A spectral sequence for the homology of a finite algebraic delooping

Birgit Richter joint work in progress with Stephanie Ziegenhagen

Lille, October 2012

Aim:
1) Approximate Quillen homology for E_n -algebras by Quillen

homology of Gerstenhaber algebras.

Aim:			

2) Reduce this further to Quillen homology of graded Lie-algebras

1) Approximate Quillen homology for E_n -algebras by Quillen

and of commutative algebras, aka André-Quillen homology.

homology of Gerstenhaber algebras.

Aim:

1) Approximate Quillen homology for E_n -algebras by Quillen

homology of Gerstenhaber algebras.

2) Reduce this further to Quillen homology of graded Lie-algebras

and of commutative algebras, aka André-Quillen homology. 3) Apply this for instance to the Hodge decomposition of higher

order Hochschild homology (in the sense of Pirashvili).

 E_n -homology

A resolution spectral sequence

A Blanc-Stover spectral sequence

Hodge decomposition

Let C_n denote the operad of little n-cubes.

Then $(C_*C_n(r))_r$, $r \ge 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n .

Let C_n denote the operad of little n-cubes. Then $(C_*C_n(r))_r$, $r\geq 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n . For an augmented E_n -algebra A_* let \bar{A}_* denote the augmentation ideal.

Let C_n denote the operad of little n-cubes. Then $(C_*C_n(r))_r$, $r \ge 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n .

For an augmented E_n -algebra A_* let \bar{A}_* denote the augmentation ideal.

The sth E_n -homology group of \bar{A}_* , $H_s^{E_n}(\bar{A}_*)$ is then the sth derived functor of indecomposables of \bar{A}_* .

Let C_n denote the operad of little n-cubes.

Then $(C_*C_n(r))_r$, $r\geq 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n . For an augmented E_n -algebra A_* let \bar{A}_* denote the augmentation ideal.

The sth E_n -homology group of \bar{A}_* , $H_s^{E_n}(\bar{A}_*)$ is then the sth derived functor of indecomposables of \bar{A}_* .

I.e., it is Quillen homology of the E_n -algebra A_* .

Let C_n denote the operad of little n-cubes.

Then $(C_*C_n(r))_r$, $r \ge 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n .

For an augmented E_n -algebra A_* let \bar{A}_* denote the augmentation ideal.

The sth E_n -homology group of \bar{A}_* , $H_s^{E_n}(\bar{A}_*)$ is then the sth derived functor of indecomposables of \bar{A}_* .

I.e., it is Quillen homology of the E_n -algebra A_* .

Theorem [Fresse 2011]

There is an *n*-fold bar construction for E_n -algebras, B^n , such that

$$H^{E_n}_s(\bar{A}_*) \cong H_s(\Sigma^{-n}B^n(\bar{A}_*)).$$

Let C_n denote the operad of little n-cubes.

Then $(C_*C_n(r))_r$, $r \ge 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n .

For an augmented E_n -algebra A_* let \bar{A}_* denote the augmentation ideal.

The sth E_n -homology group of \bar{A}_* , $H_s^{E_n}(\bar{A}_*)$ is then the sth derived functor of indecomposables of \bar{A}_* .

I.e., it is Quillen homology of the E_n -algebra A_* .

Theorem [Fresse 2011]

There is an *n*-fold bar construction for E_n -algebras, B^n , such that

$$H_s^{E_n}(\bar{A}_*) \cong H_s(\Sigma^{-n}B^n(\bar{A}_*)).$$

I.e., E_n -homology is the homology of an n-fold algebraic delooping.

Cartan (50s): $H_*^{E_n}$ of polynomial algebras, exterior algebras and some more.

Cartan (50s): $H_*^{E_n}$ of polynomial algebras, exterior algebras and some more.

Fresse (2011): X a nice space: $B^n(C^*(X))$ determines the cohomology of $\Omega^n X$.

Cartan (50s): $H_*^{E_n}$ of polynomial algebras, exterior algebras and some more.

Fresse (2011): X a nice space: $B^n(C^*(X))$ determines the cohomology of $\Omega^n X$.

Livernet-Richter (2011): Functor homology interpretation for $H_*^{E_n}$ for augmented commutative algebras.

