Applications of ring spectra to the geometry of flat bundles

Daniel A. Ramras Department of Mathematical Sciences, New Mexico State University

http://math.nmsu.edu/~ramras/

August 5, 2011

Daniel A. Ramras Applications of ring spectra to flat bundles

・ 同 ト ・ ヨ ト ・ ヨ ト

A principal U(n)-bundle $E \rightarrow M^m$ is flat if

• $E = (\widetilde{M} \times U(n))/\pi_1 M$ for some $\rho: \pi_1 M \to U(n)$,

or equivalently,

• *E* admits a *connection* with trivial curvature.

Chern–Weil Theory: *E* flat $\implies c_i(E)$ is torsion for all *i*.

Flat bundles are rare.

Given an S^k -family $\rho: S^k \to \text{Hom}(G, U(n))$, set $E_{\rho} = (S^k \times \widetilde{M} \times U(n))/\pi_1 M \to S^k \times M$

Definition: *k*-flat

A principal U(n)-bundle $E \rightarrow M^m$ is *flat* if

• $E = (\widetilde{M} \times U(n))/\pi_1 M$ for some $\rho: \pi_1 M \to U(n)$,

or equivalently,

• E admits a connection with trivial curvature.

Chern–Weil Theory: *E* flat $\implies c_i(E)$ is torsion for all *i*.

Flat bundles are rare.

Given an S^k -family $\rho: S^k \to \text{Hom}(G, U(n))$, set $E_{\rho} = (S^k \times \widetilde{M} \times U(n))/\pi_1 M \to S^k \times M$

Definition: *k*-flat

A principal U(n)-bundle $E \rightarrow M^m$ is *flat* if

• $E = (\widetilde{M} \times U(n))/\pi_1 M$ for some $\rho: \pi_1 M \to U(n)$,

or equivalently,

• E admits a connection with trivial curvature.

Chern–Weil Theory: *E* flat $\implies c_i(E)$ is torsion for all *i*. **Flat bundles are rare.**

Given an S^k -family $\rho: S^k \to \operatorname{Hom}(G, U(n))$, set $E_{\rho} = (S^k \times \widetilde{M} \times U(n))/\pi_1 M \to S^k \times M_{\rho}$

Definition: *k*-flat

A principal U(n)-bundle $E \rightarrow M^m$ is flat if

• $E = (\widetilde{M} \times U(n))/\pi_1 M$ for some $\rho: \pi_1 M \to U(n)$,

or equivalently,

• E admits a connection with trivial curvature.

Chern–Weil Theory: *E* flat $\implies c_i(E)$ is torsion for all *i*.

Flat bundles are rare.

Given an S^k -family $\rho : S^k \to \text{Hom}(G, U(n))$, set $E_{\rho} = (S^k \times \widetilde{M} \times U(n))/\pi_1 M \to S^k \times N$

Definition: *k*-flat

A principal U(n)-bundle $E \rightarrow M^m$ is flat if

• $E = (\widetilde{M} \times U(n))/\pi_1 M$ for some $\rho: \pi_1 M \to U(n)$,

or equivalently,

• *E* admits a *connection* with trivial curvature.

Chern–Weil Theory: *E* flat $\implies c_i(E)$ is torsion for all *i*.

Flat bundles are rare.

Given an S^k -family $\rho: S^k \to \operatorname{Hom}(G, U(n))$, set

 $E_{\rho} = (S^k \times \widetilde{M} \times U(n))/\pi_1 M \to S^k \times M.$

Definition: *k*-flat

A principal U(n)-bundle $E \rightarrow M^m$ is flat if

• $E = (\widetilde{M} \times U(n))/\pi_1 M$ for some $\rho: \pi_1 M \to U(n)$,

or equivalently,

• E admits a connection with trivial curvature.

Chern–Weil Theory: *E* flat $\implies c_i(E)$ is torsion for all *i*.

Flat bundles are rare.

Given an S^k -family $\rho : S^k \to \text{Hom}(G, U(n))$, set $E_{\rho} = (S^k \times \widetilde{M} \times U(n))/\pi_1 M \to S^k \times M.$

Definition: *k*–flat

A principal U(n)-bundle $E \rightarrow M^m$ is flat if

• $E = (\widetilde{M} \times U(n))/\pi_1 M$ for some $\rho: \pi_1 M \to U(n)$,

or equivalently,

• *E* admits a *connection* with trivial curvature.

Chern–Weil Theory: *E* flat $\implies c_i(E)$ is torsion for all *i*.

Flat bundles are rare.

Given an S^k -family $\rho: S^k \to \text{Hom}(G, U(n))$, set

$$E_{\rho} = (S^k \times \widetilde{M} \times U(n))/\pi_1 M \to S^k \times M.$$

Definition: *k*-flat

When is a class k-flat?

Definition: k-flat

 $x \in \widetilde{K}^{i}(M)$ (i = 0, -1) is <u>k-flat</u> if $\beta^{k}(x) \in \widetilde{K}^{0}(S^{2k-i} \wedge M)$ has the form $[E_{\rho}] - [E_{\psi}]$ for some S^{2k-i} -families ρ, ψ .

<u>Flat Realization Problem</u>: Given $x \in \widetilde{K}^i(M)$ (i = 0, -1), find the minimum k such that x is k-flat (could be $k = \infty$!).

A cohomological obstruction:

Theorem: (Baird–R., '11)

For every family $\rho: S^k \to \text{Hom}(G, U(n))$, the Chern classes $c_i(E_\rho)$ are torsion for i > k.

- If ρ is *smooth*, apply Chern–Weil Theory.
- All families are homotopic to smooth families. (Hard!!)

 $x \in \widetilde{K}^{i}(M)$ (i = 0, -1) is <u>k-flat</u> if $\beta^{k}(x) \in \widetilde{K}^{0}(S^{2k-i} \wedge M)$ has the form $[E_{\rho}] - [E_{\psi}]$ for some S^{2k-i} -families ρ, ψ .

<u>Flat Realization Problem</u>: Given $x \in \widetilde{K}^i(M)$ (i = 0, -1), find the minimum k such that x is k-flat (could be $k = \infty$!).

A cohomological obstruction:

Theorem: (Baird–R., '11)

For every family $\rho: S^k \to \text{Hom}(G, U(n))$, the Chern classes $c_i(E_\rho)$ are torsion for i > k.

- If ρ is *smooth*, apply Chern–Weil Theory.
- All families are homotopic to smooth families. (Hard!!)

 $x \in \widetilde{K}^{i}(M)$ (i = 0, -1) is <u>k-flat</u> if $\beta^{k}(x) \in \widetilde{K}^{0}(S^{2k-i} \wedge M)$ has the form $[E_{\rho}] - [E_{\psi}]$ for some S^{2k-i} -families ρ, ψ .

<u>Flat Realization Problem</u>: Given $x \in \widetilde{K}^i(M)$ (i = 0, -1), find the minimum k such that x is k-flat (could be $k = \infty$!).

A cohomological obstruction:

Theorem: (Baird-R., '11)

For every family $\rho: S^k \to \text{Hom}(G, U(n))$, the Chern classes $c_i(E_\rho)$ are torsion for i > k.

- If ρ is *smooth*, apply Chern–Weil Theory.
- All families are homotopic to smooth families. (Hard!!)

 $x \in \widetilde{K}^{i}(M)$ (i = 0, -1) is <u>k-flat</u> if $\beta^{k}(x) \in \widetilde{K}^{0}(S^{2k-i} \wedge M)$ has the form $[E_{\rho}] - [E_{\psi}]$ for some S^{2k-i} -families ρ, ψ .

