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Flat bundles

A principal U(n)-bundle E — M™ is flat if
® E= (l\7l x U(n))/m1M for some p: 1M — U(n),

or equivalently,
@ E admits a connection with trivial curvature.

Chern-Weil Theory: E flat = c¢;(E) is torsion for all i.
Flat bundles are rare.
Given an Sk—family p : S¥ — Hom(G, U(n)), set
E, = (S x M x U(n))/mM — S* x M.
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Flat bundles

A principal U(n)-bundle E — M™ is flat if
® E= (I\N/I x U(n))/m1M for some p: 1M — U(n),

or equivalently,
@ E admits a connection with trivial curvature.

Chern-Weil Theory: E flat = c¢;(E) is torsion for all i.

Flat bundles are rare.

Given an Sk—family p : S¥ — Hom(G, U(n)), set
E, = (S x M x U(n))/mM — S* x M.

Definition: k—flat

x € KI(M) (i = 0,-1) is k=flat if 3*(x) € K°(S?*~ A M) has the
form [E,] — [Ey] for some S2k—'—families p, ).
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When is a class k—flat?

Definition: k—flat

x € KI(M) (i = 0,-1) is k=flat if 3*(x) € KO(S?*~ A M) has the
form [E,] — [Ey] for some S2k~'—families p, ).
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When is a class k—flat?

Definition: k—flat

x € KI(M) (i = 0,-1) is k=flat if 3*(x) € KO(S?*~ A M) has the
form [E,] — [Ey] for some S2k~'—families p, ).

Flat Realization Problem: Given x ¢ R"(M) (i=0,-1), find
the minimum k such that x is k—flat (could be k = o!).
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form [E,] — [Ey] for some S2k~'—families p, ).

Flat Realization Problem: Given x ¢ R"(M) (i=0,-1), find
the minimum k such that x is k—flat (could be k = o!).

A cohomological obstruction:

Theorem: (Baird—R., ’11)

For every family p: Sk — Hom(G, U(n)), the Chern classes
ci(E,) are torsion for i > K.

The proof involves two main steps:
@ If pis smooth, apply Chern—Weil Theory.
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When is a class k—flat?

Definition: k—flat

x € KI(M) (i = 0,-1) is k=flat if 3*(x) € KO(S?*~ A M) has the
form [E,] — [Ey] for some S2k~'—families p, ).

Flat Realization Problem: Given x ¢ R"(M) (i=0,-1), find
the minimum k such that x is k—flat (could be k = o!).

A cohomological obstruction:

Theorem: (Baird—R., ’11)

For every family p: Sk — Hom(G, U(n)), the Chern classes
ci(E,) are torsion for i > K.

The proof involves two main steps:
@ If pis smooth, apply Chern—Weil Theory.
© All families are homotopic to smooth families. (Hard!!)
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Deformation K—theory

For a discrete group G, let Rep(G) = [ [,, Hom(G, U(n)).
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Deformation K—theory

For a discrete group G, let Rep(G) = [ [,, Hom(G, U(n)).

Definition: Deformation K—theory

Kef(G) = Gr[S™, Rep(G)]/Gr(moRep(G))

Observation: x € K'(BG) (i = 0, —1) is k—flat if and only if
(%(x) is in the image of the Atiyah—Segal map

Kget (G) 2= K—=2k+1(BG)

[p] — [¥] — [E,] — [Ey](+ correction term)
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Deformation K—theory

For a discrete group G, let Rep(G) = [ [,, Hom(G, U(n)).

Definition: Deformation K—theory

Kef(G) = Gr[S™, Rep(G)]/Gr(moRep(G))

Observation: x € K'(BG) (i = 0, —1) is k—flat if and only if
(%(x) is in the image of the Atiyah—Segal map

KSRLI(G) == K~21(BG)
[p] — [¥] — [E,] — [Ey](+ correction term)

Note: Previous result ~~ cohomological obstruction to
surjectivity of ay for k < Qcd(G) — 2.
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Deformation K—theory

For a discrete group G, let Rep(G) = [ [,, Hom(G, U(n)).

Definition: Deformation K—theory

Kef(G) = Gr[S™, Rep(G)]/Gr(moRep(G))

Observation: x € K'(BG) (i = 0, —1) is k—flat if and only if
(%(x) is in the image of the Atiyah—Segal map

KSRLI(G) == K~21(BG)
[p] — [¥] — [E,] — [Ey](+ correction term)

Note: Previous result ~~ cohomological obstruction to
surjectivity of ay for k < Qcd(G) — 2.