Cartan (50s): $H_*^{E_n}$ of polynomial algebras, exterior algebras and some more.

Fresse (2011): X a nice space: $B^n(C^*(X))$ determines the cohomology of $\Omega^n X$.

Livernet-Richter (2011): Functor homology interpretation for $H_*^{E_n}$ for augmented commutative algebras.

 $H_*^{E_n}(\bar{A}) \cong HH_{*+n}^{[n]}(A; k)$, Hochschild homology of order n in the sense of Pirashvili.

Cartan (50s): $H_*^{E_n}$ of polynomial algebras, exterior algebras and some more.

Fresse (2011): X a nice space: $B^n(C^*(X))$ determines the cohomology of $\Omega^n X$.

Livernet-Richter (2011): Functor homology interpretation for $H_*^{E_n}$ for augmented commutative algebras.

 $H_*^{E_n}(\bar{A}) \cong HH_{*+n}^{[n]}(A; k)$, Hochschild homology of order n in the sense of Pirashvili.

Can we gain information about $HH_*^{[n]}(A; k)$, at least rationally?

Cartan (50s): $H_*^{E_n}$ of polynomial algebras, exterior algebras and some more.

Fresse (2011): X a nice space: $B^n(C^*(X))$ determines the cohomology of $\Omega^n X$.

Livernet-Richter (2011): Functor homology interpretation for $H_*^{E_n}$ for augmented commutative algebras.

 $H_*^{E_n}(\bar{A}) \cong HH_{*+n}^{[n]}(A; k)$, Hochschild homology of order n in the sense of Pirashvili.

Can we gain information about $HH_*^{[n]}(A;k)$, at least rationally? What is $H_*^{E_n}(\bar{A}_*)$ in other interesting cases such as Hochschild cochains, $A_* = C^*(B,B)$, or $A_* = C_*(\Omega^n X)$?

Setting

In the following k is a field, most of the times $k = \mathbb{F}_2$ or $k = \mathbb{Q}$. The underlying chain complex of A_* is non-negatively graded.

Setting

In the following k is a field, most of the times $k = \mathbb{F}_2$ or $k = \mathbb{Q}$. The underlying chain complex of A_* is non-negatively graded. Over \mathbb{F}_2 : n = 2; for \mathbb{Q} : arbitrary n.

Definition

A 1-restricted Lie algebra over \mathbb{F}_2 is a non-negatively graded \mathbb{F}_2 -vector space, \mathfrak{g}_* , together with two operations, a Lie bracket of degree one, [-,-] and a restriction, ξ :

Definition

A 1-restricted Lie algebra over \mathbb{F}_2 is a non-negatively graded \mathbb{F}_2 -vector space, \mathfrak{g}_* , together with two operations, a Lie bracket of degree one, [-,-] and a restriction, ξ :

These satisfy the relations

1. The bracket is bilinear, symmetric and satisfies the Jacobi relation

$$[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0$$
 for all homogeneous $a,b,c\in\mathfrak{g}_*$.

Definition

A 1-restricted Lie algebra over \mathbb{F}_2 is a non-negatively graded \mathbb{F}_2 -vector space, \mathfrak{g}_* , together with two operations, a Lie bracket of degree one, [-,-] and a restriction, ξ :

These satisfy the relations

1. The bracket is bilinear, symmetric and satisfies the Jacobi relation

$$[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0$$
 for all homogeneous $a,b,c\in\mathfrak{g}_*$.

2. The restriction interacts with the bracket as follows: $[\xi(a),b]=[a,[a,b]]$ and $\xi(a+b)=\xi(a)+\xi(b)+[a,b]$ for all homogeneous $a,b\in\mathfrak{g}_*$.

Definition

A 1-restricted Lie algebra over \mathbb{F}_2 is a non-negatively graded \mathbb{F}_2 -vector space, \mathfrak{g}_* , together with two operations, a Lie bracket of degree one, [-,-] and a restriction, ξ :

These satisfy the relations

1. The bracket is bilinear, symmetric and satisfies the Jacobi relation

$$[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0$$
 for all homogeneous $a,b,c\in\mathfrak{g}_*$.

