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The BRST setting

Algebras and derivations

Homology and cohomology

Differentials modulo differentials

Homological perturbation theory



The situation

Consider a surface Σ in a manifold M (“phase space”). View
C∞(Σ) as the zeroth homology of a differential graded algebra
(A, δ); here A is built out of C∞(M) and δ is the Koszul-Tate
differential. Consider a differential d on C∞(Σ), such that its
homology corresponds to the smooth functions on Σ that are
constant along gauge orbits. Then d is called the longitudinal
exterior derivative. Lift d to a derivation on A.

HPT: Often, there is a differential s on A with

s = δ + d + higher term,

such that the homology of s still gives the gauge invariant
functions.
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Examples of superalgebras

I Consider A = C[x1, . . . , xm]⊗ Λ(y1, . . . , yn) where the xi are
even degree generators and the yi are in odd degrees.

I Then A splits as A = A0 ⊕ A1, where A0 contains all elements
of even degree and A1 collects odd degree elements. We have
A0A0 ⊂ A0, A1A0 ⊂ A1 ⊃ A0A1 and A1A1 ⊂ A0. We define
the parity of a homogeneous element z ∈ A to be

ε(z) =

{
0 z ∈ A0

1 z ∈ A1.

I The algebra A is associative and it is supercommutative: we
have

uv = (−1)ε(u)ε(v)vu for all u, v .
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Endomorphisms of super-vector spaces

I Let V = V0 ⊕ V1 be a super-vector space over C.

For
homogeneous elements x ∈ V we define the parity to be

ε(x) =

{
0 x ∈ V0

1 x ∈ V1

I The endomorphism vector space of V , End(V ) inherits a
Z/2Z-grading from V . If f ∈ End(V ), then ε(f ) is
determined if

ε(f (x)) = ε(f ) + ε(x) mod 2

for all homogeneous x ∈ V .

I Thus End(V ) = End(V )0 ⊕ End(V )1. The Z/2Z-grading is
compatible with composition:

ε(f2 ◦ f1) = ε(f2) + ε(f1) mod 2
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Derivations

II For two endomorphisms f1, f2 of V we define

[f1, f2] = f1 ◦ f2 − (−1)ε(f1)ε(f2)f2 ◦ f1.

This product satisfies a graded version of anti-symmetry and
of the Jacobi identity. (End(V ), [−,−]) is a graded
Lie-algebra.

I Let A be a supercommutative, associative algebra. Consider
endomorphisms D ∈ End(A) that satisfy the Leibniz rule

D(xy) = xD(y) + (−1)ε(D)ε(y)D(x)y .

Such D are derivations and if D1,D2 are derivations, then so
is [D1,D2].

I We denote by Der(A) the graded sub-Lie algebra of End(A).
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Differentials and internal gradings

I Let A be again a supercommutative, associative algebra and
D ∈ Der(A). We call D a differential on A, if ε(D) = 1 and
D2 = 0. Note, that 2D2 = [D,D].

I Assume, that A has an additional internal grading
A =

⊕
n∈J An with J = N0 or Z.

I Then An = An
0 ⊕ An

1. We want that AnAm ⊂ An+m and that
the unit of the multiplication is contained in A0.

I For a homogeneous element x ∈ An we denote deg(x) = n.

I End(A) and Der(A) inherit an internal grading from A via:

deg(f (x)) = deg(f ) + deg(x).

I Example: the degree derivation N is defined as

N(x) := deg(x)x .

Note, ε(N) = 0 = deg(N).
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Cohomology of an algebra wrt a differential

I For A as above we assume that the differential D has internal
degree one, i.e.,

deg(D(x)) = 1 + deg(x)∀ x .

I The n-th cohomology of A with respect to D is then defined as

Hn(A,D) :=
ker(D : An → An+1)

im(D : An−1 → An).

I H∗(A,D) =
⊕

n∈J Hn(A,D) is an algebra again.
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Resolutions

I Let A be a supercommutative, associative algebra as before. A
resolution of A is an N0-graded supercommutative, associative
algebra A with a differential δ of internal degree −1 such that

H∗(A, δ) =

{
0 ∗ 6= 0
A ∗ = 0

I The internal degree of A is called resolution degree and
abbreviated by r .

