometry (Moscow, 1984–1986), Lecture Notes in Mathematics, vol. 1289, Springer, Berlin, 1987,
pp. 240–264.

[10] M. Hovey, Model Categories, Mathematical Surveys and Monographs, vol. 63, AMS, Providence, RI, 1999.
[11] M. Hovey, Monoidal model categories, preprint available as math.AT/9803002 on the arXiv.
[12] M. Hovey, B. Shipley, J. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (1) (2000) 149–208.
[13] I. Kriz, J.P. May, Operads, algebras, modules and motives, Astérisque 233 (1995).
[14] L.G. Lewis Jr., Is there a convenient category of spectra?, J. Pure Appl. Algebra 73 (3) (1991) 233–246.
[15] S. MacLane, Categories for the Working Mathematician, second ed., Graduate Texts in Mathematics, vol. 5,

Springer, New York, 1998.
[16] S. MacLane, Homology, Classics in Mathematics, Springer, Berlin, 1995, x+422pp (reprint of the 1975

edition).
[17] M.A. Mandell, Flatness for the E∞ tensor product, in: J.P.C. Greenlees, R.R. Bruner, N. Kuhn (Eds.),

Homotopy Methods in Algebraic Topology (Boulder, CO, 1999), Contemporary Mathematics, vol. 271,
American Mathematical Society, Providence, RI, 2001, pp. 285–309.

[18] M.A. Mandell, Topological André–Quillen cohomology and E∞ André–Quillen cohomology, Adv. Math.
177 (2) (2003) 227–279.

[19] D. Quillen, Homotopical Algebra, Lecture Notes in Mathematics, vol. 43, Springer, Berlin, New York, 1967.
[20] B. Richter, E∞-structure for Q∗(R), Math. Ann. 316 (2000) 547–564.
[21] B. Richter, Symmetries of the Dold–Kan correspondence, Math. Proc. Cambridge Philos. Soc. 34 (1) (2003)

95–102.
[22] S. Schwede, Stable homotopical algebra and �-spaces, Math. Proc. Cambridge Philos. Soc. 126 (2) (1999)

329–356.
[23] S. Schwede, B. Shipley, Equivalences of monoidal model categories, Algebraic Geom. Topol. 3 (2003)

287–334.
[24] M. Spitzweck, Operads, algebras and modules in model categories and motives, Dissertation Bonn (2001),

available as math.AT/0101102 on the arXiv.
[25] D. Stanley, Determining closed model category structures, preprint available on http://hopf.math.

purdue.edu.
[26] C.A. Weibel, An introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics,

vol. 38, Cambridge University Press, Cambridge, 1994, xiv+450pp.

http://hopf.math.purdue.edu
http://hopf.math.purdue.edu

	Homotopy algebras and the inverse of the normalization functor
	Introduction
	Generalized endomorphism operads
	The definition of EndF
	Examples
	Augmentations

	Parametrized operads
	The definition of parametrized operads
	Verification of the operad property
	Transfer of algebra structures over operads

	Quillen adjunctions
	Adjoints to =F on algebras over operads
	Quillen adjunction on the level of algebras over operads
	A Quillen adjunction for homotopy algebras
	Maps from the operad of associative monoids
	A homotopy Gerstenhaber structure for EndF

	The inverse of the normalization
	A left adjoint for =D
	The generalized endomorphism operad of =D
	The parametrized versions of EndD
	E-structures are preserved by =D
	The functor =D and general homotopy algebras
	Another way to pass differential graded homotopy algebras to spectra
	Model structures on differential graded modules and simplicial modules

	The conormalization functor
	Cosimplicial modules and cochain complexes
	Alexander--Whitney and shuffle transformations
	The generalized endomorphism operad for N*
	Preservation of homotopy structures
	Quillen adjunctions for the conormalization

	Coalgebra structures
	(Co)algebra structures via (co)actions of (co)operads
	Endomorphism operads parametrized by cooperads
	(Co)algebra structures and the Dold--Kan correspondence

	(Semi) Model categories of algebras over operads
	Semi-model category structures
	The Berger--Moerdijk model structures
	Operads and algebras in cochain complexes
	Remarks on cofibrancy

	Acknowledgements
	References