<u>Flat Realization Problem</u>: Given $x \in \widetilde{K}^i(M)$ (i = 0, -1), find the minimum k such that x is k-flat (could be $k = \infty$!).

A cohomological obstruction:

Theorem: (Baird-R., '11)

For every family $\rho: S^k \to \text{Hom}(G, U(n))$, the Chern classes $c_i(E_\rho)$ are torsion for i > k.

- If ρ is *smooth*, apply Chern–Weil Theory.
- All families are homotopic to smooth families. (Hard!!)

 $x \in \widetilde{K}^{i}(M)$ (i = 0, -1) is <u>k-flat</u> if $\beta^{k}(x) \in \widetilde{K}^{0}(S^{2k-i} \wedge M)$ has the form $[E_{\rho}] - [E_{\psi}]$ for some S^{2k-i} -families ρ, ψ .

<u>Flat Realization Problem</u>: Given $x \in \widetilde{K}^i(M)$ (i = 0, -1), find the minimum k such that x is k-flat (could be $k = \infty$!).

A cohomological obstruction:

Theorem: (Baird-R., '11)

For every family $\rho: S^k \to \text{Hom}(G, U(n))$, the Chern classes $c_i(E_\rho)$ are torsion for i > k.

The proof involves two main steps:

• If ρ is *smooth*, apply Chern–Weil Theory.

All families are homotopic to smooth families. (Hard!!)

 $x \in \widetilde{K}^{i}(M)$ (i = 0, -1) is <u>k-flat</u> if $\beta^{k}(x) \in \widetilde{K}^{0}(S^{2k-i} \wedge M)$ has the form $[E_{\rho}] - [E_{\psi}]$ for some S^{2k-i} -families ρ, ψ .

<u>Flat Realization Problem</u>: Given $x \in \widetilde{K}^i(M)$ (i = 0, -1), find the minimum k such that x is k-flat (could be $k = \infty$!).

A cohomological obstruction:

Theorem: (Baird-R., '11)

For every family $\rho: S^k \to \text{Hom}(G, U(n))$, the Chern classes $c_i(E_\rho)$ are torsion for i > k.

- **1** If ρ is *smooth*, apply Chern–Weil Theory.
- All families are homotopic to smooth families. (Hard!!)

For a discrete group G, let $\operatorname{Rep}(G) = \coprod_n \operatorname{Hom}(G, U(n))$.

Definition: Deformation *K*-theory

 $\widetilde{K}_m^{\mathrm{def}}(G) = Gr[S^m, \mathrm{Rep}(G)]/Gr(\pi_0\mathrm{Rep}(G))$

<u>Observation</u>: $x \in K^i(BG)$ (i = 0, -1) is *k*-flat if and only if $\beta^k(x)$ is in the image of the **Atiyah–Segal map**

$$\widetilde{K}^{\mathrm{def}}_{2k-i}(G) \xrightarrow{\alpha_{2k-i}} \widetilde{K}^{-2k+i}(BG)$$

 $[\rho] - [\psi] \longmapsto [E_{\rho}] - [E_{\psi}](+ \text{ correction term})$

Note: Previous result \rightsquigarrow cohomological obstruction to surjectivity of α_k for $k \leq \mathbb{Q}cd(G) - 2$.

Goal: Study the Flat Realization Problem using a *ring spectrum* version of the Atiyah–Segal map.

イロト 不得 とくほ とくほとう

For a discrete group G, let $\operatorname{Rep}(G) = \coprod_n \operatorname{Hom}(G, U(n))$.

Definition: Deformation *K*-theory

 $\widetilde{K}_m^{\mathrm{def}}(G) = Gr[S^m, \mathrm{Rep}(G)]/Gr(\pi_0\mathrm{Rep}(G))$

<u>Observation</u>: $x \in K^i(BG)$ (i = 0, -1) is *k*-flat if and only if $\beta^k(x)$ is in the image of the **Atiyah–Segal map**

$$\widetilde{K}^{\mathrm{def}}_{2k-i}(G) \xrightarrow{\alpha_{2k-i}} \widetilde{K}^{-2k+i}(BG)$$

 $[\rho] - [\psi] \longmapsto [E_{\rho}] - [E_{\psi}](+ \text{ correction term})$

Note: Previous result \rightsquigarrow cohomological obstruction to surjectivity of α_k for $k \leq \mathbb{Q}cd(G) - 2$.

Goal: Study the Flat Realization Problem using a *ring spectrum* version of the Atiyah–Segal map.

ヘロト 人間 とくほとくほとう

For a discrete group G, let $\operatorname{Rep}(G) = \coprod_n \operatorname{Hom}(G, U(n))$.

Definition: Deformation K-theory

 $\widetilde{K}_m^{\mathrm{def}}(G) = Gr[S^m, \mathrm{Rep}(G)]/Gr(\pi_0\mathrm{Rep}(G))$

<u>Observation</u>: $x \in K^i(BG)$ (i = 0, -1) is *k*-flat if and only if $\beta^k(x)$ is in the image of the **Atiyah–Segal map**

$$\widetilde{K}_{2k-i}^{\text{def}}(G) \xrightarrow{\alpha_{2k-i}} \widetilde{K}^{-2k+i}(BG)$$
$$[\rho] - [\psi] \longmapsto [E_{\rho}] - [E_{\psi}](+ \text{ correction term})$$

<u>Note</u>: Previous result \rightsquigarrow cohomological obstruction to surjectivity of α_k for $k \leq \mathbb{Q}cd(G) - 2$.

Goal: Study the Flat Realization Problem using a *ring spectrum* version of the Atiyah–Segal map.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

For a discrete group G, let $\operatorname{Rep}(G) = \coprod_n \operatorname{Hom}(G, U(n))$.

Definition: Deformation K-theory

 $\widetilde{K}_m^{\mathrm{def}}(G) = Gr[S^m, \mathrm{Rep}(G)]/Gr(\pi_0\mathrm{Rep}(G))$

<u>Observation</u>: $x \in K^i(BG)$ (i = 0, -1) is *k*-flat if and only if $\beta^k(x)$ is in the image of the **Atiyah–Segal map**

$$\widetilde{K}^{\mathrm{def}}_{2k-i}(G) \xrightarrow{\alpha_{2k-i}} \widetilde{K}^{-2k+i}(BG)$$

 $[\rho] - [\psi] \longmapsto [E_{\rho}] - [E_{\psi}](+ \text{ correction term})$

<u>Note</u>: Previous result \rightsquigarrow cohomological obstruction to surjectivity of α_k for $k \leq \mathbb{Q}cd(G) - 2$.

Goal: Study the Flat Realization Problem using a *ring spectrum* version of the Atiyah–Segal map.

For a discrete group G, let $\operatorname{Rep}(G) = \coprod_n \operatorname{Hom}(G, U(n))$.

Definition: Deformation K-theory

 $\widetilde{K}_m^{\mathrm{def}}(G) = Gr[S^m, \mathrm{Rep}(G)]/Gr(\pi_0\mathrm{Rep}(G))$

<u>Observation</u>: $x \in K^i(BG)$ (i = 0, -1) is *k*-flat if and only if $\beta^k(x)$ is in the image of the **Atiyah–Segal map**

$$\widetilde{K}^{\mathrm{def}}_{2k-i}(G) \xrightarrow{lpha_{2k-i}} \widetilde{K}^{-2k+i}(BG)$$

 $[\rho] - [\psi] \longmapsto [E_{\rho}] - [E_{\psi}](+ \text{ correction term})$

<u>Note</u>: Previous result \rightsquigarrow cohomological obstruction to surjectivity of α_k for $k \leq \mathbb{Q}cd(G) - 2$.

