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REALIZABILITY OF ALGEBRAIC GALOIS EXTENSIONS
BY STRICTLY COMMUTATIVE RING SPECTRA

ANDREW BAKER AND BIRGIT RICHTER

Abstract. We discuss some of the basic ideas of Galois theory for commuta-
tive S-algebras originally formulated by John Rognes. We restrict our attention
to the case of finite Galois groups and to global Galois extensions.

We describe parts of the general framework developed by Rognes. Central
rôles are played by the notion of strong duality and a trace mapping con-
structed by Greenlees and May in the context of generalized Tate cohomology.
We give some examples where algebraic data on coefficient rings ensures strong
topological consequences. We consider the issue of passage from algebraic Ga-
lois extensions to topological ones by applying obstruction theories of Robinson
and Goerss-Hopkins to produce topological models for algebraic Galois exten-
sions and the necessary morphisms of commutative S-algebras. Examples such
as the complex K-theory spectrum as a KO-algebra indicate that more ex-
otic phenomena occur in the topological setting. We show how in certain
cases topological abelian Galois extensions are classified by the same Harrison
groups as algebraic ones, and this leads to computable Harrison groups for
such spectra. We end by proving an analogue of Hilbert’s theorem 90 for the
units associated with a Galois extension.

Introduction

We discuss some ideas on Galois theory for commutative S-algebras, also known
as brave new (commutative) rings, originally formulated by John Rognes. We
restrict ourselves to the case of finite Galois groups, although there are versions
for profinite groups, group-like monoids, and stably dualizable topological groups.
The Galois extensions which we consider are global in Rognes’ terminology, i.e., we
work in the stable homotopy category and not in dramatically localized versions of
it.

We begin in Part 1 by describing the general framework, first outlining the
generalization of ‘classical’ Galois theory of field extensions to commutative rings
and then some of the theory developed by Rognes. In our account, central rôles
are played by the notion of strong duality as discussed by Dold and Puppe [9]
and a certain trace mapping constructed by Greenlees and May in the context
of generalized Tate cohomology. Both of these are topological manifestations of
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properties of algebraic Galois extensions. We stress that this material is known to
Rognes and is systematically described in [26], and the presentation reflects our
approach to understanding his results rather than being original.

In the heart of our paper, Part 2, we consider the issue (raised by Rognes) of pas-
sage from algebraic Galois extensions to topological ones, i.e., given a commutative
S-algebra A and a G-Galois extension B∗ of A∗ = π∗(A) we investigate whether
this extension can be realized by a Galois extension B/A of S-algebras. We fo-
cus on specific situations where we can apply the recently developed obstruction
theories of Robinson and Goerss-Hopkins to produce topological models for alge-
braic Galois extensions and the necessary morphisms of commutative S-algebras.
In these situations, certain cohomological obstructions vanish for purely algebraic
reasons related to the Galois theory of the coefficient rings of the spectra involved.
However, examples such as KU as a KO-algebra (studied in Part 1) indicate that
more exotic phenomena can occur in the topological setting.

In Section 2.4 we investigate Kummer extensions of commutative S-algebras and
provide criteria that allow us to compare them with algebraic Kummer extensions.
In certain cases, for instance the C2-extensions of KO[1/2], topological abelian
Galois extensions are classified by the same Harrison groups as algebraic ones, and
this leads to computable Harrison groups for such spectra. An important technical
input is provided by some results about invertible module spectra and topological
Picard groups proved in [5]. We end by proving an analogue of Hilbert’s theorem 90
for the units associated with a Galois extension.

Part 1. Galois theory for commutative rings and ring spectra

1.1. Galois theory for commutative rings

We recall results on the Galois theory of commutative rings which are mainly
due to Chase, Harrison and Rosenberg [7] and also described by Greither [16]. The
notion of Galois extensions of commutative rings was first developed by Auslander
and Goldman in [3]; for further work on this see [12]. It is also possible to make
sense of these ideas in the context where R is a commutative graded ring and S is a
commutative R-algebra, and this will be important in the topological applications.

