On the theory of derivators A few monoidal aspects

Moritz Groth

Mathematisches Institut Universität Bonn

04.08.2011, Structured Ring Spectra, Hamburg

イロン イボン イヨン イヨン

ъ

Moritz Groth On the theory of derivators

イロト イ団ト イヨト イヨト

2

Homotopy Categories Are Strong Truncations

- \mathcal{M} : stable model category
- $Ho(\mathcal{M})$: associated homotopy category
- $\mathcal{M} \dashrightarrow \mathsf{Ho}(\mathcal{M})\;$ results in loss of information

Structure on $Ho(\mathcal{M})$:

- fiber and cofiber sequences
- triangulated structure
- some homotopy colimits, but only non-canonically

Problem: 'Diagrams in $Ho(\mathcal{M})$ do not carry enough information in order to canonically define their homotopy (co)limits'

ヘロン 人間 とくほ とくほ とう

Prederivators: Form Many Homotopy Categories

'Solution': Consider diagrams before passing to homotopy categories, i.e., replace $Ho(\mathcal{M})^J$ by $Ho(\mathcal{M}^J)$

- to a small category J associate $Ho(\mathcal{M}^J) = \mathbb{D}_{\mathcal{M}}(J)$
- a functor u: J → K induces a restriction functor
 D_M(u) = u^{*}: Ho(M^K) → Ho(M^J)
- we obtain that way a 2-functor $\mathbb{D}_{\mathcal{M}} \colon Cat^{op} \to CAT$

Definition

A prederivator is a 2-functor \mathbb{D} : Cat^{op} \rightarrow CAT. $\mathbb{D}(e)$ is the underlying category, where *e* is the terminal category.

イロト 不得 とくほと くほとう

Derivators: Homotopically Bicomplete Prederivators

A prederivator \mathbb{D} is a *derivator* if:

- restriction functors u^{*}: D(K) → D(J) have adjoints on both sides: homotopy Kan extensions exist
- homotopy Kan extensions can be calculated as usual
- two more 'natural properties' hold true

Example

A model category \mathcal{M} has an underlying derivator $\mathbb{D}_{\mathcal{M}}$. A category induces a *represented prederivator* which is a derivator if and only if the representing category is bicomplete.

◆□ → ◆◎ → ◆臣 → ◆臣 → ○

A Hierarchy Of Such Structures

The theory of derivators admits the following hierarchy:

- derivators
- pointed derivators
- additive derivators
- stable derivators

In all three cases, one asks for additional *properties*, no additional *structure* is imposed.

Derivators themselves are organized in a (2-)category Der.

Monoidal Derivators

The 2-category Der of derivators has (2-)products, i.e., is *Cartesian monoidal* by the pointwise formula:

$$(\mathbb{D} \times \mathbb{E})(J) = \mathbb{D}(J) \times \mathbb{E}(J)$$

Definition

A *monoidal derivator* is a monoidal object in (Der, \times) .

- A monoidal derivator D: Cat^{op} → CAT factors canonically over the 2-category of monoidal categories.
- There is the notion of a module over a monoidal derivator.

ヘロト ヘアト ヘビト ヘビト

Linear Structures Induced By Actions

Example

Monoidal model categories and bicomplete monoidal categories induce monoidal derivators.

Proposition

An additive \mathbb{E} -module is canonically linear over the ring of selfmaps of the monoidal unit of the underlying monoidal category $\mathbb{E}(e)$. There is also a stable variant of this result.

Example

Let *E* be a (cofibrant) symmetric ring spectrum, the derivator of *E*-module spectra is linear over $\pi_* THH(E)$.

イロト イポト イヨト イヨト

э

A Conceptual Explanation Of Some Linear Structures

Theorem

The 2-category Der is Cartesian closed. In particular, for every derivator \mathbb{D} there is a monoidal derivator of endomorphisms $END(\mathbb{D})$.

Let now $\mathbb D$ be an additive $\mathbb E\text{-module}$ derivator.

- There is a canonical additive morphism of monoidal derivators E → END(D).
- We obtain an underlying additive, monoidal functor 𝔼(𝑛) → Hom(𝔅, 𝔅).
- Thus, there is a ring map $hom_{\mathbb{E}(e)}(\mathbb{S},\mathbb{S}) \to Z(\mathbb{D})$, where $Z(\mathbb{D})$ denotes the *center of* \mathbb{D} .

ヘロン ヘアン ヘビン ヘビン

As A Summary...

The theory of (pre)derivators is:

- simple, i.e., formal: everything reduces to (2-)category theory
- convenient: all axioms of a derivator ask for properties, the only actual structure is the prederivator
- a common generalization of category theory and homotopical algebra
- a theory of 'smart shadows of (∞, 1)-categories': combinatorial models can be reconstructed (non-canonically) from their underlying derivators

I thank you for your attention!!!

ヘロン 人間 とくほ とくほ とう