- 2. The restriction interacts with the bracket as follows: $[\xi(a), b] = [a, [a, b]]$ and $\xi(a + b) = \xi(a) + \xi(b) + [a, b]$ for all homogeneous $a, b \in \mathfrak{g}_*$.
- 1-rL: The category of 1-restricted Lie algebras.

Definition

A 1-restricted Gerstenhaber algebra over \mathbb{F}_2 is a 1-restricted Lie algebra G_* together with an augmented commutative \mathbb{F}_2 -algebra structure on G_* such that the multiplication in G_* interacts with the restricted Lie-structure as follows:

Definition

A 1-restricted Gerstenhaber algebra over \mathbb{F}_2 is a 1-restricted Lie algebra G_* together with an augmented commutative \mathbb{F}_2 -algebra structure on G_* such that the multiplication in G_* interacts with the restricted Lie-structure as follows:

(Poisson relation)

[a,bc] = b[a,c] + [a,b]c, for all homogeneous $a,b,c \in G_*$.

Definition

A 1-restricted Gerstenhaber algebra over \mathbb{F}_2 is a 1-restricted Lie algebra G_* together with an augmented commutative \mathbb{F}_2 -algebra structure on G_* such that the multiplication in G_* interacts with the restricted Lie-structure as follows:

▶ (Poisson relation)

$$[a,bc] = b[a,c] + [a,b]c$$
, for all homogeneous $a,b,c \in G_*$.

(multiplicativity of the restriction)

$$\xi(ab)=a^2\xi(b)+\xi(a)b^2+ab[a,b]$$
 for all homogeneous $a,b\in G_*$.

1-rG: the category of 1-restricted Gerstenhaber algebras.

Definition

A 1-restricted Gerstenhaber algebra over \mathbb{F}_2 is a 1-restricted Lie algebra G_* together with an augmented commutative \mathbb{F}_2 -algebra structure on G_* such that the multiplication in G_* interacts with the restricted Lie-structure as follows:

▶ (Poisson relation)

$$[a,bc]=b[a,c]+[a,b]c, ext{ for all homogeneous } a,b,c\in G_*.$$

(multiplicativity of the restriction)

$$\xi(ab)=a^2\xi(b)+\xi(a)b^2+ab[a,b]$$
 for all homogeneous $a,b\in G_*$.

1-rG: the category of 1-restricted Gerstenhaber algebras. In particular, the bracket and the restriction annihilate squares: $[a,b^2]=2b[a,b]=0$ and $\xi(a^2)=2a^2\xi(a)+a^2[a,a]=0$. Thus if 1 denotes the unit of the algebra structure in G_* , then [a,1]=0 for all a and $\xi(1)=0$.

For a graded vector space V_* let $1rL(V_*)$ be the free 1-restricted Lie algebra on V_* .

For a graded vector space V_* let $1rL(V_*)$ be the free 1-restricted Lie algebra on V_* .

The free graded commutative algebra $S(1rL(V_*))$ has a well-defined 1-rG structure and is the free 1-restricted Gerstenhaber algebra generated by V_* :

For a graded vector space V_* let $1rL(V_*)$ be the free 1-restricted Lie algebra on V_* .

The free graded commutative algebra $S(1rL(V_*))$ has a well-defined 1-rG structure and is the free 1-restricted Gerstenhaber algebra generated by V_* :

$$1rG(V_*)=S(1rL(V_*)).$$

For a graded vector space V_* let $1rL(V_*)$ be the free 1-restricted Lie algebra on V_* .

The free graded commutative algebra $S(1rL(V_*))$ has a well-defined 1-rG structure and is the free 1-restricted Gerstenhaber algebra generated by V_* :

$$1rG(V_*)=S(1rL(V_*)).$$

For $G_* \in 1rG$ let $Q_{1rG}(G_*)$ be the graded vector space of indecomposables.

For a graded vector space V_* let $1rL(V_*)$ be the free 1-restricted Lie algebra on V_* .