<u>Goal</u>: Study the Flat Realization Problem using a *ring spectrum* version of the Atiyah–Segal map.

Let $\operatorname{Vect}_{\mathbb{C}} = \begin{cases} \operatorname{ObVect}_{\mathbb{C}} = \mathbb{N} \\ \operatorname{MorVect}_{\mathbb{C}} = \coprod_{n} U(n) \end{cases}$ denote the (topological) bipermutative category of Hermitian vector spaces.

 $\mathcal{R}(G) = \operatorname{Funct}(\underline{G}, \operatorname{Vect}_{\mathbb{C}})$ is the category of unitary *G*-rep's.

Definition: (Carlsson)

 $K^{\text{def}}(G) = \mathbb{K}(\mathcal{R}(G))$ is the K-theory spectrum of $\mathcal{R}(G)$.

 Elmendorf–Mandell, May: K^{def}(G) is a ring spectrum, and in fact a ku–algebra. (Note that ku = K(Vect_C)).

Theorem: (T. Lawson) The homotopy cofiber of the Bott map $\Sigma^2 K^{\text{def}}(G) \xrightarrow{\beta} K^{\text{def}}(G)$ is the spectrum $\mathbb{K} \Big(\coprod_n \text{Hom}(G, U(n))/U(n) \Big) =: R^{\text{def}}(G).$

• In many cases, $\Omega^{\infty} R^{\mathrm{def}}(G) \simeq \mathbb{Z} \times \mathrm{Hom}(G, U)/U.$

Let $\operatorname{Vect}_{\mathbb{C}} = \begin{cases} \operatorname{ObVect}_{\mathbb{C}} = \mathbb{N} \\ \operatorname{MorVect}_{\mathbb{C}} = \coprod_{n} U(n) \end{cases}$ denote the (topological) bipermutative category of Hermitian vector spaces.

 $\mathcal{R}(G) = \operatorname{Funct}(\underline{G}, \operatorname{Vect}_{\mathbb{C}})$ is the category of unitary *G*-rep's.

Definition: (Carlsson)

 $K^{\text{def}}(G) = \mathbb{K}(\mathcal{R}(G))$ is the K-theory spectrum of $\mathcal{R}(G)$.

 Elmendorf–Mandell, May: K^{def}(G) is a ring spectrum, and in fact a ku–algebra. (Note that ku = K(Vect_C)).

Theorem: (T. Lawson) The homotopy cofiber of the Bott map $\Sigma^2 K^{\text{def}}(G) \xrightarrow{\beta} K^{\text{def}}(G)$ is the spectrum $\mathbb{K} \Big(\coprod_n \text{Hom}(G, U(n)) / U(n) \Big) =: R^{\text{def}}(G).$

• In many cases, $\Omega^{\infty} R^{def}(G) \simeq \mathbb{Z} \times \operatorname{Hom}(G, U)/U.$

Let $\operatorname{Vect}_{\mathbb{C}} = \begin{cases} \operatorname{ObVect}_{\mathbb{C}} = \mathbb{N} \\ \operatorname{MorVect}_{\mathbb{C}} = \coprod_{n} U(n) \end{cases}$ denote the (topological) bipermutative category of Hermitian vector spaces.

 $\mathcal{R}(G) = \operatorname{Funct}(\underline{G}, \operatorname{Vect}_{\mathbb{C}})$ is the category of unitary *G*-rep's.

Definition: (Carlsson)

 $K^{\text{def}}(G) = \mathbb{K}(\mathcal{R}(G))$ is the K-theory spectrum of $\mathcal{R}(G)$.

 Elmendorf–Mandell, May: K^{def}(G) is a ring spectrum, and in fact a ku–algebra. (Note that ku = K(Vect_C)).

Theorem: (T. Lawson) The homotopy cofiber of the Bott map $\Sigma^2 \mathcal{K}^{def}(G) \xrightarrow{\beta} \mathcal{K}^{def}(G)$ is the spectrum $\mathbb{K}(\coprod_n \operatorname{Hom}(G, U(n))/U(n)) =: R^{def}(G).$

• In many cases, $\Omega^{\infty} R^{\operatorname{def}}(G) \simeq \mathbb{Z} \times \operatorname{Hom}(G, U)/U.$

Let $\operatorname{Vect}_{\mathbb{C}} = \begin{cases} \operatorname{ObVect}_{\mathbb{C}} = \mathbb{N} \\ \operatorname{MorVect}_{\mathbb{C}} = \coprod_{n} U(n) \end{cases}$ denote the (topological) bipermutative category of Hermitian vector spaces.

 $\mathcal{R}(G) = \operatorname{Funct}(\underline{G}, \operatorname{Vect}_{\mathbb{C}})$ is the category of unitary *G*-rep's.

Definition: (Carlsson)

 $K^{\text{def}}(G) = \mathbb{K}(\mathcal{R}(G))$ is the K-theory spectrum of $\mathcal{R}(G)$.

 Elmendorf–Mandell, May: K^{def}(G) is a ring spectrum, and in fact a ku–algebra. (Note that ku = K(Vect_ℂ)).

Theorem: (T. Lawson) The homotopy cofiber of the Bott map $\Sigma^2 K^{\text{def}}(G) \xrightarrow{\beta} K^{\text{def}}(G)$ is the spectrum $\mathbb{K} \Big(\coprod_n \text{Hom}(G, U(n)) / U(n) \Big) =: R^{\text{def}}(G).$

• In many cases, $\Omega^{\infty} R^{\mathrm{def}}(G) \simeq \mathbb{Z} \times \mathrm{Hom}(G, U)/U.$

Let $\operatorname{Vect}_{\mathbb{C}} = \begin{cases} \operatorname{ObVect}_{\mathbb{C}} = \mathbb{N} \\ \operatorname{MorVect}_{\mathbb{C}} = \coprod_{n} U(n) \end{cases}$ denote the (topological) bipermutative category of Hermitian vector spaces.

 $\mathcal{R}(G) = \operatorname{Funct}(\underline{G}, \operatorname{Vect}_{\mathbb{C}})$ is the category of unitary *G*-rep's.

Definition: (Carlsson)

 $K^{\text{def}}(G) = \mathbb{K}(\mathcal{R}(G))$ is the K-theory spectrum of $\mathcal{R}(G)$.

 Elmendorf–Mandell, May: K^{def}(G) is a ring spectrum, and in fact a ku–algebra. (Note that ku = K(Vect_C)).

Theorem: (T. Lawson) The homotopy cofiber of the Bott map $\Sigma^2 \mathcal{K}^{def}(G) \xrightarrow{\beta} \mathcal{K}^{def}(G)$ is the spectrum $\mathbb{K}\Big(\coprod_n \operatorname{Hom}(G, U(n))/U(n)\Big) =: R^{def}(G).$

• In many cases, $\Omega^{\infty} R^{\operatorname{def}}(G) \simeq \mathbb{Z} \times \operatorname{Hom}(G, U)/U.$

Let $\operatorname{Vect}_{\mathbb{C}} = \begin{cases} \operatorname{ObVect}_{\mathbb{C}} = \mathbb{N} \\ \operatorname{MorVect}_{\mathbb{C}} = \coprod_{n} U(n) \end{cases}$ denote the (topological) bipermutative category of Hermitian vector spaces.

 $\mathcal{R}(G) = \operatorname{Funct}(\underline{G}, \operatorname{Vect}_{\mathbb{C}})$ is the category of unitary *G*-rep's.

Definition: (Carlsson)

 $K^{\text{def}}(G) = \mathbb{K}(\mathcal{R}(G))$ is the K-theory spectrum of $\mathcal{R}(G)$.