Goal: Study the Flat Realization Problem using a ring spectrum
version of the Atiyah—Segal map.
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The Deformation K—theory Spectrum

| ObVectc =N
Let Vectc = { MorVectc =[], U(n)
bipermutative category of Hermitian vector spaces.

denote the (topological)
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Definition: (Carlsson)
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@ Elmendorf—-Mandell, May: K9f(G) is a ring spectrum, and
in fact a ku—algebra. (Note that ku = K(Vectc)).
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The Deformation K—theory Spectrum

| ObVectc =N
Let Vectc = { MorVectc =[], U(n)
bipermutative category of Hermitian vector spaces.

denote the (topological)

R(G) = Funct(G, Vectc) is the category of unitary G—-rep’s.

Definition: (Carlsson)

K9{(G) = K(R(G)) is the K—theory spectrum of R(G).

@ Elmendorf—-Mandell, May: K9f(G) is a ring spectrum, and
in fact a ku—algebra. (Note that ku = K(Vectc)).
Theorem: (T. Lawson) The homotopy cofiber of the Bott map
y2Kdef(G) L, Kdef(G) is the spectrum
K(]_[nHom(G, U(n))/U(n)) =: R%f(G).
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The Deformation K—theory Spectrum

| ObVectc =N
Let Vectc = { MorVectc =[], U(n)
bipermutative category of Hermitian vector spaces.

denote the (topological)

R(G) = Funct(G, Vectc) is the category of unitary G—-rep’s.

Definition: (Carlsson)

K9{(G) = K(R(G)) is the K—theory spectrum of R(G).

@ Elmendorf—-Mandell, May: K9f(G) is a ring spectrum, and
in fact a ku—algebra. (Note that ku = K(Vectc)).
Theorem: (T. Lawson) The homotopy cofiber of the Bott map
y2Kdef(G) L, Kdef(G) is the spectrum
K(]_[nHom(G, U(n))/U(n)) =: R%f(G).

@ In many cases, Q*°R%¥(G) ~ Z x Hom(G, U)/U.
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The Homotopy Limit Problem in Deformation K—theory

e R(G) = R(G)%, where R(G) is the category of unitary
G-representations and non-equivariant isometries.
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0 K¥f(G) = KE(R(G)) = K(R(G))® — K(R(G))°.

Daniel A. Ramras Applications of ring spectra to flat bundles



The Homotopy Limit Problem in Deformation K—theory

e R(G) = R(G)%, where R(G) is the category of unitary
G-representations and non-equivariant isometries.

0 K¥f(G) = KE(R(G)) = K(R(G))® — K(R(G))°.

@ Inclusion of the trivial rep’s: Vectc — R(G)

Daniel A. Ramras Applications of ring spectra to flat bundles



The Homotopy Limit Problem in Deformation K—theory

e R(G) = R(G)%, where R(G) is the category of unitary
G-representations and non-equivariant isometries.

0 K¥f(G) = KE(R(G)) = K(R(G))® — K(R(G))°.

@ Inclusion of the trivial rep’s: Vectc — R(G)
— F(BG,,ku) = K(Vectc)"® & K(R(G))"C.

Daniel A. Ramras Applications of ring spectra to flat bundles



The Homotopy Limit Problem in Deformation K—theory

e R(G) = R(G)%, where R(G) is the category of unitary
G-representations and non-equivariant isometries.

o K¥(G) = K*(R(G)) = K(R(G))¢ — K(R(G))"°.

@ Inclusion of the trivial rep’s: Vectc — R(G)
— F(BG,,ku) = K(Vectc)"® & K(R(G))"C.

Main Theorem: (R., ’11)

The map of ku—algebras
ag: K¥(G) = K(R(G))® — K(R(G))"® = F(BG,,ku)

induces the Atiyah—Segal map on 7., x > 0.
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The Homotopy Limit Problem in Deformation K—theory

e R(G) = R(G)%, where R(G) is the category of unitary
G-representations and non-equivariant isometries.

o K¥(G) = K*(R(G)) = K(R(G))¢ — K(R(G))"°.

@ Inclusion of the trivial rep’s: Vectc — R(G)
— F(BG,,ku) = K(Vectc)"® & K(R(G))"C.

Main Theorem: (R., ’11)

The map of ku—algebras
ag: K¥(G) = K(R(G))® — K(R(G))"® = F(BG,,ku)

induces the Atiyah—Segal map on 7., x > 0.

Proof: Relate both maps to
B :Hom(G, U(n)) — F(BG, BU(n)).
Note: Bp classifies E,.
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First examples

Consider the group Z.
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First examples

Consider the group Z. Then

@ Hom(Z, U(n)) = U(n),
@ BZ ~ S,

@ B: Hom(Z, U(n)) — Map,(BZ, BU(n)) can be identified
with the usual weak equivalence U(n) ~ QBU(n).
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Consider the group Z. Then

@ Hom(Z, U(n)) = U(n),
@ BZ ~ S,

@ B: Hom(Z, U(n)) — Map,(BZ, BU(n)) can be identified
with the usual weak equivalence U(n) ~ QBU(n).

