
manuscripta math. 118, 99–119 (2005) © Springer-Verlag 2005

Andrew Baker · Birgit Richter

Invertible modules for commutative S-algebras
with residue fields

Received: 15 October 2004 / Revised version: 10 May 2005
Published online: 10 August 2005

Abstract. The aim of this note is to understand under which conditions invertible modules
over a commutative S-algebra in the sense of Elmendorf, Kriz, Mandell & May give rise
to elements in the algebraic Picard group of invertible graded modules over the coefficient
ring by taking homotopy groups. If a connective commutative S-algebra R has coherent
localizations (R∗)m for every maximal ideal m�R∗, then for every invertible R-module U ,
U∗ = π∗U is an invertible graded R∗-module. In some non-connective cases we can carry
the result over under the additional assumption that the commutative S-algebra has ‘res-
idue fields’ for all maximal ideals m � R∗ if the global dimension of R∗ is small or if R

is 2-periodic with underlying Noetherian complete local regular ring R0. We apply these
results to finite abelian Galois extensions of Lubin-Tate spectra.
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Introduction

For an arbitrary symmetric monoidal category C , one can ask which objects are
invertible. The Picard group, Pic(C ), is then the collection of isomorphism classes
of such invertible objects in C . This does not have to be a set in general, but if it is
one, then Pic(C ) is an abelian group in a natural way.

The notion of Picard group originates from algebraic geometry. The classical
example is that of the Picard group of the category of A-modules for a commutative
ring A. In recent years, topologists have introduced symmetric monoidal categories
of spectra, the categories of modules over commutative S-algebras, whose derived
categories are also symmetric monoidal and provide natural generalizations of cat-
egories of modules over commutative rings.

The paper by Strickland [24], following a talk of Hopkins, introduced Picard
groups in that framework. Examples have been considered and in some cases cal-
culated in [24, 14, 19, 12].

In general, it is not clear if invertible modules over a commutative S-algebra
in the sense of [10] give rise to invertible modules over the coefficient ring when
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one applies homotopy groups. In Example 44 we describe an explicit invertible
module over a commutative S-algebra R whose coefficient module is not an invert-
ible graded R∗-module. We investigate some restricted classes of commutative
S-algebras for which we can prove such a transfer result. Similar questions about
various other Picard groups were considered in [11, 12, 19], but we are unaware of
published topological results of the form we describe. Our motivation comes in part
from applications to work on Galois extensions in [3]. However, our results apply
to classes of examples such as complex cobordism MU and complex K-theory.

We discuss mainly three classes of examples of commutative S-algebras for
which we can prove a transfer result from the Picard group of module spectra
over these commutative S-algebras to the Picard group of graded modules over its
coefficients. Essentially these are as follows:

– connective commutative S-algebras with coherent coefficient rings or coeffi-
cient rings satisfying Eilenberg’s condition,

– commutative S-algebras with coherent coefficients, multiplicative residue fields
and small global dimension, and

– commutative S-algebras whose coefficients R∗ are of the form R0[u, u−1] with
R0 a Noetherian complete local regular ring.

For the precise statements see Theorems 21, 25, 28, and 38.
In the non-connective case we add the restriction that the commutative S-algebra

R has ‘residue fields’ for all maximal ideals in its coefficients. Although we do not
have a complete understanding of such S-algebras, it appears that most standard
examples satisfy this requirement; however, in Example 9 we draw attention to a
spectrum which has no such residue field.

At the end of Section 8 we apply our results to Galois theory of commutative
S-algebras. If one adjoins enough roots of unity to a Lubin-Tate spectrum, we prove
that there are no non-trivial abelian finite Galois extensions as long as the order of
the group is invertible in the coefficient ring.

In Section 9 we summarize our results by providing a list of examples of com-
mutative S-algebras for which the topological and algebraic Picard groups agree.
We close with an explicit counterexample, proving that Pic(R) might differ from
Pic(R∗) in general.

1. The Picard group of a commutative S-algebra

In this section we relate the Picard group of the commutative S-algebra R to the
Picard group of the coefficient ring R∗. Of course this is a special case of the more
general notion for a symmetric monoidal category [11, 12, 19].

We follow [24, 14] in defining Pic(R) to be the collection of equivalence classes
of invertible objects in the derived category of R-modules, DR . By Proposition 16,
Pic(R) is a set in all cases that we will consider. Whenever choosing a represen-
tative for an equivalence class [U ] ∈ Pic(R) we will pick a cofibrant R-module.
Defining the product of equivalence classes [U ] and [V ] by

[U ][V ] = [U ∧R V ],
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Pic(R) becomes an abelian group. We also have an algebraic Picard group Pic(R∗)
of invertible graded R∗-modules and our goal is to discuss the relationship of this
with Pic(R).

Let M∗ be an invertible graded R∗-module, say with inverse N∗, so

M∗ ⊗R∗ N∗ ∼= R∗.

Then M∗ and N∗ are finitely generated projective of constant rank 1. Choosing a
finitely generated free cover F∗ −→ M∗, we see that M∗ is a summand of F∗. Of
course we have F∗ = π∗F , where F is a finite wedge of suspensions of copies of
R-spheres SR . Furthermore, the associated splitting can be realized by a homotopy
idempotent self-map ε : F −→ F . Now M∗ is realized as the homotopy image of
ε. (This argument was pointed out to us by the referee.)

Given the above realization of M∗ as an R-module M , we obtain a map

� : Pic(R∗) −→ Pic(R); �([M∗]) = [M] (1)

which is a group homomorphism. If [M∗] ∈ ker � = [R∗], then M � R and so
[M∗] = [R∗] = 0. Thus � is a monomorphism. The main aim of this paper is to
establish conditions under which � is an isomorphism.

2. Recollections on coherent rings and modules

The notion of a coherent commutative ring has proved important in topology, espe-
cially in connection with MU . We begin by reviewing the basic notions. As a
convenient reference we cite Cohen [8], but the algebraic theory can be found in
many places such as [6, 23].

