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HOCHSCHILD AND CYCLIC HOMOLOGY
VIA FUNCTOR HOMOLOGY

By T. PIRASHVILI' and B. RICHTER?

Abstract

The descriptions of Hochschild and cyclic homology of commutative
algebras via homological algebra in functor categories have proved their
importance ([4]). In this paper we extend this approach to associative
algebras and provide an interpretation of Hochschild and cyclic homology
as derived functors of tensor products in appropriate categories of functors.
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1 Preliminaries and the main result

1.1 Introduction

The aim of the present paper is to show that Hochschild homology and
cyclic homology of any associative algebra in any characteristic can be
described via homological algebra of functor category over the category
of non-commutative sets constructed by Fiedorowicz and Loday [2]. Our
results should be considered as a different version of the theorem of Connes
[1], where cyclic (co)homology is also described via functor (co)homology,
but in the category of cyclic modules. Our results and ideas are non-
commutative versions of the recent development of commutative algebra
homology via functor homology given in [4], [5], [6] and [7].
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1.2 Category of non-commutative sets

We introduce the category F(as), which we call the category of non-
commutative sets. Lemma 1.1 shows that this category is isomorphic to
the category AS introduced by Fiedorowicz and Loday in [2] (see also [3]).
Objects of the category F(as) are finite sets

[n] ={0,...,n}, n>0.

A morphism [n] — [m] in F(as) is a map f : [n] — [m] together with a
total ordering of the preimages f~1(j) for all j € [m]. If f : [n] — [m] and
g : [m] — [k] are morphisms in F(as), then the composite of g and f as
a map is ¢gf, while the total ordering in (gf)~(i), ¢ € [n] is given via the
ordered union of ordered sets:

@nH@= [ 17O
J€971(4)
Clearly there is a forgetful functor F(as) — F. Here F denotes the cate-
gory of finite sets. Objects of the category F are still the sets [n], n > 0,
while morphisms in F are just set maps.

We let T'(as) (resp. I') be the subcategory of F(as) (resp. F) whose
morphisms f : [n] — [m] preserve the zero element, that is f(0) = 0.
Again, there is a forgetful functor I'(as) — T.

If g : [n] = [m] is an order preserving map (in the usual ordering of [n]
and [m]) then the restriction of the total ordering of [n] to g 1(i),i € [m]
allows us to consider g as a morphism in F(as). In this way one obtains
a functor A — F(as), which is the identity on objects and an inclusion
on morphisms. Here A is the standard category of simplicial topology:
Objects of A are the sets [n], n > 0, while morphisms are non-decreasing
maps. Thus one can identify A with a subcategory of F(as).

A morphism of the category F(as) is called injective (resp. bijective,
surjective) if it so as a set map. Clearly the forgetful functor F(as) — F
is bijective on injective morphisms. In particular any bijection [n] — [n] is
a morphism in F(as).

Lemma 1.1 Any morphism f : [n] — [m] in F(as) has a unique decom-
position g o h, where h is a bijection and g is a morphism in A.

PROOF. It is enough to observe that there exist a unique order preserving
map g : [n] — [m] such that

Card(g™" () = Card(f71(s), i € [m]

and for this g there exists a unique bijection h with f = g o h. Conversely,
if f = g o h with bijective h, then for each i € [n] the number of elements
in g~'(i) and f~!(i) are the same and the lemma is proved. O

If f: [n] — [m] is a morphism in F(as) and f = go h as in lemma 1.1
then we write g = u(f) and h = w(f).
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Corollary 1.2 The symmetric group ¥n4+1 acts freely on

Hom}'(as)([n]a [m])

and the set of orbits can be identify with Homa([n], [m]) via the map f —
w(f)-

Another consequence of lemma 1.1 is that the category F(as) is isomorphic
to the category AS considered in [3] and [2].