Let R be a commutative ring and S a commutative R-algebra. Suppose that
G � Aut(S/R), the group of all R-algebra automorphisms of S; we will indicate
the (left) action of γ ∈ G on s ∈ S by writing γs. We give the product S-algebra∏

γ∈G

S = {(sγ)γ∈G : sγ ∈ S}

the left G-action for which

α · (sγ)γ∈G = (sγα)γ∈G (α ∈ G).

We also have the S-algebra of functions f : G −→ S which has the left G-action

(α · f)(γ) = f(α−1γ) (α ∈ G).

There is a G-equivariant isomorphism of S-algebras

(1.1.1) Map(G, S) ∼=
∏
γ∈G

S; f ←→
(
f(γ−1)

)
γ∈G
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and a unique S-algebra homomorphism

(1.1.2) Θ: S ⊗R S −→
∏
γ∈G

S; Θ(u ⊗ v) = (uγv)γ∈G (u, v ∈ S),

which induces a G-equivariant homomorphism of S-algebras

Θ′ : S ⊗R S −→ Map(G, S)

that will be used without further remark.
There is an isomorphism of S[G]-modules

(1.1.3) Υ : S[G] −→ Map(G, S),

sending a generator γ to the Kronecker function δγ . Here, we use the left S-linear
G-action on the group ring S[G].

We denote the twisted group ring of S with G by S�G; this is the free S-module
on G with product given by

(sα)(tβ) = (s αt)(αβ) (s, t ∈ S, α, β ∈ G).

Then S�G is an R-algebra and there is an R-algebra homomorphism j : S�G −→
EndR(S) induced from the actions of S and G on S by R-module homomorphisms.

Definition 1.1.1. S/R is a G-Galois extension if it satisfies the following condi-
tions:

(G-1) SG = R;
(G-2) Θ: S ⊗R S −→

∏
γ∈G S is an isomorphism.

Remark 1.1.2. (a) Condition (G-2) ensures that S is unramified with respect to R.
For instance, if C2 is a cyclic group of order 2, then Z −→ Z[i] is not a C2-Galois
extension: because of ramification at the prime 2, the map Θ is not surjective.
After inverting 2 we find that Z[1/2] −→ Z[1/2, i] is a C2-Galois extension. See
Example 2.2.8 for related phenomena.

(b) (G-2) can also be replaced by the requirement that Θ′ : S⊗RS −→ Map(G, S)
is an isomorphism.

Remark 1.1.3. Later we will consider G-Galois extensions of graded commutative
rings. By these we mean extensions of graded rings R∗ −→ S∗ together with an
action of G � AutR∗(S∗) such that the conditions of Definition 1.1.1 are satisfied.
Note that in these cases the G-action preserves the grading.

Theorem 1.1.4. Let R be a commutative ring and let S be a commutative R-
algebra with G � AutR(S) and assume that SG = R. Then the following conditions
are equivalent:

(a) S/R is a G-Galois extension.
(b) Θ: S ⊗R S −→

∏
γ∈G S is an epimorphism.

(c) There are finite sequences u1, . . . , un, v1, . . . , vn ∈ S for which
n∑

i=1

ui
γvi =

{
1 if γ = 1,

0 otherwise.

(d) S is a finitely generated projective R-module and j : S�G −→ EndR(S) is
an isomorphism.
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We define the trace of S/R to be the R-module homomorphism

trS/R : S −→ R; trS/R(s) =
∑
γ∈G

γs.

We will write tr = trS/R when no ambiguity is likely to result.
Recall that a ring is connected if its only idempotents are 0 and 1. Also recall

that given a left R[G]-module M , HomR(M, R) can be viewed as a left R[G]-module
with the contragredient G-action determined by

(γ · f)(m) = f(γ−1m) (f ∈ HomR(M, R), γ ∈ G, m ∈ M).