Let A be a (possibly graded) commutative ring. Then an A-module M is finitely
presented if there is a short exact sequence

0→ K −→ F −→ M → 0

in which F and K are finitely generated and F is free. Such a short exact sequence
is called a finite presentation of M .

Lemma 1. Let M be finitely presented and suppose that

0→ L −→ P −→ M → 0

is a short exact sequence in which P is finitely generated and projective. Then L is
finitely generated.

Proof. Let

0→ K −→ F −→ M → 0

be a finite presentation of M . By Schanuel’s Lemma, there is an isomorphism

P ⊕K ∼= F ⊕ L.

Now since the left-hand side is finitely generated, L is also finitely generated. 
�
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The A-module M is coherent if it and all its finitely generated submodules are
finitely presented. A is coherent if it is coherent as an A-module.

Let A be a commutative local ring and M an A-module. Recall that a resolu-
tion F∗ −→ M is minimal if for each n, the differential dn : Fn −→ Fn−1 has
ker dn ⊆ mFn and so im dn ⊆ mFn−1.

Proposition 2. Let A be a commutative coherent local ring with maximal ideal m.
If M is a coherent A-module, then M admits a minimal resolution F∗ −→ M → 0
which is by finitely generated free modules Fn.

Proof. We begin by choosing a finitely generated free module F0 with the property
that its reduction modulo m is isomorphic to the reduction of the module M modulo
m; furthermore, this isomorphism factors through M , giving the following diagram.

F0

p

�� �����
���

���
�

�� F0 ⊗ A/m

∼=
��

M �� M ⊗ A/m

Note that by Nakayama’s Lemma, the map p is an epimorphism. As p is a map
between coherent modules, its kernel is finitely generated and coherent. It is obvi-
ous that the kernel of p is contained in mF0. Following this pattern of argument we
can inductively produce a minimal resolution as required. 
�

In our work we will make use of the following result of [8, proposition 1.5].

Proposition 3. Let Aα be a filtered direct system of coherent commutative rings
such that A = colimα Aα is flat over each Aα . Then A is coherent.

Corollary 4. Let A be a coherent commutative ring and � a multiplicative subset.
Then the localization A[�−1] is a coherent ring. In particular, for every prime ideal
p � A, the localization Ap is coherent.

Proof. This follows from Proposition 3 since such localizations are filtered direct
colimits and are exact. 
�

Example 5.
1. Any commutative Noetherian ring is coherent.
2. Any countably generated polynomial ring over a Noetherian ring is coherent

since it is a colimit as in Proposition 3.
3. In particular, MU∗ and BP∗ are coherent and so are all their localizations and

quotients with respect to finitely generated ideals.
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3. Local reductions of R-modules

Consider the following condition on a maximal ideal m � R∗.

Condition (A). There is an R-module W for which the R∗-module W∗ = π∗W
is isomorphic to the residue field R∗/m. If such a W exists, we will refer to it as a
residue field. We will often choose one and denote it by κ(m).

Notice that κ(m) is clearly Rm-local, where Rm denotes the commutative R-
algebra associated with the algebraic localization

π∗( )m = (R∗)m ⊗R∗ π∗( )

of the homotopy functor on MR , for details see [10]. So the existence of such an
R-module is equivalent to the existence of a corresponding Rm-module.

We will be interested in S-algebras R for which Condition (A) is satisfied by
all maximal ideals m � R∗. Here are some examples.

Example 6. If R is connective then each maximal ideal m � R∗ has for its residue
field a quotient field k(m) = R0/m0 of R0. There is a corresponding Eilenberg-
Mac Lane R-algebra Hk(m) which we may take for κ(m).

Example 7. Let p > 0 be a prime and R = MUIp,n , where

Ip,n = (p, v1, . . . , vn−1)

is the n-th invariant ideal for p. Then the Morava K-theory K(n) with 1 � n <∞
is such a spectrum κ(Ip,n).

Example 8. KO[1/2] satisfies Condition (A) for every maximal ideal in

KO[1/2]∗ = Z[1/2, y, y−1].

The only maximal ideal containing an odd prime p is (p) and we may take κ(p) =
KO ∧M(p) where M(p) is the usual mod p Moore spectrum.

Example 9. To see a non-example, we refer to [5, example 7.6]: the topological sig-
nificance of this is that the Tate spectrum Ĥ(BC3, F3) is a commutative S-algebra,
but the maximal ideal generated by the exterior generator in degree one does not
give rise to a residue field. We learned of this example from John Greenlees.

Example 8 leads us to introduce another condition on a commutative S-algebra
R and a maximal ideal m � R∗ that turns out to be useful in our work.

Condition (B). There is an R-algebra R′ where R′∗ is a local ring with maxi-
mal ideal m′ � R′∗ which satisfies Condition (A) and whose unit induces a local
homomorphism (R∗)m −→ R′∗ which makes R′∗ a flat (R∗)m-module.

If m satisfies Condition (A), then the localization map R −→ Rm satisfies
Condition (B).
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Remark 10. Suppose that B is a commutative ring and A ⊆ B is a subring so
that B is a finite A-algebra. It is standard that if A is Noetherian then so is B. Con-
versely, if B is Noetherian then A is Noetherian by the Eakin-Nagata theorem [17,
theorem 3.7]. In these cases B is automatically flat over A.

Example 11. Consider KO and the maximal ideals

m �KO∗ = Z[η, y, w, w−1]/(2η, η3, ηy, y2 − 4w).

If p is an odd prime, then the only maximal ideal containing p is (p) and as in
Example 8 we may take κ(p) = KO∧M(p). The only maximal ideal containing 2
is (2, η, y) and we may take the obvious map KO −→ KU(2).

Thus every maximal ideal containing an odd prime m � KO∗ satisfies Condi-
tion (B).

The notions in the next definition extend to graded rings. For the Noetherian
case, see [17].

Definition 12. Let A be a commutative ring.