I Baby-example: Consider the polynomial algebra A = C[x ] on
one generator x in degree zero. Let A = C[x , z ]⊗Λ(P) be the
supercommutative associative algebra with the following data:
r(x) = r(z) = 0, r(P) = 1, ε(P) = 1 ε(x) = ε(z) = 0. We
define the differential δ on the generators as δ(x) = 0 = δ(z)
and δ(P) = z . As δ is a derivation, this defines it on A.

I Then in homology, P kills the generator z and (A, δ) is a
resolution of A = C[x ].
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The real world

I Let Σ be a surface that’s embedded in a manifold M. (M is
often called P for phase space.)

I Build A = C[Pα]⊗ C∞(M) and cook up a differential δ in
such a way that the Pα kill all functions in C∞(M) that
vanish on Σ and such that A has no higher homology.

I Then A = H0(A) ∼= C∞(Σ). That is the typical input for
homological perturbation theory. Bahns and Ribeiro will deal
with actual examples in their talk.
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Cohomology of Der(A) wrt a differential

I Let A be as above and D ∈ Der(A) a differential.

I We call a derivation D ′ D-closed, if

[D ′,D] = 0.

We call a derivation D ′ D-exact, if there is a derivation D ′′

such that
D ′ = [D ′′,D].

I D-exact derivations are also D-closed. The Jacobi-identity
implies that D-closed derivations are a sub-Lie algebra of
Der(A) and that D-exact derivations form a Lie-ideal in the
Lie algebra of D-closed derivations.

I We define the cohomology of Der(A) with respect to D to be

H∗(D) :=
D-closed derivations

D-exact derivations

Here, the grading ∗ corresponds to the degree of the
derivations.
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Differentials modulo differentials

I Let δ ∈ Der(A) be a differential of internal degree 1. We
consider its homology H∗(A, δ) and abbreviate this to H∗(δ).

I Let d be a derivation with ε(d) = 1. Assume d has internal
degree one, satisfies

dδ + δd = 0

and d2 is δ-exact, i.e., there is a derivation D such that

d2 = [D, δ].

I Then d induces a differential (which we still call d) on H∗(δ).
We denote the cohomology of d on H∗(δ) by H∗(d |H∗(δ))
and call d a differential modulo δ.
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Elements in H∗(d |H∗(δ))

I What is a class in H∗(d |H∗(δ))? We need a δ-closed element
x (i.e., δ(x) = 0), that is d-closed modulo the image of δ.
Thus, there is an element y , such that d(x) = δ(y).

I The class of x doesn’t change if we modify x and consider

x ′ = x + d(u) + δ(v)

for some u with δ(u) = 0.
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THE example

Let s be a differential on some supercommutative associative
algebra A and let us assume that there is yet another internal
N0-grading on A (e.g. a resolution grading). Expand s with
respect to this additional grading, and assume this gives

s = s(−1) + s(0) + s(1) + . . .

such that the (new) degree of s(i) is i . Call s(−1) δ and s(0) d .
Expand the equation s2 = 0 up to the new internal degree 0. For
degree −2 we obtain δ2 = 0, i.e., δ is a differential. The terms in
degree −1 are δd + dδ and the ones in degree zero are
δs(1) + d2 + s(1)δ. Therefore d is a differential modulo δ with
d2 = −[δ, s(1)].
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Question behind homological perturbation theory

I We considered the example of a differential s that we could
expand with respect to some suitable internal grading. We
were able to conclude that from this input the low degree
terms of s contain the data of a differential δ and a
differential relative to δ, d .

I One feature of homological perturbation theory (HPT) is to
investigate the converse question. Given a differential δ and a
differential relative to δ, d ,
Is there a suitable grading and a differential s, such that we
can expand s as

s = δ + d + higher degree terms?

In this generality, the answer is NO. But in BRST situations
things will work.
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The setting

I Throughout we will assume that there is a resolution (A, δ) of
our supercommutative, associative algebra A = H0(A, δ), so
we will drop A and A from the notation (most of the time). It
is common to denote A by H0(δ).