1.3 Associative algebras as functors on non-com-
mutative sets

Let A be an associative and unital algebra over a commutative ring K with
unit and let M be an A-bimodule. We let

L(A,M) :T'(as) — mod

and
L(A, A) : F(as) — mod

be the functors given on objects by [n] — M ® A®" and [n] — A®(+D)
respectively. Here mod denotes the category of K-modules. In order to
describe the action of morphisms on £(A, M) and L(A, A), we need some
additional notation. Let I be the same set as [k] but the elements may
be ordered differently and let a; € A,i =1,...,k and ay € M. Then we
denote by er ;7 a; the product of the elements a; according to the ordering
in I. For a morphism f : [n] — [m] in I'(as), the action of f on L£(A4, M) is
given by
fila® - ®ap) : =by® - ® by,

where b; = H)f(i): ca;, j =0,...,n. Moreover for M = A the same for-
mula shows that £(A4, A) factors through F(as). One observes that if A
is commutative and M is a symmetric A-bimodule the functor £(A, M)
factors through the category I', while the functor £(A, A) factors through

the category F.

1.4 Non-commutative circle

Before we define the non-commutative circle, let us recall the construction
of the smallest simplicial model of the circle. Consider the finite pointed
simplicial set C : A°? — I which assigns [n] to [n]. The face and degen-
eracy maps in the simplicial pointed set C' are given as follows. The map
si : [n] = [n + 1] is the unique monotone injection, whose image does not
contain i + 1, while d; : [n] — [n — 1] is given by
g if <4,
d;(7) = i if j=i<n, resp. 0 if j=i=mn
j—1 if j>i.
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We claim that C considered as a pointed simplicial set is a simplicial model
of the circle. Indeed, it is clear that 0 € [0] and 1 € [1] are non-degenerate
simplices. The first one is zero-dimensional and the second one is one-
dimensional. On the other hand, if j € [n] and n > 2, then j = so(j — 1)
provided j > 1. Similarly 0 = s9(0) and 1 = s1(1), which shows that all
other simplices are degenerate and hence the geometric realization of C' is
a 1-sphere.

The functor C fits in the commutative diagram (see page 221 of [3],
with slightly different notation):

AP ——> ACP
le |
T F

where I' = F and A%? — AC are inclusions. Here AC is the category
constructed by A. Connes, with the property that contravariant functors
from AC to mod are cyclic objects in mod (see Section 6.1 of [3]).

The following important observation was made by Loday (see Exercise
6.4.1 on page 222 of [3]). The functor C' : A°? — T has a canonical
lifting ¢ : A% — T(as). So the non-commutative circle is the simplicial
object in I'(as), which is [n] in dimension n. Since any injective map has
a unique lift in T'(as), we have only to define the face maps. If i < n then
d; 1(j) is a singleton for all j except j = i. We define the total ordering
on d;'(i) = {i,i + 1} by declaring that ¢ < i + 1. Since d;'(j) is a
singleton for all j except j = 0 we need only to define the total ordering
on d;!(0) = {0,n}, which is now given by n < 0. It is tedious, but
straightforward to check that in this way we get in fact a simplicial object
in I'(as). Moreover this simplicial object is compatible with the unique lift
of t, : [n] = [n], which is given by ¢,(i) =i+ 1 for i < n and ¢,(n) = 0.
Hence C is indeed a cyclic object in F (as).

1.5 Definition of Hochschild and cyclic homology
of functors

Now we define the Hochschild homology H,(F) of a functor F' : I'(as) —
mod as the homotopy of the simplicial module F o C. Similarly the cyclic
homology HC,(T') of a functor T' : F(as) — mod is defined as the cyclic
homology of the cyclic module T o C. Of course, for such T' we can also
define the Hochschild homology of T' as the Hochschild homology of the
composite functor

I'(as) C F(as) — mod.