– A is a regular local ring if it is a local ring whose maximal ideal m is generated
by a sequence u1, u2, . . . , un, where n is the Krull dimension of A; such a
sequence is regular.

– A is a regular ring if for every maximal ideal m � A, the localization Am is a
regular local ring.

– A is a non-Noetherian regular local ring if its maximal ideal is generated by an
infinite countable regular sequence u1, u2, . . . .

– A is a non-Noetherian regular ring if for every maximal ideal m �A, the local-
ization Am is a (possibly non-Noetherian) regular local ring.

Proposition 13. If R∗ is a (possibly non-Noetherian) regular local ring with max-
imal ideal m � R∗, then there is an R-module κ(m) for which κ(m)∗ = R∗/m.
Therefore m satisfies Condition (A).

Proof. Given a (possibly infinite) regular sequence u1, u2, . . . which generates m,
we may follow the approach of [10, section V.1] to construct an R-module κ(m)

which realizes R∗/m as κ(m)∗ = π∗κ(m). 
�
Corollary 14. If R∗ is a regular ring then every maximal ideal m � R∗ satisfies
Condition (A).

There is an associated Koszul complex

K∗,∗ = �R∗(ei : i � 1),

with ei in bidegree (1, |ui |) and which is a differential graded algebra with differ-
ential d given by

dei = ui.
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This provides a free resolution

K•,∗ −→ R∗/m→ 0.

Following the method of construction of the Künneth spectral sequence in [10,
section IV.5], we can use this to define a cell structure on the R-module κ(m), with
the cells corresponding to the distinct monomials in the ei .

Later, we will need multiplicative structures on our residue fields. These are
provided by Angeltveit’s result [1, theorem 4.2].

Theorem 15. If R is a commutative S-algebra whose coefficients are concentrated
in even degrees and if an ideal I � R∗ is generated by a regular sequence, then
there is an S-algebra structure on R/I and R −→ R/I is central.

4. A finiteness result

General treatments of invertible objects in derived categories and Picard groups may
be found in [11, 12, 19]. It is standard that an invertible object in DR is strongly
dualizable [15]. The following result on strongly dualizable objects in DR is taken
from [12, proposition 2.1] (also see [18, 19]).

Proposition 16. Let X be an R-module. Then X is strongly dualizable in DR if and
only if it is weakly equivalent to a retract of a finite cell R-module.

Let U be an invertible R-module, i.e., U is a cofibrant R-module and there is a
cofibrant R-module V for which U ∧R V � R. Then V is a strong dual for U and
by Proposition 16, U and V are retracts of finite cell R-modules.

The following Lemma allows us to apply coherence conditions to topological
settings.

Lemma 17. Let R be a commutative S-algebra with coherent coefficient ring R∗.
(a) Any finite cell R-module M gives rise to a finitely generated coherent R∗-module

M∗.
(b) Every retract N of a finite R-cell module M has finitely generated coherent

coefficients N∗.

Proof. As M is built in finitely many steps via cofibre sequences of the form

�nR −→ X −→ Y,

its coefficients M∗ are built up out of exact couples of the form

X∗ �� Y∗

����������

�nR∗

����������

Applying [8, theorem 3.1], we see that M∗ is finitely generated coherent.
As retracts of cell R-modules correspond to finitely generated submodules of

R∗-modules M∗ as above, the claim follows. 
�
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Corollary 18. Suppose that R∗ is coherent and U is an invertible R-module. Then
U∗ is a coherent R∗-module and hence it has a resolution by finitely generated
projective R∗-modules.

5. The connective case

Let R be a connective commutative S-algebra and let m � R∗ be a maximal ideal.
Recall from [10] that there is an Eilenberg-Mac Lane object H(R0/m0) which is
also a commutative R-algebra. We will view this as a residue field κ(m).

Lemma 19. Let R be a connective commutative S-algebra and let m � R∗ be a
maximal ideal for which (R∗)m is coherent. If M, N are R-modules with (N∗)m

coherent as an (R∗)m-module, then the E2-term of the Künneth spectral sequence
has the form

E2
p,∗ = Tor(Rm )∗

p,∗ (κ(m)R∗Mm, (Nm)∗) ∼= κ(m)R∗Mm ⊗R∗ Qp,∗, (2)

where Q•,∗ is a minimal resolution of (Nm)∗.

Proof. As π∗(κ(m) ∧R M) is an (Rm)∗-module, we can replace R by Rm and N

by its localization Nm. Thus we might as well assume that R∗ is a coherent local
ring for the remainder of this proof.

We begin by choosing a free resolution Q•,∗ −→ N∗ → 0 of N∗ by finitely
generated free R∗-modules. Using Proposition 2, we can arrange this to be minimal.

Following [10], the E2-term for the Künneth spectral sequence (2) can be con-
structed using the above resolution, giving

E2
p,∗ = TorR∗p,q(κ(m)R∗M, N∗) = Hp(κ(m)R∗M ⊗R∗ Q•,∗, id ⊗ d•).

By minimality this yields

E2
p,∗ = κ(m)R∗M ⊗R∗ Qp,∗. 
� (3)

We begin with a local result. Recall that a finitely generated module over a local
ring is projective if and only if it is free.

Proposition 20. Suppose that R is connective and that R∗ is coherent and local
with maximal ideal m � R∗. If U is an invertible R-module, then for some k ∈ Z,
U � �kR and U∗ is an invertible graded R∗-module.