The free graded commutative algebra $S(1rL(V_*))$ has a well-defined 1-rG structure and is the free 1-restricted Gerstenhaber algebra generated by V_* :

$$1rG(V_*)=S(1rL(V_*)).$$

For $G_* \in 1rG$ let $Q_{1rG}(G_*)$ be the graded vector space of indecomposables.

Note: $Q_{1rG}(G_*) = Q_{1rL}(Q_a(G_*)).$

Lemma

$$H_*(E_2(\bar{A}_*)) \cong 1rG(H_*(\bar{A}_*)).$$

Lemma

$$H_*(E_2(\bar{A}_*)) \cong 1rG(H_*(\bar{A}_*)).$$

Proof: Let X be a space. We have Cohen's identification of $H_*(C_2(X); \mathbb{F}_2)$.

Lemma

$$H_*(E_2(\bar{A}_*)) \cong 1rG(H_*(\bar{A}_*)).$$

Proof: Let X be a space. We have Cohen's identification of $H_*(C_2(X); \mathbb{F}_2)$. Observation by Haynes Miller: $H_*(C_2(X); \mathbb{F}_2) \cong 1rG(\bar{H}_*(X; \mathbb{F}_2))$. (Dyer-Lashof operations only give algebraic operations.)

Lemma

$$H_*(E_2(\bar{A}_*)) \cong 1rG(H_*(\bar{A}_*)).$$

Proof: Let X be a space. We have Cohen's identification of $H_*(C_2(X); \mathbb{F}_2)$.

Observation by Haynes Miller: $H_*(C_2(X); \mathbb{F}_2) \cong 1rG(\bar{H}_*(X; \mathbb{F}_2))$. (Dyer-Lashof operations only give algebraic operations.)

Take X with $\bar{H}_*(X; \mathbb{F}_2) \cong H_*(\bar{A}_*)$, then

$$H_*(E_2(\bar{A}_*)) \cong \bigoplus_r H_*(E_2(r) \otimes_{\mathbb{F}_2[\Sigma_r]} H_*(\bar{A}_*)^{\otimes r})$$

$$\cong \bigoplus_r H_*(E_2(r) \otimes_{\mathbb{F}_2[\Sigma_r]} \bar{H}_*(X; \mathbb{F}_2)^{\otimes r})$$

$$\cong H_*(C_2(X); \mathbb{F}_2) \cong 1rG(H_*\bar{A}_*).$$

Theorem

There is a spectral sequence

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{1rG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_2}(\bar{A}_*).$$

Theorem

There is a spectral sequence

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{1rG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_2}(\bar{A}_*).$$

Proof: Standard resolution $E_2^{\bullet+1}(\bar{A}_*)$.

Theorem

There is a spectral sequence

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{1rG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_2}(\bar{A}_*).$$

Proof: Standard resolution $E_2^{\bullet+1}(\bar{A}_*)$.

$$E_{p,q}^1: H_q^{E_2}(E_2^{p+1}(\bar{A}_*)) \cong H_q(E_2^p(\bar{A}_*))$$

Theorem

There is a spectral sequence

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{1rG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_2}(\bar{A}_*).$$

Proof: Standard resolution $E_2^{\bullet+1}(\bar{A}_*)$.

$$E_{p,q}^1: H_q^{E_2}(E_2^{p+1}(\bar{A}_*)) \cong H_q(E_2^{p}(\bar{A}_*))$$

$$H_q(E_2^p(\bar{A}_*)) \cong 1rG^p(H_*\bar{A}_*)_q \cong Q_{1rG}(1rG^{p+1}(H_*\bar{A}_*))_q.$$

Theorem

There is a spectral sequence

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{1rG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_2}(\bar{A}_*).$$

Proof: Standard resolution $E_2^{\bullet+1}(\bar{A}_*)$.

$$E_{p,q}^1: H_q^{E_2}(E_2^{p+1}(\bar{A}_*)) \cong H_q(\bar{E}_2^p(\bar{A}_*))$$

$$H_q(E_2^p(\bar{A}_*)) \cong 1rG^p(H_*\bar{A}_*)_q \cong Q_{1rG}(1rG^{p+1}(H_*\bar{A}_*))_q.$$

 d^1 takes homology wrt resolution degree.