These definitions generalize the classical definition of Hochschild and
cyclic homology of associative algebras as follows. Let A be a unital as-
sociative algebra and let M be an A-bimodule. One observes that the
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simplicial module £(A, M) o C is exactly the standard Hochschild complex
of A with coefficients in M. Hence

H.(L(A, M)) = H,(A, M) and HC,(L(A, A)) = HC,(A).
1.6 Functor homology

For any small category C we denote by C-mod the category of all covariant
functors from C to mod. Similarly mod-C denotes the category of con-
travariant functors from C to the category of K-modules. The categories
C-mod and mod-C are abelian categories with sufficiently many projective
and injective objects. Projective generators of the category C-mod (resp.
mod-C) are the functors C¢ (resp. C.), ¢ € C, where ¢ € Ob(C) and

C¢: = K[Hom¢(c,—)] and C.: = K[Hom¢(—,c)], c € C.

Here K[S] denotes the free K-module generated by a set S.
If F € C-mod and T' € mod-C one defines a module T' ®¢ F as a
quotient of P ., T(c) ® F(c) modulo the relation

" (z) @y =1 ® ax(y).

Here a : ¢ — ¢ is a morphism in C, z € T(¢') and y € F(c). It is well
known (see Section 16.7 of [8]) that the bifunctor

—®c — : (mod — C) x (C —mod) — mod

is right exact with respect to both variables and preserves sums. It is also
important to note that

T®cC°2T(c) and C.®c F = F(c).

Moreover the derived functors of — ®c — with respect to each variable are
isomorphic and we will denote the common value by Tor$(—, —).

Let us return to the category of non-commutative sets F(as). For
simplicity we will write P, and P™ instead of F(as),, and F(as)". Similarly,
we write P" and P, instead of T'(as)™ and T'(as),.

1.7 The functor b

The morphism d; : [n] — [n—1] of F(as) yields a natural transformation
P, — P,_1, which is still denoted by d;. We define the contravariant func-
tor b as the cokernel of the morphism d = dy—d; : P, — Py. We claim that
the evaluation of b on the set [m] can identified with the free K-module
spanned on all total orderings on {1,...,m}. Indeed, the generators of
Py([m]) are morphisms of non-commutative sets [m] — [0] and this is the
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same as total orderings of [m]. Similarly, generators of P;([m]) are mor-
phisms of non-commutative sets [m| — [1] and can therefore be identified
with partitions of [m] into two disjoint subsets (&g, £1) together with a total
ordering on each of them. The map d maps (&,&1) to & [[& — & 1] o,
where || means the ordered union of ordered sets. Therefore the cokernel
of d consists of equivalence classes of total orderings of the set [m] and each
equivalence class contains exactly one total ordering of [m] with minimal
element 0 and hence the claim is proved.

We let b be the restriction of b on I'(as). Since the morphisms d; : [n] —
[n—1] respect 0 they yield a natural transformation: d; : P, — P, 1. Thus
we can form the cokernel of the map d = dy —d; : P, — P,. We claim that
this is isomorphic to the functor b. Indeed, we have Py([m]) = Py([m]),
thus the evaluation of the cokernel on [m] can identified with the free K-
module spanned by the equivalence classes of total orderings of [m]. The
equivalence relation is similar to the one above. The only difference is the
that now partitions (&g, &1) of [m] satisfy the property 0 € &y. But this has
no effect on the quotient.

1.8 The main theorem

The main results of the paper are the identifications of Hochschild and
cyclic homology of functors as derived functors of the tensor product with
b resp. b.

Theorem 1.3 For functors F : T'(as) — mod and T : F(as) — mod one
has natural isomorphisms

H.F = Tor,®(b,F) and Tor®(b,T) = HC.(T).

PrROOF. We will use the well-known axiomatic characterization of Tor
functors. Thanks to Section 1.7, one has an exact sequence

PP —>b—0

in mod-I'(as). Tensoring with ' and using the isomorphism P, ®r(as) I =
F([7]) one obtains that the first isomorphism in question holds in dimension
zero. Clearly, the functors /' +— H,F form an exact connected sequence of
functors and it is enough to show that H,F vanishes in positive dimensions
for any projective F.. Thus one only needs to consider functors like F' = P,
Propostion 2.2 below gives the result. Similarly Propostion 2.5 below shows
that the same argument proves the second isomorphism as well, provided
we start with the exact sequence

PL—-FP—>b—0

constructed in Section 1.7. O
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2 Propositions 2.2 and 2.5

In order to prove the statements needed for the proof of theorem 1.3 we
introduce three families of auxiliary simplicial sets X (k), Z (k) and Y (k)
for k£ > 0.