Proof. We follow the ideas and notation in the proof of Lemma 19, taking M = U

and N = V where U ∧R V � R.
In order to shorten notation we will write κ = H(R0/m0). By Corollary 18

we can choose a minimal free resolution Q•,∗ −→ V∗ → 0. Using (3) we get as
E2-term of the Künneth spectral sequence

E2
p,∗ = TorR∗p,∗(κ

R
∗ U, V∗) ∼= κR

∗ U ⊗Qp,∗.
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Without loss of generality we can assume that U is connective and π0(U) �= 0. The
Künneth isomorphism

κR
∗ (U)⊗κ∗ κR

∗ (V ) ∼= κR
∗ (R) ∼= κ∗

forces κR∗ U to be free of rank one over κ∗ ∼= R0/m0. Thus it must be concen-
trated in degree zero and has to be isomorphic to R0/m0 = κ0. The whole spectral
sequence is concentrated in the first quadrant. No differential can hit the entry in
the (0, 0)-coordinate. Therefore

(κ∗ ⊗R∗ Q0,∗)0 = κ0 ⊗R0 Q0,0 ∼= κ0.

As Q0,0 is the zeroth homotopy group of some sum of R-spheres, this forces Q0,0
to be equal to R0, in particular it is free over R0. The minimality of the resolution
ensures that Qp,0 is zero for p > 0. Therefore the zero-line E2

p,0 vanishes except
for κ0 at p = 0.

Inductively we assume that Qp,i = 0 for all p > 0, i � n, and that Q0,i
∼= Ri

for all i � n. Then the (0, n+ 1)-entry in the E2-term cannot be hit by any differ-
ential, therefore it must be an infinite cycle. As nothing else survives in total degree
n+ 1, we obtain

(κ∗ ⊗R∗ Q0,∗)n+1 = κ0 ⊗Q0,n+1 = 0. (4)

This means that the whole module Q0,n+1 gets killed by the relations in the tensor
product over R∗. We know that Rn+1 ⊆ Q0,n+1 because Q•,∗ is an R∗-resolution
and Q0,0 ∼= R0. From (4) we know that there cannot be more in Q0,n+1.

As Q0,n+1 ∼= Rn+1, minimality ensures again that Qp,n+1 = 0 for all p > 0
and the induction is continued.

Hence we obtain that Q0,q
∼= Rq for all q � 0 and the higher terms in the

resolution satisfy Qp,q
∼= 0 for p > 0. This gives V∗ ∼= R∗, proving the claim. 
�

We now use our local information to obtain a global result.

Theorem 21. If R is a connective commutative S-algebra, such that for every max-
imal ideal m � R∗ the localization is coherent, then every invertible R-module
spectrum U has invertible coefficients U∗.

Proof. Let V be an inverse for U . For each maximal ideal m � R∗,

TorR∗s,∗(U∗, V∗)m
∼= Tor(R∗)ms,∗ ((U∗)m, (V∗)m)

and also

(Um ∧Rm Vm) � (U ∧R V )m � Rm.

By our local result Proposition 20 we have

Um � �kRm, Vm � �−kRm.

Hence for s > 0,

TorR∗s,∗(U∗, V∗)m = 0.
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Now by a standard result on localizations [17],

TorR∗s,∗(U∗, V∗) = 0 for s > 0.

So we find that the edge homomorphism U∗⊗R∗V∗ −→ R∗ of the Künneth spectral
sequence is an isomorphism. Therefore U∗ is an invertible graded R∗-module with
inverse V∗. 
�

6. Eilenberg’s condition

For some important examples of spectra the coherence requirement is too much
to ask for. In [9], Eilenberg introduced conditions which ensure the existence of
minimal resolutions. We recall a particular case which then applies to S and other
commutative S-algebras, leading to important topological results.

Recall that a graded group M∗ is connective if Mn = 0 whenever n < 0. Also,
if A∗ is a connective graded commutative local ring, then its unique maximal ideal
m � A∗ has components

mn =
{

m′ if n = 0,

An otherwise,

where A0 is local with maximal ideal m′ � A0.

Proposition 22. Let A∗ be a connective graded commutative local ring for which
A0 is Noetherian and each An is a finitely generated A0-module. Then every finitely
generated A∗-module admits a minimal resolution by free A∗-modules.

Proof. See [9, proposition 14]. 
�
Example 23. The maximal ideals in the graded ring S∗ have the form

m(p)n =
{

(p) � Z if n = 0,

Sn otherwise,

for rational primes p > 0. On localizing we obtain the graded local rings (S∗)(p)

which satisfy the requirements of Proposition 22.

Lemma 24. Let R be a commutative S-algebra with connective homotopy ring R∗
and let m � R∗ be a maximal ideal. If (Rm)∗ = (R∗)m satisfies the requirements
of Proposition 22, then for any retract W of a finite cell Rm-module, there is a
minimal resolution of W∗ by free (Rm)∗-modules.

Proof. For a finite cell module W , this involves a straightforward inductive ver-
ification that W∗ is finitely generated. But any retract of such a W has the same
property. 
�

The key point in the proof of Proposition 20 and Theorem 21 was the construc-
tion of a minimal free resolution and a local-to-global argument. We can apply the
same strategy to obtain the following result.
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Theorem 25. Let R be a commutative S-algebra whose homotopy ring R∗ is con-
nective. Suppose that for every maximal ideal m � R∗, the localization (Rm)∗ =
(R∗)m has (R0)m Noetherian and each (Rn)m is a finitely generated (R0)m-module.
If U and V are invertible R-modules for which U ∧R V � R, then we have

U∗ ⊗R∗ V∗ ∼= R∗

and so U∗ is an invertible graded R∗-module. In particular, there is a k ∈ Z for
which Um = 0 = Vn whenever m < k and n < −k and then

Uk ⊗R0 V−k
∼= R0,

so Uk is an invertible R0-module.

Using this, we obtain the following well-known result of [24, 14].

Example 26. Taking R = S and recalling Example 23, we see that U ∧ V � S

implies that for some k ∈ Z as in the Theorem, Uk is an invertible Z-module and
Uk
∼= Z ∼= V−k , hence U∗+k

∼= S∗ ∼= V∗−k . It follows that �−kU � S � �kV .

Other examples include MU , MSp, ku, ko and the connective spectrum of
topological modular forms tmf . The last example is known to be a commutative
S-algebra and its homotopy ring is computed in [4, 20]; it has π0tmf = Z and
satisfies the conditions of Proposition 22.