 Elmendorf–Mandell, May: K^{def}(G) is a ring spectrum, and in fact a ku–algebra. (Note that ku = K(Vect_C)).

Theorem: (T. Lawson) The homotopy cofiber of the Bott map $\Sigma^2 \mathcal{K}^{def}(G) \xrightarrow{\beta} \mathcal{K}^{def}(G)$ is the spectrum $\mathbb{K} \Big(\coprod_n \operatorname{Hom}(G, U(n)) / U(n) \Big) =: R^{def}(G).$

• In many cases, $\Omega^{\infty} R^{\operatorname{def}}(G) \simeq \mathbb{Z} imes \operatorname{Hom}(G,U)/U.$

• $\mathcal{R}(G) \cong \widetilde{\mathcal{R}}(G)^G$, where $\widetilde{\mathcal{R}}(G)$ is the category of unitary *G*-representations and *non-equivariant* isometries.

• $\mathcal{K}^{\mathrm{def}}(G) = \mathcal{K}^{\mathrm{def}}(\mathcal{R}(G)) \cong \mathbb{K}(\widetilde{\mathcal{R}}(G))^G \hookrightarrow \mathbb{K}(\widetilde{\mathcal{R}}(G))^{hG}.$

• Inclusion of the trivial rep's: $\operatorname{Vect}_{\mathbb{C}} \xrightarrow{\widetilde{\hookrightarrow}} \widetilde{\mathcal{R}}(G)$ $\implies F(BG_+, \mathbf{ku}) = \mathbb{K}(\operatorname{Vect}_{\mathbb{C}})^{hG} \xleftarrow{\in} \mathbb{K}(\widetilde{\mathcal{R}}(G))^{hG}.$

Main Theorem: (R., '11)

The map of ku-algebras

$$\alpha_{G} \colon \operatorname{\mathcal{K}^{def}}(G) = \mathbb{K}(\widetilde{\mathcal{R}}(G))^{G} \hookrightarrow \mathbb{K}(\widetilde{\mathcal{R}}(G))^{hG} \xleftarrow{\simeq} \operatorname{\mathcal{F}}(BG_{+}, \operatorname{\mathsf{ku}})$$

induces the Atiyah–Segal map on π_* , $* \ge 0$.

Proof: Relate both maps to $B : \operatorname{Hom}(G, U(n)) \to F(BG, BU(n)).$

Note: $B\rho$ classifies E_{ρ}

ヘロト ヘワト ヘビト ヘビト

- $\mathcal{R}(G) \cong \widetilde{\mathcal{R}}(G)^G$, where $\widetilde{\mathcal{R}}(G)$ is the category of unitary *G*-representations and *non-equivariant* isometries.
- $\mathcal{K}^{\mathrm{def}}(\mathcal{G}) = \mathcal{K}^{\mathrm{def}}(\mathcal{R}(\mathcal{G})) \cong \mathbb{K}(\widetilde{\mathcal{R}}(\mathcal{G}))^{\mathcal{G}} \hookrightarrow \mathbb{K}(\widetilde{\mathcal{R}}(\mathcal{G}))^{h\mathcal{G}}.$

• Inclusion of the trivial rep's: $\operatorname{Vect}_{\mathbb{C}} \xrightarrow{\simeq} \widetilde{\mathcal{R}}(G)$ $\implies F(BG_+, \mathbf{ku}) = \mathbb{K}(\operatorname{Vect}_{\mathbb{C}})^{hG} \xleftarrow{\simeq} \mathbb{K}(\widetilde{\mathcal{R}}(G))^{hG}.$

Main Theorem: (R., '11)

The map of ku-algebras

 $\alpha_G \colon \operatorname{{\mathcal{K}}def}(G) = \mathbb{K}(\widetilde{\operatorname{{\mathcal{R}}}}(G))^G \hookrightarrow \mathbb{K}(\widetilde{\operatorname{{\mathcal{R}}}}(G))^{hG} \xleftarrow{\simeq} \operatorname{{\mathcal{F}}}(\operatorname{{\mathcal{B}}}_+, \operatorname{\mathsf{ku}})$

induces the Atiyah–Segal map on π_* , $* \ge 0$.

Proof: Relate both maps to $B : \operatorname{Hom}(G, U(n)) \to F(BG, BU(n)).$

Note: $B\rho$ classifies E_{ρ}

・ロット (雪) () () () ()

- $\mathcal{R}(G) \cong \widetilde{\mathcal{R}}(G)^G$, where $\widetilde{\mathcal{R}}(G)$ is the category of unitary *G*-representations and *non-equivariant* isometries.
- $\mathcal{K}^{\mathrm{def}}(G) = \mathcal{K}^{\mathrm{def}}(\mathcal{R}(G)) \cong \mathbb{K}(\widetilde{\mathcal{R}}(G))^G \hookrightarrow \mathbb{K}(\widetilde{\mathcal{R}}(G))^{hG}.$
- Inclusion of the trivial rep's: $\operatorname{Vect}_{\mathbb{C}} \xrightarrow{\simeq} \widetilde{\mathcal{R}}(G)$ $\implies F(BG_+, \mathbf{ku}) = \mathbb{K}(\operatorname{Vect}_{\mathbb{C}})^{hG} \stackrel{\simeq}{\leftarrow} \mathbb{K}(\widetilde{\mathcal{R}}(G))^{hG}.$

Main Theorem: (R., '11)

The map of ku-algebras

$$\alpha_{G} \colon \operatorname{\mathcal{K}^{def}}(G) = \mathbb{K}(\widetilde{\mathcal{R}}(G))^{G} \hookrightarrow \mathbb{K}(\widetilde{\mathcal{R}}(G))^{hG} \xleftarrow{\simeq} \operatorname{\mathcal{F}}(BG_{+}, \operatorname{ku})$$

induces the Atiyah–Segal map on π_* , $* \ge 0$.

Proof: Relate both maps to $B : \operatorname{Hom}(G, U(n)) \to F(BG, BU(n)).$

Note: $B\rho$ classifies E_{ρ}

ヘロト ヘワト ヘビト ヘビト

- $\mathcal{R}(G) \cong \widetilde{\mathcal{R}}(G)^G$, where $\widetilde{\mathcal{R}}(G)$ is the category of unitary *G*-representations and *non-equivariant* isometries.
- $\mathcal{K}^{\mathrm{def}}(\mathcal{G}) = \mathcal{K}^{\mathrm{def}}(\mathcal{R}(\mathcal{G})) \cong \mathbb{K}(\widetilde{\mathcal{R}}(\mathcal{G}))^{\mathcal{G}} \hookrightarrow \mathbb{K}(\widetilde{\mathcal{R}}(\mathcal{G}))^{h\mathcal{G}}.$
- Inclusion of the trivial rep's: $\operatorname{Vect}_{\mathbb{C}} \xrightarrow{\simeq} \widetilde{\mathcal{R}}(G)$ $\implies F(BG_+, \mathbf{ku}) = \mathbb{K}(\operatorname{Vect}_{\mathbb{C}})^{hG} \xleftarrow{\simeq} \mathbb{K}(\widetilde{\mathcal{R}}(G))^{hG}.$

Main Theorem: (R., '11)

The map of ku-algebras

$$\alpha_{G} \colon \operatorname{\mathcal{K}^{def}}(G) = \mathbb{K}(\widetilde{\mathcal{R}}(G))^{G} \hookrightarrow \mathbb{K}(\widetilde{\mathcal{R}}(G))^{hG} \xleftarrow{\simeq} \operatorname{\mathcal{F}}(BG_{+}, \operatorname{\mathsf{ku}})$$

induces the Atiyah–Segal map on π_* , $* \ge 0$.