2.1 The simplicial set X (k).

Let X (k) be the composite of C : A% — I'(as) and Homp (56 ([k] , —) :
I'(as) — Sets :
X (k) : A? — T'(as) — Sets.

Proposition 2.1 The simplicial set X (k) is isomorphic to the disjoint
union of the k! copies of the standard k-dimensional standard simplez A*.

PrROOF. We will use extensively the fact that the symmetric group ¥ can
be identified with Autp(,s)([n],[n]). Thus it acts on Homp,g ([n], [m]) via
precomposition. Thanks to Corollary 1.2 this action is free and hence ¥
acts freely on X (k).

The zero simplices of X (k) are the maps in I'(as) from [k] to [0]; hence
they correspond to total orderings of [n]. The one-dimensional simplices
are the maps from [k] to [1], thus they consist of a partition of [k] say (£o,&1)
with a given ordering in every part ; of the partition. The boundary maps
take such elements to the fusion of the partition but with different orderings
(see Section 1.7). Therefore given a zero simplex iy < ... < i every zero
simplex with a cyclic variation of this ordering is in the same component
and all other elements are not connected to ig < ... < ig. Therefore any
connected component contains exactly one total ordering with minimal
element 0. Thus we can identify the set of connected components with ¥
or equivalently with the set of total orderings of the set {1,...,k}.

Furthermore, the induced action of ¥ on the set of connected compo-
nents of X (k) is free and transitive. Thus all connected components are
isomorphic to each others. Moreover the set of vertices of each component
has exactly (k+1)!/k! = (k+1) elements. On the other hand an n-simplex
of X (k) is non-degenerate if the corresponding morphism [k] — [n] is sur-
jective. Therefore X (k) is k-dimensional and the highest-dimensional non-
degenerate simplices correspond to isomorphisms [k] — [k] in T'(as)([k],
i.e., to elements in ;. Any other non-degenerate simplex is a (maybe
iterated) face of a such a permutation. Furthermore, the action of ¥ via
precomposition on the set Xy C X (k)i is free and transitive and we can
conclude that in every component there is exactly one highest-dimensional
non-degenerate simplex.

We have only to prove that the connected component X corresponding
to the standard ordering of [k] is isomorphic to the standard k-simplex.
To this end, we let z be the identity map [k] — [k], which is the unique
highest-dimensional non-degenerate simplex of X. Then there is a unique
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morphism of simplicial sets A¥ — X which takes the unique highest-
dimensional non-degenerate simplex of A¥ to z. Obviously this map is
surjective. It is also injective, because the induced map on vertices is
bijective. O

Proposition 2.2 For any n > 0 one has
Hi(P,) = 0,i>0
HO(Pn) = B([n])

PROOF. Since P, is the free K-module on Homp(z)([n] , —), we see that
H,.(P,) is nothing but the homology of the simplicial set X (n) with coef-
ficient in K and the statement follows from Proposition 2.1.

2.2 The simplicial set Z(k)

We introduce a simplicial set Z(k), which can be described as follows. The
set of m-simplices of Z(k) is Homa([k],[m]). So, in some sense Z(k) =
Homn ([k], —) is the dual of A¥ = Homa (—,[k]). The degeneracy maps
si + Z(K)m — Z(k)m+1, @ = 0,...,k are induced from the degeneracy
maps s; : [m] = [m + 1] in the simplicial set C. Since the degeneracy
maps are non-decreasing, they indeed induce well-defined maps Z(k),, —
Z(k)m+1- The same is true for the face maps dy,...,dn—1. Only the last
face map d,, : [m] = [m — 1] is not monotonic. In order to define the map
dm : Z(k)m — Z(k)m—1 we need a different description of the set Z(k),,.
Let f : [k] — [m] be a non-decreasing map and let a; be the number of
elements in f (i), i =0,...,m. Thenk+1=ag+--++a, and a; > 0. It
is clear that in this way one obtains a one-to-one correspondence between
the elements of Z(k),, and (m + 1)-tuples (ag, . .., an) with the properties
a; > 0 and ag + --- + a,, = k + 1. Having this identification in mind, one

sees that for the maps s; and dj, ¢ = 0,...,m and 0 < j < m one has
Si(a'07"'aam) = (O‘Oa"'aa’iaoa"'aa’m)a 0<i<m
di(@ao,---,am) = (ag,..-,a;+ ajq1,.-.,am), 0<j < m.