Example

For X connected: $(\mathbb{L}_p Q_{1rG}(H_*(C_*(\Omega^2 \Sigma^2 X; \mathbb{F}_2)))_* = (\mathbb{L}_p Q_{1rG}(1rG(\bar{H}_*(X; \mathbb{F}_2)))_*.$

Example

For *X* connected:

$$(\mathbb{L}_p Q_{1rG}(H_*(C_*(\Omega^2 \Sigma^2 X; \mathbb{F}_2)))_* = (\mathbb{L}_p Q_{1rG}(1rG(\bar{H}_*(X; \mathbb{F}_2)))_*.$$
This reduces to $\bar{H}_*(X; \mathbb{F}_2)$ in the (P_*, Q_*) line and

This reduces to $\bar{H}_q(X; \mathbb{F}_2)$ in the (p = 0)-line and

$$H_q^{E_2}(\bar{C}_*(\Omega^2\Sigma^2X;\mathbb{F}_2))\cong \bar{H}_q(X;\mathbb{F}_2).$$

Rational case

The rational case is much easier:

Rational case

The rational case is much easier:

$$H_*(E_{n+1}\bar{A}_*) \cong nG(H_*(\bar{A}_*)),$$

the free *n*-Gerstenhaber algebra generated by the homology of \bar{A}_* .

Rational case

The rational case is much easier:

$$H_*(E_{n+1}\bar{A}_*) \cong nG(H_*(\bar{A}_*)),$$

the free $\emph{n}\text{-}\mathsf{Gerstenhaber}$ algebra generated by the homology of \bar{A}_* . We get:

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{nG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_{n+1}}(\bar{A}_*)$$

for every E_{n+1} -algebra \bar{A}_* over the rationals.

Let $\mathcal C$ and $\mathcal B$ be some categories of graded algebras (e.g., Lie, Com, n-Gerstenhaber etc.) and let $\mathcal A$ be a concrete category (such as graded vector spaces) and $T \colon \mathcal C \to \mathcal B$, $S \colon \mathcal B \to \mathcal A$.

$$E_{s,t}^2 = (\mathbb{L}_s \bar{S}_t)(\mathbb{L}_* T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$

Let $\mathcal C$ and $\mathcal B$ be some categories of graded algebras (e.g., Lie, Com, n-Gerstenhaber etc.) and let $\mathcal A$ be a concrete category (such as graded vector spaces) and $T\colon \mathcal C\to \mathcal B$, $S\colon \mathcal B\to \mathcal A$. If TF is is S-acyclic for every free F in $\mathcal C$, then there is a Grothendieck composite functor spectral sequence for all C in $\mathcal C$

$$E_{s,t}^2 = (\mathbb{L}_s \bar{S}_t)(\mathbb{L}_* T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$

▶ Note: T, S non-additive.

$$E_{s,t}^2 = (\mathbb{L}_s \bar{S}_t)(\mathbb{L}_* T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$

- ▶ Note: T, S non-additive.
- ▶ $\bar{S}_t(\pi_*B) = \pi_t(SB)$ if B is free simplicial; otherwise it is defined as a coequaliser.

$$E_{s,t}^2 = (\mathbb{L}_s \bar{S}_t)(\mathbb{L}_* T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$

- ▶ Note: T, S non-additive.
- ▶ $\bar{S}_t(\pi_*B) = \pi_t(SB)$ if B is free simplicial; otherwise it is defined as a coequaliser.
- ▶ \bar{S} takes the homotopy operations on π_*B into account (B a simplicial object in \mathcal{B}): π_*B is a Π - \mathcal{B} -algebra.

$$E_{s,t}^2 = (\mathbb{L}_s \bar{S}_t)(\mathbb{L}_* T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$

- ▶ Note: T, S non-additive.
- ▶ $\bar{S}_t(\pi_*B) = \pi_t(SB)$ if B is free simplicial; otherwise it is defined as a coequaliser.
- ▶ \bar{S} takes the homotopy operations on π_*B into account (B a simplicial object in \mathcal{B}): π_*B is a Π - \mathcal{B} -algebra.
- ▶ $\mathcal{B} = \textit{Com}$: $\pi_*(B)$ has divided power operations.

$$E_{s,t}^2 = (\mathbb{L}_s \bar{S}_t)(\mathbb{L}_* T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$

- ▶ Note: T, S non-additive.
- ▶ $\bar{S}_t(\pi_*B) = \pi_t(SB)$ if B is free simplicial; otherwise it is defined as a coequaliser.
- ▶ \bar{S} takes the homotopy operations on π_*B into account (B a simplicial object in B): π_*B is a Π -B-algebra.
- ▶ $\mathcal{B} = Com$: $\pi_*(B)$ has divided power operations. $\mathcal{B} = rLie$: π_*B inherits a Lie bracket and has some extra operations.