Proof: Relate both maps to $B : \operatorname{Hom}(G, U(n)) \to F(BG, BU(n)).$

Note: $B\rho$ classifies E_{ρ}

・ロン ・雪 と ・ ヨ と

- $\mathcal{R}(G) \cong \widetilde{\mathcal{R}}(G)^G$, where $\widetilde{\mathcal{R}}(G)$ is the category of unitary *G*-representations and *non-equivariant* isometries.
- $\mathcal{K}^{\mathrm{def}}(\mathcal{G}) = \mathcal{K}^{\mathrm{def}}(\mathcal{R}(\mathcal{G})) \cong \mathbb{K}(\widetilde{\mathcal{R}}(\mathcal{G}))^{\mathcal{G}} \hookrightarrow \mathbb{K}(\widetilde{\mathcal{R}}(\mathcal{G}))^{h\mathcal{G}}.$

• Inclusion of the trivial rep's: $\operatorname{Vect}_{\mathbb{C}} \stackrel{\simeq}{\to} \widetilde{\mathcal{R}}(G)$ $\implies F(BG_+, \mathbf{ku}) = \mathbb{K}(\operatorname{Vect}_{\mathbb{C}})^{hG} \stackrel{\simeq}{\leftarrow} \mathbb{K}(\widetilde{\mathcal{R}}(G))^{hG}.$

Main Theorem: (R., '11)

The map of ku-algebras

$$\alpha_{G} \colon \operatorname{\mathcal{K}^{\operatorname{def}}}(G) = \mathbb{K}(\widetilde{\operatorname{\mathcal{R}}}(G))^{G} \hookrightarrow \mathbb{K}(\widetilde{\operatorname{\mathcal{R}}}(G))^{hG} \xleftarrow{\simeq} \operatorname{\mathcal{F}}(BG_{+}, \operatorname{ku})$$

induces the Atiyah–Segal map on π_* , $* \ge 0$.

Proof: Relate both maps to $B : \operatorname{Hom}(G, U(n)) \to F(BG, BU(n)).$

Note: $B\rho$ classifies E_{ρ}

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ →

- $\mathcal{R}(G) \cong \widetilde{\mathcal{R}}(G)^G$, where $\widetilde{\mathcal{R}}(G)$ is the category of unitary *G*-representations and *non-equivariant* isometries.
- $\mathcal{K}^{\mathrm{def}}(\mathcal{G}) = \mathcal{K}^{\mathrm{def}}(\mathcal{R}(\mathcal{G})) \cong \mathbb{K}(\widetilde{\mathcal{R}}(\mathcal{G}))^{\mathcal{G}} \hookrightarrow \mathbb{K}(\widetilde{\mathcal{R}}(\mathcal{G}))^{h\mathcal{G}}.$

• Inclusion of the trivial rep's: $\operatorname{Vect}_{\mathbb{C}} \stackrel{\simeq}{\to} \widetilde{\mathcal{R}}(G)$ $\implies F(BG_+, \mathbf{ku}) = \mathbb{K}(\operatorname{Vect}_{\mathbb{C}})^{hG} \stackrel{\simeq}{\leftarrow} \mathbb{K}(\widetilde{\mathcal{R}}(G))^{hG}.$

Main Theorem: (R., '11)

The map of ku-algebras

$$\alpha_{G} \colon \operatorname{\mathcal{K}^{\operatorname{def}}}(G) = \mathbb{K}(\widetilde{\operatorname{\mathcal{R}}}(G))^{G} \hookrightarrow \mathbb{K}(\widetilde{\operatorname{\mathcal{R}}}(G))^{hG} \xleftarrow{\simeq} \operatorname{\mathcal{F}}(BG_{+}, \operatorname{\mathsf{ku}})$$

induces the Atiyah–Segal map on π_* , $* \ge 0$.

Proof: Relate both maps to B: Hom $(G, U(n)) \rightarrow F(BG, BU(n))$.

<u>**Note:**</u> $B\rho$ classifies E_{ρ} .

同トメヨトメヨト

Consider the group \mathbb{Z} . Then

• Hom
$$(\mathbb{Z}, U(n)) = U(n)$$
,

- $B\mathbb{Z}\simeq S^1$,
- B: Hom(ℤ, U(n)) → Map_{*}(Bℤ, BU(n)) can be identified with the usual weak equivalence U(n) ≃ ΩBU(n).
- $\implies \alpha_{\mathbb{Z}} \colon K^{\operatorname{def}}(\mathbb{Z}) \longrightarrow F(\mathbb{Z}_+, \mathbf{ku}) \text{ is a w.e. on } (-1)-c'td \text{ covers.}$

Surface Groups:

Theorem: (R., '09, '11)

S an aspherical surface. Then α_{π_1S} is a w.e. on (0)–c'td covers

Proof uses Morse theory for the Yang–Mills functional.

Consider the group $\mathbb{Z}.$ Then

• Hom
$$(\mathbb{Z}, U(n)) = U(n)$$
,

- $B\mathbb{Z}\simeq S^1$,
- B: Hom(ℤ, U(n)) → Map_{*}(Bℤ, BU(n)) can be identified with the usual weak equivalence U(n) ≃ ΩBU(n).
- $\implies \alpha_{\mathbb{Z}} \colon K^{\operatorname{def}}(\mathbb{Z}) \longrightarrow F(\mathbb{Z}_+, \mathbf{ku}) \text{ is a w.e. on } (-1)-c'td \text{ covers.}$

Surface Groups:

Theorem: (R., '09, '11)

S an aspherical surface. Then α_{π_1S} is a w.e. on (0)–c'td covers

Proof uses Morse theory for the Yang–Mills functional.

Consider the group $\mathbb{Z}.$ Then

- Hom $(\mathbb{Z}, U(n)) = U(n)$,
- $B\mathbb{Z}\simeq S^1$,
- B: Hom(ℤ, U(n)) → Map_{*}(Bℤ, BU(n)) can be identified with the usual weak equivalence U(n) ≃ ΩBU(n).
- $\implies \alpha_{\mathbb{Z}} \colon K^{\operatorname{def}}(\mathbb{Z}) \longrightarrow F(\mathbb{Z}_+, \mathbf{ku}) \text{ is a w.e. on } (-1)-c'td \text{ covers.}$

Surface Groups:

Theorem: (R., '09, '11)

S an aspherical surface. Then α_{π_1S} is a w.e. on (0)–c'td covers

Proof uses Morse theory for the Yang–Mills functional.

Consider the group \mathbb{Z} . Then

- Hom $(\mathbb{Z}, U(n)) = U(n)$,
- $B\mathbb{Z}\simeq S^1$,
- B: Hom(ℤ, U(n)) → Map_{*}(Bℤ, BU(n)) can be identified with the usual weak equivalence U(n) ≃ ΩBU(n).

 $\implies \alpha_{\mathbb{Z}} \colon K^{\operatorname{def}}(\mathbb{Z}) \longrightarrow F(\mathbb{Z}_+, \mathbf{ku}) \text{ is a w.e. on } (-1)-\operatorname{c'td} \operatorname{covers.}$

Surface Groups:

Theorem: (R., '09, '11)

S an aspherical surface. Then α_{π_1S} is a w.e. on (0)–c'td covers

Proof uses Morse theory for the Yang–Mills functional.