We now define

dm(aOa"' 7am) = (am + ap, - .. 7a'm)'

In this way we get a well-defined simplicial set Z(k). Clearly Z(0) is
isomorphic to the circle C. Actually the simplicial set Z(k) is a cyclic
set, where the cyclic structure is compatible with the corresponding cyclic
structure on C and it is given by

t(a0a s ,G,m) = (amaa'(); s 7am—1)-

We let | Z(k) | be the cyclic geometric realization of Z(k) (see page
235 of [3]), which is nothing but the Borel construction of the geometric
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realization of Z(k) with respect to the natural S'-action induced by the
cyclic structure:
| Z(k) |“:= ES'x g1 | Z(K) | .

Let us also recall (see loc.cit.) that the cyclic homology of the cyclic module
K[Z(k)] is isomorphic to the $'-equivariant homology HS' (| Z(k) |, K) of
| Z(k) |- In other words

HC.(K[Z(R)]) = H.(| Z(k) |, K).

Lemma 2.3 i) The space | Z(k) | is weakly homotopy equivalent to the
circle.
ii) The cyclic realization | Z(k) |Y has the same homotopy type as

K(Z/(k+1)Z,1).

PRrROOF. i) Since Z(k)o is a singleton, we see that Z(k) is connected.
The 1-simplices of Z(k) are just pairs (7,j) of non-negative integers with
i+ j = k+ 1, while the 2-simplices are triples (a,b,c) of non-negative
integers with a +b+ ¢ = k + 1. Hence the fundamental group is generated
by such pairs (4, ) modulo the relations

(a+0b,¢)(c+a,b) = (a,b+c).

It is obvious that this group is an infinite cyclic group generated by (k, 1).
Let F': C — Z(k) be the unique simplicial map, which sends the unique
non-degenerate 1-simplex to (k,1). By our description of the fundamental
group it is clear that f induces an isomorphism on ;. We have to show
that f induces an isomorphism on homology with local coefficients. Let M
be a module over the ring Z[t,¢~!]. The homology of Z (k) with coefficients
in M is defined as the homology of the reduced chain complex C,(Z(k), M),

where
Co(Z(k),M)= € M.
(ag,...,an)
Here (ag,...,ay) corresponds to a non-degenerate simplex of Z(k), that

isag >0,a;, >0,2>1and ag+ -+ +a, = k+ 1. A typical element of
Cn(Z(k), M) is denoted by (ag,...,an;x), where z € M. The boundary
map d: C,(Z(k),M) — C,_1(Z(k), M) is given by

d(ag,-.-,an;z) = (ag + a1,...,a,; 1)
n—1
+ Z(—l)z(ao, ey @it Qig1, e, Uy T)
i=1

+(—=1)"(an + ag,---,an—1;t*"x).

We let F;C,, be the subgroup of C,(Z(k), M) corresponding to the sum-
mands (ag, - .. ,a,) with ag > k41 —4. Then the boundary formula shows
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that F;C, is a subcomplex of Cy(Z(k), M). In this way we obtain a filtered
complex

FC, Cc FC, C--- C F,C, = C*(Z(k),M)

Clearly
FCi=(A+ A+ 0« ---)

with only one nontrivial boundary map given by the multiplication on
(1 —t¢). Thus it suffices to prove that homology of F;C,/F;_1C, is zero for
7 > 2. We have
FiCo/FiiCn= P M
(k+1—i,a1,...,an)

where
ai+---+a, =1.