So far we did not give any proof in the case of Eilenberg-Mac Lane spectra over
arbitrary commutative rings. For the sake of completeness we add this result here,
although it is probably well-known.

Proposition 27. Let A be a commutative ring with unit. Then for every invertible
HA-module spectrum U , U∗ is an invertible graded A-module.

Proof. The proof we give here is an elementary adaption of Fausk’s proof in [11,
3.2,3.3] to our setting. Without loss of generality we can assume that U has its first
non-vanishing homotopy group in degree zero.

Assume first that A is a local ring. Let V be an inverse of U over HA. We know
that U0 ⊗A V0 ∼= A because nothing else can hit the zeroth homotopy group in

E2
p,q = TorAp,q(U∗, V∗) �⇒ π0(HA) = A.

As A is local, the only invertible A-modules are the ones which are isomorphic
to A. In particular U0 and V0 are free. Therefore the rest of the (p, 0)-line van-
ishes. This forces the (1, 0)-entry to survive, so it has to be trivial, which means
that U1 = 0 = V1. Iteratively, we can clear out the whole E2-page except for the
(0, 0)-entry. In particular, for all p > 0,

TorAp,q(U∗, V∗) = 0.

A local-to-global argument then proves the result in general. 
�
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7. Small global dimension

The crucial point in our proofs is the collapsing of the Künneth spectral sequence.
For commutative S-algebras with residue fields we gain an analogue of Theorem 21
as long as we can exclude non-trivial differentials.

Theorem 28. Let R be a commutative S-algebra, such that for every maximal ideal
m � R∗ the ring (R∗)m is coherent and assume that R satisfies Condition (A) and
has a structure of a ring spectrum on each of its residue fields. If R∗ has global
dimension at most 2 then every invertible R-module spectrum U has invertible
coefficients U∗.

Proof. As we can perform a local-to-global argument, we may as well assume that
R∗ is local and coherent. Let V be an inverse of U . The existence of a residue field
κ which is a ring spectrum ensures that κR∗ (U) is a κ∗-vector space. The Künneth
map

κR
∗ (U)⊗κ∗ κR

∗ (V ) −→ κ∗

has to be an isomorphism. Therefore we can set κR∗ (U) ∼= κ∗.
Together with the existence of a minimal resolution of V∗ this guarantees that

the E2-term of the Künneth spectral sequence is given by

E2
p,∗ = TorR∗p,∗(κ∗, V∗) ∼= κ∗ ⊗R∗ Qp,∗.

If the global dimension of R∗ is at most 1, this spectral sequence is concentrated in
two columns. Therefore there cannot be any non-trivial differentials. The abutment
of the spectral sequence is κ∗. As Qp,∗ is a resolution of V∗, Q0,∗ cannot be trivial.
If Q1,∗ were non-trivial a dimension count leads to a contradiction. Similarly, Q0,∗
must be free of rank one over R∗ and therefore V∗ ∼= �kR∗ for some k ∈ Z.

In the case of global dimension 2 the E2-term of the Künneth spectral sequence
converging to κ∗ with

TorR∗p,∗(κ∗, V∗) ∼= κ∗ ⊗R∗ Qp,∗

has only three non-trivial columns

κ∗ ⊗R∗ Q0,∗ κ∗ ⊗R∗ Q1,∗ κ∗ ⊗R∗ Q2,∗

d2

�����������������������������

There are two possible cases. If the differential d2 is trivial, then the E2-term is
the E∞-term. As the spectral sequence has a one-dimensional abutment, we see as
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before that V∗ ∼= �kR∗ for some k ∈ Z. On the other hand, if d2 is non-trivial, then
we have a non-trivial map between the 0-column and the 2-column. But the entries
in the 1-column are infinite cycles. So either they are trivial or at most one-dimen-
sional. If they are trivial then the 2-column has to be trivial as well and we get a
contradiction. If they are non-trivial, then we can conclude that the d2-differential
must be an isomorphism and that Q1,∗ ∼= �	R∗ for some 	 ∈ Z. Therefore up to
suspensions the resolution Q•,∗ is of the form

Rn
∗ ←− R∗ ←− Rn

∗ .

If n were bigger than one, then this could not be a resolution. For n = 1 the differ-
entials must be given by multiplication by some element in R∗. Therefore this gives
no resolution either. 
�

We can loosen the requirements on R a little bit by referring to Condition (B).

Proposition 29. Let R be a commutative S-algebra such that for every maximal
ideal m � R∗ the ring (R∗)m is coherent and satisfies Condition (B) with residue
fields which are ring spectra. If R∗ has global dimension at most 2 then for every
invertible R-module spectrum U , U∗ is an invertible graded R∗-module.

Proof. Let R −→ R′ be the unit of a suitable R-algebra as required in Condi-
tion (B) and let V ′ = R′ ∧R V . Coherence of R guarantees the existence of a
minimal resolution Q•,∗ −→ V∗ → 0 of V∗. Flatness of R′ over R ensures that

Q′•,∗ −→ V ′∗ = R′∗ ⊗R∗ V∗ → 0

is still a resolution and as we assumed the map R∗ −→ R′∗ to be local, this reso-
lution is minimal. Using the proof of Theorem 28 and an argumentation as in the
proof of Proposition 20 for R′ and U ′ = R′ ∧R U , we see that Q′p,∗ = 0 when
p > 0. As Q′p,∗ = R′∗ ⊗R∗ Qp,∗ and Qp,∗ is free over R, we must have Qp,∗ = 0
for p > 0. Thus Q0,∗ ∼= V∗ and the Künneth spectral sequence

E2
p,q = TorR∗p,q(U∗, V∗) �⇒ πp+q(U ∧R V ) = Rp+q

collapses and the edge homomorphism U∗ ⊗R∗ V∗ −→ R∗ is an isomorphism, so
U∗ is invertible with inverse V∗. 
�

Example 30. Theorem 28 and Proposition 29 cover the examples of the first two
Lubin-Tate spectra E1 and E2 and their close relatives, the completed Johnson-
Wilson spectra Ê(1) and Ê(2), as well as the Adams summand E(1). Complex
periodic K-theory and real periodic K-theory with 2-inverted, KO[1/2], fulfills
the requirements as well.
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8. Noetherian complete local regular rings

In the following we extend the results of Section 7 to commutative S-algebras
whose coefficients have higher global dimension. However, we have to impose reg-
ularity conditions. The method of proof is adapted from that of [14, theorem 1.3,
pp.117,118].