Consider the group $\mathbb{Z}.$ Then

• Hom
$$(\mathbb{Z}, U(n)) = U(n)$$
,

- $B\mathbb{Z}\simeq S^1$,
- B: Hom(ℤ, U(n)) → Map_{*}(Bℤ, BU(n)) can be identified with the usual weak equivalence U(n) ≃ ΩBU(n).

$$\implies \alpha_{\mathbb{Z}}: \ K^{\text{def}}(\mathbb{Z}) \longrightarrow F(\mathbb{Z}_+, \mathbf{ku}) \text{ is a w.e. on } (-1)\text{-c'td covers.}$$

Surface Groups:

Theorem: (R., '09, '11)

S an aspherical surface. Then α_{π_1S} is a w.e. on (0)–c'td covers

Proof uses Morse theory for the Yang–Mills functional.

Consider the group \mathbb{Z} . Then

- Hom $(\mathbb{Z}, U(n)) = U(n)$,
- $B\mathbb{Z}\simeq S^1$,
- B: Hom(ℤ, U(n)) → Map_{*}(Bℤ, BU(n)) can be identified with the usual weak equivalence U(n) ≃ ΩBU(n).

 $\implies \alpha_{\mathbb{Z}} \colon \operatorname{K}^{\operatorname{def}}(\mathbb{Z}) \longrightarrow \operatorname{F}(\mathbb{Z}_+, \operatorname{ku}) \text{ is a w.e. on } (-1)\text{-c'td covers.}$

Surface Groups:

Theorem: (R., '09, '11)

S an aspherical surface. Then $\alpha_{\pi_1 S}$ is a w.e. on (0)–c'td covers

Proof uses Morse theory for the Yang–Mills functional.

Consider the group \mathbb{Z} . Then

- Hom $(\mathbb{Z}, U(n)) = U(n)$,
- $B\mathbb{Z}\simeq S^1$,
- B: Hom(ℤ, U(n)) → Map_{*}(Bℤ, BU(n)) can be identified with the usual weak equivalence U(n) ≃ ΩBU(n).
- $\implies \alpha_{\mathbb{Z}} \colon \operatorname{K}^{\operatorname{def}}(\mathbb{Z}) \longrightarrow \operatorname{F}(\mathbb{Z}_+, \operatorname{ku}) \text{ is a w.e. on } (-1)-c'td \text{ covers.}$

Surface Groups:

Theorem: (R., '09, '11)

S an aspherical surface. Then $\alpha_{\pi_1 S}$ is a w.e. on (0)–c'td covers

Proof uses Morse theory for the Yang–Mills functional.

Consider the group \mathbb{Z} . Then

• Hom
$$(\mathbb{Z}, U(n)) = U(n)$$
,

- $B\mathbb{Z}\simeq S^1$,
- B: Hom(ℤ, U(n)) → Map_{*}(Bℤ, BU(n)) can be identified with the usual weak equivalence U(n) ≃ ΩBU(n).

 $\implies \alpha_{\mathbb{Z}} \colon \operatorname{K}^{\operatorname{def}}(\mathbb{Z}) \longrightarrow \operatorname{F}(\mathbb{Z}_+, \operatorname{ku}) \text{ is a w.e. on } (-1)-\operatorname{c'td} \operatorname{covers.}$

Surface Groups:

Theorem: (R., '09, '11)

S an aspherical surface. Then α_{π_1S} is a w.e. on (0)–c'td covers

Proof uses Morse theory for the Yang–Mills functional.

<u>Remark</u>: Lawson's Bott cofiber sequence $\rightsquigarrow \mathbb{Q}$ -isomorphism $\pi_* (\mathbb{Z} \times \text{Hom}(G, U)/U) \cong_{\mathbb{Q}} H^*(G; \mathbb{Z})$ for these groups.

(문화)(문화)

Let

$$H = \left\{ \left(\begin{array}{rrr} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array} \right) \, : \, x, y, z \in \mathbb{Z} \right\} \subset \mathbb{R}^3$$

denote the integral Heisenberg group.

Let $N^3 = \mathbb{R}^3/H$ be the Heisenberg manifold (a closed, aspherical, orientable, 3-dimensional nil-manifold).

Theorem: (T. Lawson)

The Bott map $K^{\text{def}}_*H \xrightarrow{\beta} K^{\text{def}}_{*+2}H$ is an isomorphism for $* \ge 1$.

Corollary:

If $x \in K^{-1}(M)$ has $c_2(x) = m[N^3]$ ($m \neq 0$), then x is not k-flat for any k.

ヘロン ヘアン ヘビン ヘビン

Let

$$H = \left\{ \left(\begin{array}{rrr} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array} \right) \, : \, x, y, z \in \mathbb{Z} \right\} \subset \mathbb{R}^3$$

denote the integral Heisenberg group.

Let $N^3 = \mathbb{R}^3/H$ be the Heisenberg manifold (a closed, aspherical, orientable, 3-dimensional nil-manifold).

Theorem: (T. Lawson)

The Bott map $K^{\text{def}}_*H \xrightarrow{\beta} K^{\text{def}}_{*+2}H$ is an isomorphism for $* \ge 1$.

Corollary:

If $x \in K^{-1}(M)$ has $c_2(x) = m[N^3]$ ($m \neq 0$), then x is not k-flat for any k.

・ロト ・ 理 ト ・ ヨ ト ・

Let

$$H = \left\{ \left(\begin{array}{rrr} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array} \right) \, : \, x, y, z \in \mathbb{Z} \right\} \subset \mathbb{R}^3$$

denote the integral Heisenberg group.

Let $N^3 = \mathbb{R}^3/H$ be the Heisenberg manifold (a closed, aspherical, orientable, 3-dimensional nil-manifold).

Theorem: (T. Lawson)

The Bott map $K^{\text{def}}_*H \xrightarrow{\beta} K^{\text{def}}_{*+2}H$ is an isomorphism for $* \ge 1$.

Corollary:

If $x \in K^{-1}(M)$ has $c_2(x) = m[N^3]$ ($m \neq 0$), then x is not k-flat for any k.

ヘロト 人間 とくほとくほとう

Let

$$H = \left\{ \left(\begin{array}{rrr} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array} \right) \, : \, x, y, z \in \mathbb{Z} \right\} \subset \mathbb{R}^3$$

denote the integral Heisenberg group.

Let $N^3 = \mathbb{R}^3/H$ be the Heisenberg manifold (a closed, aspherical, orientable, 3-dimensional nil-manifold).

Theorem: (T. Lawson)

The Bott map $K^{\mathrm{def}}_*H \xrightarrow{\beta} K^{\mathrm{def}}_{*+2}H$ is an isomorphism for $* \ge 1$.

Corollary:

If $x \in K^{-1}(M)$ has $c_2(x) = m[N^3]$ ($m \neq 0$), then x is not k-flat for any k.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

э

Consider:

$$\begin{array}{c} \mathcal{K}_{2k+1}^{\mathrm{def}}(H) \xrightarrow{\alpha_{2k+1}} \mathcal{K}^{-2k-1}(BH) \cong \mathcal{K}^{-2k-1}(N^3) \\ \cdot_{\beta^k} \stackrel{\wedge}{\uparrow} \cong & \cdot_{\beta^k} \stackrel{\wedge}{\uparrow} \cong \\ \mathcal{K}_{1}^{\mathrm{def}}(H) \xrightarrow{\alpha_{1}} \mathcal{K}^{-1}(BH) \cong \mathcal{K}^{-1}(N^3). \end{array}$$

- Commutes because α is a **ku**-module map.
- If $y \in \text{Im}(\alpha_1)$, then y is 0-flat and hence $c_i(y) =_{\mathbb{Q}} 0$ for i > 1.
- Since $c_2 x = m[N] \neq 0, x \notin \text{Im}(\alpha_1)$.
- Commutativity $\implies \beta^k \cdot x \notin \operatorname{Im}(\alpha_{2k+1}).$