I Assume we have a differential modulo δ, d , such that s(1) is a
derivation of resolution degree 1 with

d2 = −[δ, s(1)].

Then r(d) = 0. The derivation defines an internal degree if
we declare deg(d) = 1. We assume that δ doesn’t change the
d-degree, thus deg(δ) = 0.

I Define the total or ghost grading as

gh(x) := deg(x)− r(x).

Then we have

gh(δ) = 0− (−1) = 1, gh(d) = 1− 0 = 1.
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Main theorem of HPT

In the setting above assume in addition that the homology of the
Lie-algebra of derivations with respect to the differential δ is trivial
but in degree zero, i.e., H∗(δ) = 0 for all ∗ 6= 0.

a) Then there is a differential s with gh(s) = 1 such that

s = δ + d +
∑
k≥1

s(k)

with r(s(k)) = k and gh(s(k)) = 1.

b) Any such differential s has the property that its cohomology is
isomorphic to the cohomology of d on A:

Hk(A, s) ∼= Hk(d ,A = H0(δ)).

Remark: The differential s is highly non-unique.
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Proof of existence

I We have the starting terms of the differential we want to
build: δ, d and s(1). Thus we have the terms up to resolution
degree 1. If we consider s1 := δ + d + s(1), then we know that
all terms of resolution degree up to zero vanish in s2

1 . This is
the start of our inductive construction.

I If we have built s up to resolution degree n,

sn = δ + d + s(1) + . . . + s(n),

then we assume that there are no terms of resolution degree
less than n in s2

n . Denote 2s2
n by

2s2
n = rn + rn+1 + . . .

where the rm are the terms of resolution degree m in s2
n .

I We know that δ, d and s(1) are derivations, so the higher s(k)

are derivations as well and so is sn. Note, that 2s2
n = [sn, sn],

because all summands in sn have parity ε(s(k)) = 1.
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I We have to show that we can add a term s(n+1) to sn that
will leave only terms of resolution degree higher than n in
(sn + s(n+1))2.

I Expanding the term [sn + s(n+1), sn + s(n+1)] gives

2[δ, s(n+1)] + rn + terms of higher resolution degree :

[sn, sn] + [sn, s
(n+1)] + [s(n+1), sn] + [s(n+1), s(n+1)]

= rn + rn+1 + . . . + [δ, s(n+1)] + [d , s(n+1)] + . . .

+ [s(n+1), δ] + [s(n+1), d ] + . . . + [s(n+1), s(n+1)]

I We claim that solving 2[δ, s(n+1)] + rn = 0 is equivalent to
showing that [δ, rn] = 0
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We can apply [δ,−] to 2[δ, s(n+1)] + rn = 0 an obtain

2[δ, [δ, s(n+1)]] + [δ, rn] = 0.
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Proof that s respects cohomology.

I Let x be an element of a fixed ghost degree, say k. Expand x
according to resolution degree

x = x (0) + x (1) + . . .

with r(x (n)) = n. Define π as π(x) = x (0).

I In s(x) the term of resolution degree zero is d(x (0)) + δ(x (1)).
Therefore for a cycle x , π(s(x)) is equivalent to d(x (0)) up to
something in the image of δ and thus π induces a well defined
map

π : Hk(A, s) → Hk(d ,H0(A, δ)) = Hk(d ,A).

I We claim that π induces an isomorphism. Surely
π(x)π(y) = x (0)y (0) = xy (0) = π(xy) and π is additive. We’ll
prove surjectivity and skip injectivity because it’s the same
trick anyway.
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I If x (0) is a representative in Hk(d ,H0(A, δ)) then there is an
x (1) with dx (0) + δx (1) = 0. Thus s(x (0) + x (1)) starts in
resolution degree 1.

I Assume that we constructed yn = x (0) + . . . + x (n) such that
syn starts with terms in resolution degree n, say

syn = tn + tn+1 + . . . with r(ti ) = i .

I The equation s2yn = 0 has δtn as term of lowest resolution
degree n − 1 and hence δtn = 0. But H∗(A, δ) = 0 in positive
degrees and therefore there is an element x (n+1) with

tn = −δx (n+1).

That’s it!
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