We will make use of the algebraic theory of Noetherian regular rings and their
finite modules for which we refer to [7, 17]. We begin with some local results.

Assumption 31. Throughout this section, R will be a commutative S-algebra for
which R∗ = R0[u, u−1] with |u| = 2. We assume that R0 is a complete No-
etherian local regular ring whose maximal ideal m � R0 is generated by a regular
sequence u1, . . . , un, where n is the Krull dimension of R∗. We could view R∗ and
its modules as Z/2-graded R0-modules.

Theorem 15 then applies.

Lemma 32. For each prime ideal p � R∗, there is an R-algebra realizing the R∗-
algebra R∗/p. Hence the graded residue field

κ(p)∗ = (R∗/p)p = (R∗)p/(R∗)pp

can be realized as an Rp-algebra and so Rp has a residue field κ(p).

For R-modules M and N , κ(m) ∧R M and κ(m) ∧R N are κ(m)-left mod-
ules, and we can consider κ(m) ∧R M as a right κ(m)-module spectrum via the
action of κ(m) on itself by right multiplication. Since R is central in κ(m), this is
well-defined.

Corollary 33. Let M and N be R-modules. Then there is a Künneth isomorphism

κ(m)R∗ (M)⊗κ(m)∗ κ(m)R∗ (N) ∼= κ(m)R∗ (M ∧R N).

If U is an invertible R-module then dimκ(m)∗ κ(m)R∗ (U) = 1.

Proof. In our case, the Künneth spectral sequence of [10, theorem IV.4.1]

E2
p,q = Torκ(m)∗

p,q (κ(m)R∗ (M), κ(m)R∗ (N)) �⇒ κ(m)Rp+q(M ∧R N),

collapses because κ(m)∗ is a graded field. When U ∧R V � R, we have

κ(m)R∗ (U)⊗κ(m)∗ κ(m)R∗ (V ) ∼= κ(m)∗,

hence

dimκ(m)∗ κ(m)R∗ (U) = 1 = dimκ(m)∗ κ(m)R∗ (V ). 
�

We will need some technical results about killing regular sequences in R. We
make use of the results of [10, lemma V.1.5].
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Lemma 34. For every sequence (u
i1
1 , . . . , u

in
n ) with ij > 1, there are cofibre se-

quences

R/(u
i1
1 , . . . , uin

n )
uj−→ R/(u

i1
1 , . . . , uin

n )

−→ R/(u
i1
1 , . . . , u1

j , . . . , uin
n ) ∨�R/(u

i1
1 , . . . , u1

j , . . . , uin
n )

(5)

and

R/(u
i1
1 , . . . , u

ij−1
j , . . . , uin

n ) −→ R/(u
i1
1 , . . . , u

ij
j , . . . , uin

n )

−→ R/(u
i1
1 , . . . , u1

j , . . . , uin
n ). (6)

Proof. The cofibre of the multiplication map by uj on R/(u
i1
1 , . . . , u

in
n ) can be

identified as follows. As the variables behave independently we might just consider
the case of one uj . Then we get the following diagram of cofibre sequences.

R
ui

j ��

uj

��

R

uj

��

�� R/ui
j

uj

��
R

ui
j ��

��

R

��

�� R/ui
j

��
R/uj

ui
j �� R/uj �� cofibre(uj )

As multiplication by ui
j is nullhomotopic on R/uj , the cofibre of the multiplication

by uj splits as R/uj ∨�R/uj .
For the second sequence, consider

R/(u
i1
1 , . . . , u

ij−1
j−1, u

ij+1
j+1, . . . , uin

n )
u

ij−1

j−−−→ R/(u
i1
1 , . . . , u

ij−1
j−1, u

ij+1
j+1, . . . , uin

n )

−−→R/(u
i1
1, . . ., u

ij−1
j−1, u

ij−1
j , u

ij+1
j+1, . . . , uin

n ).

There is a canonical projection map

R/(u
i1
1 , . . . , u

ij−1
j−1, u

ij+1
j+1, . . . , uin

n ) −→ R/(u
i1
1 , . . . , u

ij
j , . . . , uin

n )

which we can compose with multiplication by uj . When precomposed with multi-

plication by u
ij−1
j , this map becomes nullhomotopic, thus by [10, lemma V.1.5] it

factors through a map

R/(u
i1
1 , . . . , u

ij−1
j , . . . , uin

n ) −→ R/(u
i1
1 , . . . , u

ij
j , . . . , uin

n )

whose cofibre is easily identified with R/(u
i1
1 , . . . , u1

j , . . . , u
in
n ). 
�
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Lemma 35. If U is an invertible R-module spectrum, then for all sequences
(u

i1
1 , . . . , u

in
n ) with

∑n
k=1 ik � n and each ik � 1, (R/(u

i1
1 , . . . , u

in
n ))R∗ (U) is

a cyclic R∗-module.

Proof. By suspending U if necessary and appealing to Lemma 33, we may as well
assume that κ(m)R∗ (U) ∼= κ(m)∗ is concentrated in even degrees. We prove the
claim by induction on m =∑n

k=1 ik . For m = n the result is clear since

(R/(u
i1
1 , . . . , uin

n ))R∗ (U) = κ(m)R∗ (U) ∼= κ(m)∗.