Consider:

$$\begin{array}{c} \mathcal{K}_{2k+1}^{\mathrm{def}}(\mathcal{H}) \xrightarrow{\alpha_{2k+1}} \mathcal{K}^{-2k-1}(\mathcal{B}\mathcal{H}) \cong \mathcal{K}^{-2k-1}(\mathcal{N}^{3}) \\ & \cdot_{\beta^{k}} \stackrel{\wedge}{\uparrow} \cong & \cdot_{\beta^{k}} \stackrel{\wedge}{\uparrow} \cong \\ \mathcal{K}_{1}^{\mathrm{def}}(\mathcal{H}) \xrightarrow{\alpha_{1}} \mathcal{K}^{-1}(\mathcal{B}\mathcal{H}) \cong \mathcal{K}^{-1}(\mathcal{N}^{3}). \end{array}$$

- Commutes because α is a **ku**-module map.
- If $y \in \text{Im}(\alpha_1)$, then y is 0-flat and hence $c_i(y) =_{\mathbb{Q}} 0$ for i > 1.
- Since $c_2 x = m[N] \neq 0, x \notin \text{Im}(\alpha_1)$.
- Commutativity $\implies \beta^k \cdot x \notin \operatorname{Im}(\alpha_{2k+1}).$

Consider:

$$\begin{array}{c} \mathcal{K}_{2k+1}^{\mathrm{def}}(\mathcal{H}) \xrightarrow{\alpha_{2k+1}} \mathcal{K}^{-2k-1}(\mathcal{B}\mathcal{H}) \cong \mathcal{K}^{-2k-1}(\mathcal{N}^{3}) \\ & \cdot_{\beta^{k}} \stackrel{\wedge}{\uparrow} \cong & \cdot_{\beta^{k}} \stackrel{\wedge}{\uparrow} \cong \\ \mathcal{K}_{1}^{\mathrm{def}}(\mathcal{H}) \xrightarrow{\alpha_{1}} \mathcal{K}^{-1}(\mathcal{B}\mathcal{H}) \cong \mathcal{K}^{-1}(\mathcal{N}^{3}). \end{array}$$

- Commutes because α is a **ku**-module map.
- If $y \in \text{Im}(\alpha_1)$, then y is 0-flat and hence $c_i(y) =_{\mathbb{Q}} 0$ for i > 1.
- Since $c_2 x = m[N] \neq 0, x \notin \text{Im}(\alpha_1)$.
- Commutativity $\implies \beta^k \cdot x \notin \operatorname{Im}(\alpha_{2k+1}).$

Consider:

$$\begin{array}{c} \mathcal{K}_{2k+1}^{\mathrm{def}}(\mathcal{H}) \xrightarrow{\alpha_{2k+1}} \mathcal{K}^{-2k-1}(\mathcal{B}\mathcal{H}) \cong \mathcal{K}^{-2k-1}(\mathcal{N}^{3}) \\ & \cdot_{\beta^{k}} \stackrel{\wedge}{\uparrow} \cong & \cdot_{\beta^{k}} \stackrel{\wedge}{\uparrow} \cong \\ \mathcal{K}_{1}^{\mathrm{def}}(\mathcal{H}) \xrightarrow{\alpha_{1}} \mathcal{K}^{-1}(\mathcal{B}\mathcal{H}) \cong \mathcal{K}^{-1}(\mathcal{N}^{3}). \end{array}$$

- Commutes because α is a **ku**-module map.
- If $y \in \text{Im}(\alpha_1)$, then y is 0–flat and hence $c_i(y) =_{\mathbb{Q}} 0$ for i > 1.
- Since $c_2 x = m[N] \neq 0, x \notin \text{Im}(\alpha_1)$.
- Commutativity $\implies \beta^k \cdot x \notin \operatorname{Im}(\alpha_{2k+1}).$

Consider:

$$\begin{array}{c} \mathcal{K}_{2k+1}^{\mathrm{def}}(\mathcal{H}) \xrightarrow{\alpha_{2k+1}} \mathcal{K}^{-2k-1}(\mathcal{B}\mathcal{H}) \cong \mathcal{K}^{-2k-1}(\mathcal{N}^{3}) \\ \cdot_{\beta^{k}} \stackrel{\wedge}{\uparrow} \cong & \cdot_{\beta^{k}} \stackrel{\wedge}{\uparrow} \cong \\ \mathcal{K}_{1}^{\mathrm{def}}(\mathcal{H}) \xrightarrow{\alpha_{1}} \mathcal{K}^{-1}(\mathcal{B}\mathcal{H}) \cong \mathcal{K}^{-1}(\mathcal{N}^{3}). \end{array}$$

- Commutes because α is a **ku**-module map.
- If $y \in \text{Im}(\alpha_1)$, then y is 0–flat and hence $c_i(y) =_{\mathbb{Q}} 0$ for i > 1.
- Since $c_2 x = m[N] \neq 0, x \notin \text{Im}(\alpha_1)$.
- Commutativity $\implies \beta^k \cdot x \notin \operatorname{Im}(\alpha_{2k+1}).$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ ∽ Q ()~

$S = S_1 \times \cdots \times S_m$, a product of aspherical surfaces.

Theorem: (R., '11)

The Atiyah–Segal map α : $K^{\text{def}}(\pi_1 S) \rightarrow F(B\pi_1 S_+, \mathbf{ku})$ is an equivalence on $(\mathbb{Q}cd(S) - 2)$ –connected covers.

Notice: Analogous to Quillen–Lichtenbaum conjectures.

Components of proof:

- Lawson's Product Formula: $K^{\text{def}}(G \times H) \simeq K^{\text{def}}(G) \wedge_{\mathbf{ku}} K^{\text{def}}(H)$
- S-duality: $F(B(G \times H)_+, \mathbf{ku}) \simeq F(BG_+, \mathbf{ku}) \wedge_{\mathbf{ku}} F(BH_+, \mathbf{ku})$
- Compare these using the ku–algebra maps $\alpha_{G \times H}$ and $\alpha_G \wedge_{ku} \alpha_H$.

ヘロン ヘアン ヘビン ヘビン

$S = S_1 \times \cdots \times S_m$, a product of aspherical surfaces.

Theorem: (R., '11)

The Atiyah–Segal map α : $K^{def}(\pi_1 S) \rightarrow F(B\pi_1 S_+, \mathbf{ku})$ is an equivalence on $(\mathbb{Q}cd(S) - 2)$ –connected covers.

Notice: Analogous to Quillen–Lichtenbaum conjectures.

Components of proof:

- Lawson's Product Formula: $K^{\text{def}}(G \times H) \simeq K^{\text{def}}(G) \wedge_{\mathbf{ku}} K^{\text{def}}(H)$
- S-duality: $F(B(G \times H)_+, \mathbf{ku}) \simeq F(BG_+, \mathbf{ku}) \wedge_{\mathbf{ku}} F(BH_+, \mathbf{ku})$
- Compare these using the ku–algebra maps $\alpha_{G \times H}$ and $\alpha_G \wedge_{ku} \alpha_H$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

 $S = S_1 \times \cdots \times S_m$, a product of aspherical surfaces.

Theorem: (R., '11)

The Atiyah–Segal map α : $K^{def}(\pi_1 S) \rightarrow F(B\pi_1 S_+, \mathbf{ku})$ is an equivalence on $(\mathbb{Q}cd(S) - 2)$ –connected covers.

Notice: Analogous to Quillen–Lichtenbaum conjectures.