— az: K¥(Z) — F(Z,,ku)is aw.e. on (—1)—c’td covers.
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First examples

Consider the group Z. Then
@ Hom(Z, U(n)) = U(n),
@ BZ ~ S,

@ B: Hom(Z, U(n)) — Map,(BZ, BU(n)) can be identified
with the usual weak equivalence U(n) ~ QBU(n).

— az: K¥(Z) — F(Z,,ku)is aw.e. on (—1)—c’td covers.
Surface Groups:

Theorem: (R., 09, '11)

S an aspherical surface. Then o, s is a w.e. on (0)—c’td covers
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@ Hom(Z, U(n)) = U(n),
@ BZ ~ S,

@ B: Hom(Z, U(n)) — Map,(BZ, BU(n)) can be identified
with the usual weak equivalence U(n) ~ QBU(n).

— az: K¥(Z) — F(Z,,ku)is aw.e. on (—1)—c’td covers.

Surface Groups:

Theorem: (R., 09, '11)

S an aspherical surface. Then o, s is a w.e. on (0)—c’td covers

Proof uses Morse theory for the Yang—Mills functional.
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First examples

Consider the group Z. Then
@ Hom(Z, U(n)) = U(n),
@ BZ ~ S,

@ B: Hom(Z, U(n)) — Map,(BZ, BU(n)) can be identified
with the usual weak equivalence U(n) ~ QBU(n).

— az: K¥(Z) — F(Z,,ku)is aw.e. on (—1)—c’td covers.

Surface Groups:

Theorem: (R., 09, '11)

S an aspherical surface. Then o, s is a w.e. on (0)—c’td covers

Proof uses Morse theory for the Yang—Mills functional.

Remark: Lawson’s Bott cofiber sequence ~» Q—isomorphism
7« (Z x Hom(G, U)/U) =q H*(G; Z) for these groups.
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The Heisenberg manifold

Let

denote the integral Heisenberg group.
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The Heisenberg manifold

Let
1 x y
H= 01 z | :xy,zeZyCR3
0 0 1

denote the integral Heisenberg group.

Let N® = R3/H be the Heisenberg manifold (a closed,
aspherical, orientable, 3-dimensional nil-manifold).
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The Heisenberg manifold

Let
1 x y
H= 01 z | :xy,zeZyCR3
0 0 1

denote the integral Heisenberg group.

Let N3 = R3/H be the Heisenberg manifold (a closed,
aspherical, orientable, 3-dimensional nil-manifold).

Theorem: (T. Lawson)

The Bott map KdtH - K AL H is an isomorphism for + > 1.
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The Heisenberg manifold

Let
1 x y
H= 01 z | :xy,zeZyCR3
0 0 1

denote the integral Heisenberg group.

Let N3 = R3/H be the Heisenberg manifold (a closed,
aspherical, orientable, 3-dimensional nil-manifold).

Theorem: (T. Lawson)

The Bott map KdtH - K AL H is an isomorphism for + > 1.

If x € K='(M) has cy(x) = m[N3] (m # 0), then x is not k—flat
for any k.
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Consider:

Ksiel (H) =55 K=2k-1(BH) = K21 (\P)

.ngu .ngN

Kef(H) —2~ K=1(BH) =~ K~"(N8).
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Consider:

szlfi1 (H) O2k+1 K*2k*1(BH) ~ K—2k—1 (N?)

.ngu .ngN

Kef(H) —2~ K=1(BH) =~ K~"(N8).

@ Commutes because « is a ku—module map.
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Consider:

Kt | (H) 2K+ K—2k=1(BH) 2 K—2k=1(N®)

.ngu .ngN

Kef(H) —2~ K=1(BH) =~ K~"(N8).

@ Commutes because « is a ku—module map.

@ If y € Im(ay), then y is O—flat and hence c;(y) =q 0 for
i>1.
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Consider:

szlfi1 (H) O2k+1 K*2k*1(BH) ~ K—2k—1 (N?)

.ngu .ngN

Kef(H) —2~ K=1(BH) =~ K~"(N8).

@ Commutes because « is a ku—module map.

@ If y € Im(ay), then y is O—flat and hence c;(y) =q 0 for
i>1.

@ Since cox = mM[N] # 0, x ¢ Im(ay).
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Consider:

szlfi1 (H) O2k+1 K*2k*1(BH) ~ K—2k—1 (N?)