Now let m > n and assume that the result for all sequences of the above form
with m >

∑n
k=1 ik . Using the cofibre sequence (6), we see that the module

R/(u
i1
1 , . . . , u

in
n ) ∧R U has homotopy groups which are concentrated in even de-

grees. From the cofibre sequence (5) we can read off that multiplication by uj

on (R/(u
i1
1 , . . . , u

in
n ))R∗ (U) has quotient (R/(u

i1
1 , . . . , u1

j , . . . , u
in
n ))R∗ (U) which

is cyclic by assumption.
Notice that all three terms are finitely generatedR∗-modules and the image of the

multiplication by uj is contained in the submodule generated by the maximal ideal

of R∗, hence by Nakayama’s Lemma, the module (R/(u
i1
1 , . . . , u

ij
j , . . . , u

in
n ))R∗ (U)

is cyclic. 
�
Lemma 36. If U is an invertible R-module spectrum, then for every sequence
(u

i1
1 , . . . , u

in
n ) with

∑n
k=1 ik � n and ik � 1, up to suspension, there is an isomor-

phism

(R/(u
i1
1 , . . . , uin

n ))R∗ (U) ∼= R∗/(ui1
1 , . . . , uin

n ).

Furthermore, these isomorphisms are compatible with the projection maps

(R/(u
i1
1 , . . . , u

ij+1
j , . . . , uin

n ))R∗ (U) −→ (R/(u
i1
1 , . . . , u

ij
j , . . . , uin

n ))R∗ (U).

Proof. There is a canonical cofibre sequence

R/(u
i1
1 , . . . , uj , . . . , uin

n ) −→ R/(u
i1
1 , . . . , u

ij+1
j , . . . , uin

n )

−→ R/(u
i1
1 , . . . , u

ij
j , . . . , uin

n ).

As everything in sight is concentrated in even degrees, for each 	 ∈ Z we get the
two short exact sequences

0→ R2	/(u
i1
1 , . . . , uj , . . . , uin

n )→ R2	/(u
i1
1 , . . . , u

ij+1
j , . . . , uin

n )

→ R2	/(u
i1
1 , . . . , u

ij
j , . . . , uin

n )→ 0

and

0→ (R/(u
i1
1 , . . . , uj , . . . , uin

n ))R2	(U)→ (R/(u
i1
1 , . . . , u

ij+1
j , . . . , uin

n ))R2	(U)

→(R/(u
i1
1 , . . . , u

ij
j , . . . , uin

n ))R2	(U)→0.
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We start with the isomorphism κ(m)R∗ (U) ∼= κ(m)∗. As every module of the form

R/(u
i1
1 , . . . , u

ij
j , . . . , u

in
n ))R∗ (U) is cyclic we can choose epimorphisms

R2	/(u
i1
1 , . . . , u

ij
j , . . . , uin

n ) � (R/(u
i1
1 , . . . , u

ij
j , . . . , uin

n ))R2	(U)

which make the following diagram commute.

0

��

0

��
R2	/(u

i1
1 , . . . , uj , . . . , u

in
n )

��

�� (R/(u
i1
1 , . . . , uj , . . . , u

in
n ))R2	(U)

��

R2	/(u
i1
1 , . . . , u

ij+1
j , . . . , u

in
n )

��

�� (R/(u
i1
1 , . . . , u

ij+1
j , . . . , u

in
n ))R2	(U)

��

R2	/(u
i1
1 , . . . , u

ij
j , . . . , u

in
n )

��

�� (R/(u
i1
1 , . . . , u

ij
j , . . . , u

in
n ))R2	(U)

��
0 0

Now an induction over m =∑n
j=1 ij proves the claim. 
�

Theorem 37. If R satisfiesAssumption 31, then every invertible R-module is equiv-
alent to a suspension of R.

Proof. Again, we may suspend U if necessary to ensure that κ(m)R∗ (U) ∼= κ(m)∗.
Lemma 36 ensures that the identifications

R∗/(ui1
1 , . . . , u

ij
j , . . . , uin

n ) ∼= (R/(u
i1
1 , . . . , u

ij
j , . . . , uin

n ))R∗ (U)

are consistent with the projection maps in the inverse system defining holim R/(u
i1
1 ,

u
i2
2 , . . . , u

in
n ) ∧R U . Since R∗ is a Noetherian complete local ring lim←−R∗/(ui1

1 ,

u
i2
2 , . . . , u

in
n ) = lim←− 	R∗/m	. As U is a finite cell R-module, we have

holim R/(u
i1
1 , u

i2
2 , . . . , uin

n ) ∧R U � R ∧R U � U.

Using the above description of (R/(u
i1
1 , u

i2
2 , . . . , u

in
n )R∗ (U) we find that

holim R/(u
i1
1 , u

i2
2 , . . . , uin

n ) ∧R U � holim R/(u
i1
1 , u

i2
2 , . . . , uin

n ) � R.

Therefore we have U � R. In the general case, U might be equivalent to �R. 
�
The proof of the following more general result involves a standard local-to-global

argument.
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Theorem 38. Let R be a commutative S-algebra such that the localization of R

at any maximal ideal m � R∗ satisfies Assumption 31. Then for every invertible
R-module U , U∗ is an invertible R∗-module.

Remark 39. Assumption 31 is not optimal. For example, one might loosen the
requirement that R∗ is 2-periodic and replace this by a periodicity of degree 2	

for some 	. One might also wish to allow that the generators of the maximal ideal
then lie in degrees different from zero. This is no problem if one takes appropriate
suspensions into account in the numerous cofibre sequences. Last but not least there
might be cases of infinite Krull dimension that are tractable.

As an application we discuss invertible modules over certain abelian group rings
R[G].

Proposition 40. Let R be a commutative S-algebra which satisfies Assumption 31.
Let G be a finite abelian group for which all the primes dividing the order of G are
not contained in the maximal ideal m�R0. Suppose that R0 contains a primitive d-
th root of unity where d is the exponent of G. Then for every invertible R[G]-module
U , U∗ is an invertible R∗[G]-module.