Components of proof:

- Lawson's Product Formula:
 K^{def}(G × H) ≃ K^{def}(G) ∧_{ku} K^{def}(H)
- S-duality: $F(B(G \times H)_+, \mathbf{ku}) \simeq F(BG_+, \mathbf{ku}) \wedge_{\mathbf{ku}} F(BH_+, \mathbf{ku})$
- Compare these using the ku–algebra maps $\alpha_{G \times H}$ and $\alpha_G \wedge_{ku} \alpha_H$.

イロン 不良 とくほう 不良 とうほ

 $S = S_1 \times \cdots \times S_m$, a product of aspherical surfaces.

Theorem: (R., '11)

The Atiyah–Segal map α : $K^{def}(\pi_1 S) \rightarrow F(B\pi_1 S_+, \mathbf{ku})$ is an equivalence on $(\mathbb{Q}cd(S) - 2)$ –connected covers.

Notice: Analogous to Quillen–Lichtenbaum conjectures.

Components of proof:

- Lawson's Product Formula: $K^{\text{def}}(G \times H) \simeq K^{\text{def}}(G) \wedge_{\mathbf{ku}} K^{\text{def}}(H)$
- S-duality: $F(B(G \times H)_+, \mathbf{ku}) \simeq F(BG_+, \mathbf{ku}) \wedge_{\mathbf{ku}} F(BH_+, \mathbf{ku})$
- Compare these using the ku–algebra maps $\alpha_{G \times H}$ and $\alpha_G \wedge_{ku} \alpha_H$.

イロン 不良 とくほう 不良 とうほ

 $S = S_1 \times \cdots \times S_m$, a product of aspherical surfaces.

Theorem: (R., '11)

The Atiyah–Segal map α : $K^{def}(\pi_1 S) \rightarrow F(B\pi_1 S_+, \mathbf{ku})$ is an equivalence on $(\mathbb{Q}cd(S) - 2)$ –connected covers.

Notice: Analogous to Quillen–Lichtenbaum conjectures.

Components of proof:

- Lawson's Product Formula: $K^{\text{def}}(G \times H) \simeq K^{\text{def}}(G) \wedge_{\mathbf{ku}} K^{\text{def}}(H)$
- S-duality: $F(B(G \times H)_+, \mathbf{ku}) \simeq F(BG_+, \mathbf{ku}) \wedge_{\mathbf{ku}} F(BH_+, \mathbf{ku})$
- Compare these using the ku–algebra maps $\alpha_{G \times H}$ and $\alpha_G \wedge_{ku} \alpha_H$.

イロン 不良 とくほう 不良 とうほ

 $S = S_1 \times \cdots \times S_m$, a product of aspherical surfaces.

Theorem: (R., '11)

The Atiyah–Segal map α : $K^{def}(\pi_1 S) \rightarrow F(B\pi_1 S_+, \mathbf{ku})$ is an equivalence on $(\mathbb{Q}cd(S) - 2)$ –connected covers.

Notice: Analogous to Quillen–Lichtenbaum conjectures.

Components of proof:

- Lawson's Product Formula: $K^{\text{def}}(G \times H) \simeq K^{\text{def}}(G) \wedge_{\mathbf{ku}} K^{\text{def}}(H)$
- S-duality: $F(B(G \times H)_+, \mathbf{ku}) \simeq F(BG_+, \mathbf{ku}) \wedge_{\mathbf{ku}} F(BH_+, \mathbf{ku})$
- Compare these using the **ku**-algebra maps $\alpha_{G \times H}$ and $\alpha_G \wedge_{ku} \alpha_H$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Methods from previous slide ~>> calculation of

Im
$$\left(\alpha_k \colon \mathcal{K}_k^{\operatorname{def}}(\pi_1 \mathcal{S}) \longrightarrow \mathcal{K}^{-k}(\mathcal{S})\right)$$
.

- All S_i orientable ⇒ Chern–Weil obstruction is the only obstruction to k–flatness:
- $x \in K^{i}(B\Gamma)$ is k-flat $\iff c_{l}(x) = 0$ for l > 2k i (i = 0, -1).
 - Non-orientable products: not all torsion classes are 0-flat.

Further Applications:

- Free abelian groups (spaces of commuting matrices)
- Crystallographic groups (rational results)

Thank You!

イロト 不得 とくほ とくほとう

Methods from previous slide ~-> calculation of

Im
$$\left(\alpha_k \colon K_k^{\operatorname{def}}(\pi_1 \mathcal{S}) \longrightarrow \mathcal{K}^{-k}(\mathcal{S})\right)$$
.

- All S_i orientable ⇒ Chern–Weil obstruction is the only obstruction to k–flatness:
- $x \in K^{i}(B\Gamma)$ is k-flat $\iff c_{l}(x) = 0$ for l > 2k i (i = 0, -1).
 - Non-orientable products: not all torsion classes are 0–flat.

Further Applications:

- Free abelian groups (spaces of commuting matrices)
- Crystallographic groups (rational results)

Thank You!

・ロト ・ ア・ ・ ヨト ・ ヨト

Methods from previous slide ~-> calculation of

Im
$$\left(\alpha_k \colon K_k^{\operatorname{def}}(\pi_1 \mathcal{S}) \longrightarrow \mathcal{K}^{-k}(\mathcal{S})\right)$$
.

- All S_i orientable ⇒ Chern–Weil obstruction is the only obstruction to k–flatness:
- $x \in K^{i}(B\Gamma)$ is k-flat $\iff c_{l}(x) = 0$ for l > 2k i (i = 0, -1).

Non-orientable products: not all torsion classes are 0–flat.

Further Applications:

- Free abelian groups (spaces of commuting matrices)
- Crystallographic groups (rational results)

Thank You!

イロン 不同 とくほう イヨン

Methods from previous slide ~-> calculation of

Im
$$\left(\alpha_k \colon K_k^{\operatorname{def}}(\pi_1 \mathcal{S}) \longrightarrow \mathcal{K}^{-k}(\mathcal{S})\right)$$
.

- All S_i orientable ⇒ Chern–Weil obstruction is the only obstruction to k–flatness:
- $x \in K^{i}(B\Gamma)$ is k-flat $\iff c_{l}(x) = 0$ for l > 2k i (i = 0, -1).
 - Non-orientable products: not all torsion classes are 0-flat.

Further Applications:

- Free abelian groups (spaces of commuting matrices)
- Crystallographic groups (rational results)

Thank You!

イロト 不得 とくほと くほとう

Methods from previous slide \rightsquigarrow calculation of

Im
$$\left(\alpha_k \colon K_k^{\operatorname{def}}(\pi_1 \mathcal{S}) \longrightarrow \mathcal{K}^{-k}(\mathcal{S})\right)$$
.

- All S_i orientable ⇒ Chern–Weil obstruction is the only obstruction to k–flatness:
- $x \in K^{i}(B\Gamma)$ is k-flat $\iff c_{l}(x) = 0$ for l > 2k i (i = 0, -1).
 - Non-orientable products: not all torsion classes are 0–flat.

Further Applications:

- Free abelian groups (spaces of commuting matrices)
- Crystallographic groups (rational results)

Thank You!

ヘロア 人間 アメヨア 人口 ア

Methods from previous slide ~>> calculation of

Im
$$\left(\alpha_k \colon K_k^{\operatorname{def}}(\pi_1 \mathcal{S}) \longrightarrow \mathcal{K}^{-k}(\mathcal{S})\right)$$
.

- All S_i orientable ⇒ Chern–Weil obstruction is the only obstruction to k–flatness:
- $x \in K^{i}(B\Gamma)$ is k-flat $\iff c_{l}(x) = 0$ for l > 2k i (i = 0, -1).
 - Non-orientable products: not all torsion classes are 0–flat.

Further Applications:

- Free abelian groups (spaces of commuting matrices)
- Crystallographic groups (rational results)

Thank You!

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・