In our case

Theorem

▶ $k = \mathbb{F}_2$: For any $C \in 1rG$:

$$E_{s,t}^2 = \mathbb{L}_s((\bar{Q}_{1rL})_t)(AQ_*(C|\mathbb{F}_2,\mathbb{F}_2)) \Rightarrow \mathbb{L}_{s+t}(Q_{1rG})(C).$$

In our case

Theorem

▶ $k = \mathbb{F}_2$: For any $C \in 1rG$:

$$E_{s,t}^2 = \mathbb{L}_s((\bar{Q}_{1rL})_t)(AQ_*(C|\mathbb{F}_2,\mathbb{F}_2)) \Rightarrow \mathbb{L}_{s+t}(Q_{1rG})(C).$$

▶ For $k = \mathbb{Q}$ we get for all *n*-Gerstenhaber algebras C:

$$\mathbb{L}_{s}((\bar{Q}_{nL})_{t})(AQ_{*}(C|\mathbb{Q},\mathbb{Q})) \Rightarrow \mathbb{L}_{s+t}(Q_{nG})(C).$$

Let $HH_*^{[n]}(A;\mathbb{Q})$ denote Hochschild homology of order n or A with coefficients in \mathbb{Q} .

Over \mathbb{Q} , $HH_*^{[n]}(A;\mathbb{Q})$ has a decomposition, the *Hodge decomposition*:

Let $HH_*^{[n]}(A;\mathbb{Q})$ denote Hochschild homology of order n or A with coefficients in \mathbb{Q} .

Over \mathbb{Q} , $HH_*^{[n]}(A;\mathbb{Q})$ has a decomposition, the *Hodge decomposition*:

Theorem [Pirashvili 2000] For odd *n* we obtain

$$HH^{[n]}_{\ell+n}(A;\mathbb{Q}) = \bigoplus_{i+nj=\ell+n} HH^{(j)}_{i+j}(A;\mathbb{Q}).$$

Here $HH_*^{(j)}(A;\mathbb{Q})$ is the j-th Hodge summand of ordinary Hochschild homology.

Let $HH_*^{[n]}(A;\mathbb{Q})$ denote Hochschild homology of order n or A with coefficients in \mathbb{Q} .

Over \mathbb{Q} , $HH_*^{[n]}(A;\mathbb{Q})$ has a decomposition, the *Hodge decomposition*:

Theorem [Pirashvili 2000] For odd *n* we obtain

$$HH^{[n]}_{\ell+n}(A;\mathbb{Q}) = \bigoplus_{i+nj=\ell+n} HH^{(j)}_{i+j}(A;\mathbb{Q}).$$

Here $HH_*^{(j)}(A;\mathbb{Q})$ is the *j*-th Hodge summand of ordinary Hochschild homology. For even n, however, the summands are different and described as follows in terms of functor homology:

$$HH_{\ell+n}^{[n]}(A;\mathbb{Q}) = \bigoplus_{i+nj=\ell+n} \operatorname{Tor}_i^{\Gamma}(\theta^j,\mathcal{L}(A,\mathbb{Q})).$$

Let $HH_*^{[n]}(A;\mathbb{Q})$ denote Hochschild homology of order n or A with coefficients in \mathbb{Q} .