The boundary map
§: FCp/Fy 1Cp — FiCy 1/F; 1Cp 1

is induced by d. One observes that the first and last summand of d lie
in F; 1C, 1, hence they disappear in §. In particular § does not de-
pend on the Z[t,t~!]-module structure on M. We let h : F;C,,/F; 1Cp, —
F;Cy41/F;—1Cpy1 be the map given by

h(ag,a1,...,an;2) =0, if a; =1

and
h(ag,a1,...,an;x) = —(ag,l,a1 — 1,...,an;z) if a1 > 1.

here ag = k+1 —4 and i > 2. Then hd + dh = 1 and part i) is proved.

ii) By part i) we know that the integral homology of Z(k) is Z in
dimensions 0 and 1 and is zero in dimensions > 1. This fact can be seen
also by noting that the simplicial abelian group Z[Z (k)] is isomorphic to the
degree (k+1)-part of C.(Z[z], Z[z]). Here Ci(R, R) denotes the Hochschild
complex of a ring R and the grading of C,(Z[z],Z[z]) corresponds to the
grading of the polynomial ring Z[z] with deg(z) = 1. It is a classical fact
that the Hochschild homology of Z[z] is zero in dimensions > 1, while

Ho(Z[z], Z[z]) = Z[z], H1(Z[z], Z[x]) = Z[x]dx.

Hence the degree (k + 1) part of it is zero in dimensions > 1 and is Z
in dimensions 0 and 1, spanned respectively by zF*! and zFdz. There-
fore the same is true for the integral homology of Z(k). Moreover this
shows also that Connes’ homomorphism B : Ho(Z(k),Z) — H1(Z(k),Z)
corresponding to the cyclic space Z(k) is the multiplication by (k + 1).
Therefore it follows from Connes’ exact sequence that the integral homol-
ogy of | Z(k) |Y is Z in dimension 0 and is Z/(k + 1)Z in odd dimensions.
All other homology groups vanish. Furthermore the fibration

St | Z(k) |=] Z(k) |V
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corresponding to the Borel construction shows that
mi(| Z(k) |¥Y) =0, if 1 #1,2
and one has an exact sequence
0—=m| Z(k) |Y) = Z —>Z — m(] Z(k) |¥Y) — 0.

As a consequence we see that m1(| Z(k) |%Y) is abelian and therefore it is
the same as the first homology of | Z(k) |, i.e. Z/(k + 1)Z. Hence the
map Z — Z is injective and we obtain mo(| Z (k) |¥Y) = 0.

a

2.3 A simplicial set Y (k)
Let Y (k) be the composite of C' and Hom z(56) ([K] , —)-
AC? — F(as) — Sets.
Clearly the cyclic structure on C yields a cyclic structure on Y (k).

Lemma 2.4 The underlying simplicial set of the cyclic set Y (k) is weakly
homotopy equivalent to the disjoint union of the k! copies of the circle.

PROOF. A similar argument as in Proposition 2.1 shows that the connected
components of the simplicial set Y (k) are in one-to-one correspondence
with ¥,. Thanks to Corollary 1.2 3,1 acts freely on

Hom z(as) (1], [m])

and the set of orbits can be identified with Homa ([n], [m]). Thus the action
of the group X1 C homg(,s)([k] , [k]) on Y (k) is free and the orbits form
a simplicial set, which is isomorphic to Z(k). Then the first part of Lemma
2.3 implies the result.

Proposition 2.5 The space | Y (k) |Y is homotopy equivalent to the dis-
crete space with k! points. Thus

HCi(Px) =0, i>0
and HCo(Py) = b([k]).
PROOF. The fibration
S' =Y (k) [=] Y (k) |

together with Lemma 2.4 shows that my(| Y (k) |%Y) is a set with k! elements.
Since the group X1 acts freely on Y (k) and orbits are Z(k) it follows that
Yk+1 acts also freely on | Y'(k) |V and orbits are | Z(k) |Y. Thus the result
follows from the second part of Lemma 2.3.

a

11
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