.ngu .ngN

Kef(H) —2~ K=1(BH) =~ K~"(N8).

@ Commutes because « is a ku—module map.

@ If y € Im(ay), then y is O—flat and hence c;(y) =q 0 for
i>1.

@ Since cox = mM[N] # 0, x ¢ Im(ay).

e Commutativity = 5% - x ¢ Im(apk1)-
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Example: Products of surface groups

S =381 x -+ x Sp, a product of aspherical surfaces.
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Example: Products of surface groups

S =381 x -+ x Sp, a product of aspherical surfaces.
Theorem: (R.,’11)

The Atiyah-Segal map o: K9(11S) — F(Br1S,,ku) is an
equivalence on (Qcd(S) — 2)—connected covers.

Notice: Analogous to Quillen—Lichtenbaum conjectures.
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S =381 x -+ x Sp, a product of aspherical surfaces.
Theorem: (R.,’11)

The Atiyah-Segal map o: K9(11S) — F(Br1S,,ku) is an
equivalence on (Qcd(S) — 2)—connected covers.

Notice: Analogous to Quillen—Lichtenbaum conjectures.

Components of proof:
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Theorem: (R.,’11)

The Atiyah-Segal map o: K9(11S) — F(Br1S,,ku) is an
equivalence on (Qcd(S) — 2)—connected covers.

Notice: Analogous to Quillen—Lichtenbaum conjectures.

Components of proof:

@ Lawson’s Product Formula:
K9G x H) ~ K(G) Ny KE(H)
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Example: Products of surface groups

S =381 x -+ x Sp, a product of aspherical surfaces.
Theorem: (R.,’11)

The Atiyah-Segal map o: K9(11S) — F(Br1S,,ku) is an
equivalence on (Qcd(S) — 2)—connected covers.

Notice: Analogous to Quillen—Lichtenbaum conjectures.

Components of proof:

@ Lawson’s Product Formula:
K9G x H) ~ K(G) Ny KE(H)
@ S—duality:
F(B(G x H)+,ku) ~ F(BG;, ku) Axy F(BH;,ku)

Daniel A. Ramras Applications of ring spectra to flat bundles



Example: Products of surface groups

S =381 x -+ x Sp, a product of aspherical surfaces.
Theorem: (R.,’11)

The Atiyah-Segal map o: K9(11S) — F(Br1S,,ku) is an
equivalence on (Qcd(S) — 2)—connected covers.

Notice: Analogous to Quillen—Lichtenbaum conjectures.

Components of proof:

@ Lawson’s Product Formula:
K9G x H) ~ K(G) Ny KE(H)

@ S—duality:
F(B(G x H)+,ku) ~ F(BG,, ku) Agy F(BH, Kku)

@ Compare these using the ku—algebra maps agyy and
aG Nku OH-
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Flat realization problem for products of surfaces:

Methods from previous slide ~~ calculation of

Im (ak: K< (1, S) — K"‘(S)) .
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@ All S; orientable — Chern—Weil obstruction is the only
obstruction to k—flatness:
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Im (ak: K< (1, S) — K"‘(S)) .

@ All S; orientable — Chern—Weil obstruction is the only
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x € KI(Br) is k—flat <= ¢,(x) =0for/>2k —i (i=0,-1).
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Flat realization problem for products of surfaces:

Methods from previous slide ~~ calculation of
Im (ak: K< (1, S) — K"‘(S)) .

@ All S; orientable — Chern—Weil obstruction is the only
obstruction to k—flatness:

x € KI(Br) is k—flat <= ¢,(x) =0for/>2k —i (i=0,-1).

@ Non-orientable products: not all torsion classes are 0—flat.
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Flat realization problem for products of surfaces:

Methods from previous slide ~~ calculation of
Im (ak: K< (1, S) — K—k(5)> .

@ All S; orientable — Chern—Weil obstruction is the only
obstruction to k—flatness:

x € KI(Br) is k—flat <= ¢,(x) =0for/>2k —i (i=0,-1).

@ Non-orientable products: not all torsion classes are 0—flat.

Further Applications:

@ Free abelian groups (spaces of commuting matrices)
@ Crystallographic groups (rational results)
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Flat realization problem for products of surfaces:

Methods from previous slide ~~ calculation of
Im (ak: K< (1, S) — K—k(5)> .

@ All S; orientable — Chern—Weil obstruction is the only
obstruction to k—flatness:

x € KI(Br) is k—flat <= ¢,(x) =0for/>2k —i (i=0,-1).

@ Non-orientable products: not all torsion classes are 0—flat.

Further Applications:

@ Free abelian groups (spaces of commuting matrices)
@ Crystallographic groups (rational results)

Thank You!
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