Over \mathbb{Q} , $HH_*^{[n]}(A;\mathbb{Q})$ has a decomposition, the *Hodge decomposition*:

Theorem [Pirashvili 2000] For odd *n* we obtain

$$HH_{\ell+n}^{[n]}(A;\mathbb{Q}) = \bigoplus_{i+nj=\ell+n} HH_{i+j}^{(j)}(A;\mathbb{Q}).$$

Here $HH_*^{(j)}(A;\mathbb{Q})$ is the *j*-th Hodge summand of ordinary Hochschild homology. For even n, however, the summands are different and described as follows in terms of functor homology:

$$HH_{\ell+n}^{[n]}(A;\mathbb{Q}) = \bigoplus_{i+nj=\ell+n} \operatorname{Tor}_i^{\Gamma}(\theta^j,\mathcal{L}(A,\mathbb{Q})).$$

Here, $\theta^j[n]$ is the dual of the \mathbb{Q} -vector space that is generated by the $S \subset \{1, \ldots, n\}$ with |S| = j.

Relationship to Taylor towers

The groups $\operatorname{Tor}_{i}^{\Gamma}(\theta^{j},\mathcal{L}(A,\mathbb{Q}))$ are related to a variant of Goodwillie's calculus of functors for Γ -modules.

Relationship to Taylor towers

The groups $\operatorname{Tor}_{i}^{\Gamma}(\theta^{j},\mathcal{L}(A,\mathbb{Q}))$ are related to a variant of Goodwillie's calculus of functors for Γ -modules. Theorem [R.2000]

$$\operatorname{Tor}_i^{\Gamma}(\theta^j,\mathcal{L}(A,\mathbb{Q})) \cong H_i(D_j(\mathcal{L}(A,\mathbb{Q}))[1])$$

where D_j is the jth homogenous piece in the Taylor tower of $\mathcal{L}(A,\mathbb{Q})$

$$D_j(\mathcal{L}(A,\mathbb{Q}))_* = \operatorname{cone}_{*+1}(P_j(\mathcal{L}(A,\mathbb{Q})) \to P_{j-1}(\mathcal{L}(A,\mathbb{Q})))$$

with

$$\dots P_n(\mathcal{L}(A,\mathbb{Q})) \to P_{n-1}(\mathcal{L}(A,\mathbb{Q})) \to \dots \to P_1(\mathcal{L}(A,\mathbb{Q})) \to \mathbb{Q}.$$

Hodge summands as Quillen homology of Gerstenhaber algebras

Theorem Let A be a commutative augmented \mathbb{Q} -algebra. For all $\ell, k \geq 1$ and $m \geq 0$:

$$HH_{m+1}^{(\ell)}(A;\mathbb{Q})\cong (\mathbb{L}_m Q_{2kG}\bar{A})_{(\ell-1)2k}.$$

Hodge summands as Quillen homology of Gerstenhaber algebras

Theorem Let A be a commutative augmented \mathbb{Q} -algebra. For all $\ell, k \geq 1$ and $m \geq 0$:

$$HH^{(\ell)}_{m+1}(A;\mathbb{Q})\cong (\mathbb{L}_mQ_{2kG}\bar{A})_{(\ell-1)2k}.$$

$$\operatorname{Tor}_{m-\ell+1}^{\Gamma}(\theta^{\ell},\mathcal{L}(A;\mathbb{Q})) \cong (\mathbb{L}_{m}Q_{(2k-1)G}\bar{A})_{(\ell-1)(2k-1)}.$$

Idea of proof

First we prove a stability result

$$(\mathbb{L}_m Q_{nG}\bar{A})_{qn} \cong (\mathbb{L}_m Q_{(n+2)G}\bar{A})_{q(n+2)}.$$

Idea of proof

First we prove a stability result

$$(\mathbb{L}_m Q_{nG}\bar{A})_{qn} \cong (\mathbb{L}_m Q_{(n+2)G}\bar{A})_{q(n+2)}.$$

We show this by producing an isomorphism of the corresponding Blanc-Stover spectral sequences.

Idea of proof

First we prove a stability result

$$(\mathbb{L}_m Q_{nG}\bar{A})_{qn} \cong (\mathbb{L}_m Q_{(n+2)G}\bar{A})_{q(n+2)}.$$

We show this by producing an isomorphism of the corresponding Blanc-Stover spectral sequences.

The remaining argument is just a matching of the decomposition pieces in the Hodge decomposition and the resolution spectral sequence.