Remark 41. For a connective commutative S-algebra R with coherent coefficients
and an arbitrary finite abelian group G, the group ring R∗[G] is coherent [13,
corollary 1.2] and therefore in this case invertible R[G]-modules have invertible
coefficients.

Proof. For sake of simplicity we will first give the proof for G being a cyclic group
of order p	 where p is a prime which is invertible in R0.As R0 contains enough roots
of unity, there is a complete set of orthogonal idempotents ei with i = 1, . . . , p	

corresponding to the distinct characters χi : Cp	 −→ R×0 . These idempotents can

be realized as elements of π0R[Cp	 ] = R0[Cp	 ] and the localization R0[Cp	 ][e−1
i ]

can be realized as the homotopy of a commutative S-algebra R[Cp	 ][e−1
i ] as in [22].

There is an isomorphism of rings

R0[Cp	 ][e−1
i ] ∼= R0,

and an equivalence of R-modules

R[Cp	 ][e−1
i ] ∼ R.

By assumption on R, R[Cp	 ][e−1
i ] admits a residue field and so satisfies Assump-

tion 31. There is a splitting of rings

R0[Cp	 ] ∼=
∏

i

R0[Cp	 ][e−1
i ]

which is realized by an equivalence of commutative S-algebras

R[Cp	 ] ∼
∏

i

R[Cp	 ][e−1
i ].
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Also the maximal ideals of R0[Cp	 ] are precisely those induced from the maximal

ideals of the factors R0[Cp	 ][e−1
i ]. Now Theorem 38 applies to show that for each

invertible R[Cp	 ]-module U , U∗ is an invertible R∗[Cp	 ]-module.
For a finite abelian group G for which all the primes dividing the order of the

group are not contained in the maximal ideal m � R0 there exists a more general
decomposition into eigenspaces of characters χ ∈ Hom(G, R×0 ) and the proof
works analogously. 
�

In general, the invertible modules in this result need not be concentrated in odd
or even degree. However, when this is true, an invertible module is free of rank 1
over the group ring. An important instance of this is provided by the following
application to Galois theory of commutative S-algebras (see [21, 3] for background
on this).

Example 42. Consider the 2-periodic Lubin-Tate spectrum En with

(En)0 = WFpn [[u1, . . . , un−1]].

This ring is Noetherian, complete, local and regular. Let WF
nr
pn denote the maxi-

mal unramified extension of WFpn . There is a commutative En-algebra Enr
n with

coefficient ring

(Enr
n )∗ = WF

nr
pn [[u1, . . . , un−1]][u±1] with |u| = −2.

Every invertible En-module has invertible coefficients. Since (Enr
n )∗ contains

enough roots of unity, whenever G is a finite abelian group whose order is not
divisible by p, every invertible module over Enr

n [G] has invertible coefficient mod-
ule over Enr

n [G]∗ = (Enr
n )∗[G]. In particular, for a G-Galois extension B/Enr

n ,
B∗/(Enr

n )∗ is an algebraic G-Galois extension. There cannot be any odd degree
elements in B∗ for the following reason: In an algebraic Galois extension of graded
commutative algebras B∗ over A∗ with Galois group G, the group G acts on B∗
degree-perserving. In particular if B∗ is a G-Galois extension of (Enr

n )∗, B2	+1 is
a G-representation. Under the assumptions we made, B2	+1 has a decomposition
into character eigenspaces. If there were odd-degree elements and if p is an odd
prime, then the map

h : B∗ ⊗(Enr
n )∗ B∗ →

∏

G

B∗, b1 ⊗ b2 �→ (b1g(b2))g∈G

would have a non-trivial kernel, since for every element x ∈ B2	+1 in an eigenspace,
x⊗x would map to zero, contradicting the fact that h has to be an isomorphism. For
p = 2, since every irreducible character χ has odd order, an odd degree element
of the corresponding summand is nilpotent and a similar argument applies.

Therefore B∗ is a free (Enr
n )∗[G]-module, hence it has a normal basis.

9. Examples

We will now restate our earlier results in terms of Picard groups.

Theorem 43. For a commutative S-algebra R, there is a monomorphism of abelian
groups
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� : Pic(R∗) −→ Pic(R).

Furthermore, if R satisfies the conditions of Theorem 21, Theorem 25 or of The-
orem 38, then � is an isomorphism.

Thus Pic(R∗) ∼= Pic(R) in all of the following cases.

– R = HA, where A is a commutative ring.
– R = MU /I , where I �MU ∗ is a finitely generated ideal for which MU /I is

a commutative S-algebra.
– KU, KO[1/2], ku, and ko.
– tmf at a prime p, E(1), BP〈1〉, Ê(1), and Ê(2). See [2] for the existence of

commutative S-algebra structures on some of these.
– MSp, MSpin and MSU .
– En for any n and p.

We close with a counterexample which originates from Galois theory of com-
mutative S-algebras. In [3, theorem 2.5.1], we show that every finite abelian Galois
extension B/A with Galois group G gives rise to an element in the Picard group of
the group ring A[G].

Example 44. Complex periodic K-theory, KU, is a Galois extension of the real
periodic K-theory spectrum KO, whose Galois group is C2, the cyclic group of
order 2 (see [21] or [3, example 1.4.8]). Therefore we obtain

KU ∈ Pic(KO[C2]).

ButKU∗ is not projective overKO∗, therefore it cannot be projective overKO∗[C2].
In particular, the coefficient module KU ∗ is not an element in Pic(KO∗[C2]).
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[24] Strickland, N. P.: On the p-adic interpolation of stable homotopy groups, Adams

Memorial Symposium on Algebraic Topology, 2 (Manchester, 1990), In: Ray N.,
and Walker, G. (eds) London Math. Soc. Lecture Note Ser. Cambridge University
Press 176, 45–54 (1992)

[25] Strickland, N. P.: Products on MU -modules, Trans. Amer. Math. Soc. 351,
2569–2606 (1999)