Theorem 1.1.5. For a G-Galois extension S/R, the following hold:
(a) S is faithfully flat over R.
(b) tr : S −→ R is an epimorphism.
(c) The unit R −→ S is a split monomorphism of R-modules.
(d) If R and S are both connected, then Aut(S/R) = G.
(e) For any commutative R-algebra T , T ⊗R S/T is a G-Galois extension.
(f) S is a finitely generated projective invertible R[G]-module, hence it is of

constant rank 1. Furthermore, S is self-dual, i.e., S∗ = HomR(S, R) ∼= S
as R[G]-modules.

Remark 1.1.6. (i) The proof of (f) makes use of the trace pairing

S ⊗R S
mult−−−→ S

trS/R−−−→ R

to establish the self-duality and projectivity (see [7, Theorem 4.2]). In Section 1.3
we will discuss a more abstract setting in which such duality occurs; in particular,
the self-duality of a Galois extension forces it to be self-dual in the categorical sense
we will describe (this is a special case of [22, Lemma 2.9], where the relationship
between these notations is also studied in detail).

(ii) When R contains non-trivial idempotents, Theorem 1.1.5(d) need not be
true. For example, if G has order 2 and S = R×R is the trivial G-extension, then
given any non-trivial idempotent e ∈ R, the map

ϕ : R × R −→ R × R; ϕ(x, y) = (xe + y(1 − e), x(1 − e) + ye)

is an R-algebra isomorphism which is not induced by an element of G.

Condition (f) has an important group cohomological consequence. First recall
the following well-known observation about group cohomology (for example, see [28,
Example 6.1.2]).

Lemma 1.1.7. For any ring R and R[G]-module M ,

H∗(G; M) = Ext∗ZG(Z, M) ∼= Ext∗R[G](R, M).

Then we have

Proposition 1.1.8. Let S/R be a G-Galois extension. Then

H∗(G; S) = H0(G; S) = R.

Proof. By Lemma 1.1.7,

H∗(G; S) = Ext∗R[G](R, S).

Recall from Theorem 1.1.5(f) that S is finitely generated, self-dual and projective as
an R[G]-module, and it is also finitely generated and projective as an R-module. As
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S is a retract of a finitely generated free R[G]-module, it suffices to prove the claim
for R[G]. As R[G] ∼= Map(G, R), an adjunction argument proves the claim. �

For further results, as for instance the fundamental theorem of Galois theory in
this context see [7, 16, 12]. We follow [16] in making Definitions 1.1.9 and 1.1.11
below.

Definition 1.1.9. For a commutative ring R and a finite group G, let Gal(R, G)
denote the category of G-Galois extensions of R with morphisms the R-algebra
homomorphisms commuting with the actions of G.

Proposition 1.1.10. If S/R and T/R are two G-Galois extensions and ϕ : S −→ T
is an R-algebra homomorphism commuting with the actions of G, then ϕ is an
isomorphism. Hence Gal(R, G) is a (large) groupoid.

Proof. The proof of [16, Proposition 0.1.12] only applies when R has no non-trivial
idempotents, so for completeness we prove the general case.

First note that by parts (a) and (e) of Theorem 1.1.5, it suffices to replace S/R
and T/R by (S ⊗R T ⊗R S)/(S ⊗R T ) and (S ⊗R T ⊗R T )/(S ⊗R T ), and then note
that

S ⊗R T ⊗R S ∼=
∏
γ∈G

S ⊗R T ∼= S ⊗R T ⊗R T.

Thus we might as well assume that S = T =
∏

G R is the trivial G-Galois extension.
For each α ∈ G, there is an idempotent eα = (δα γ) ∈ S.

Now let
e′1 = ϕ(e1) =

∑
γ∈G

tγeγ

with tγ ∈ R. Then as ϕ commutes with the action of elements of G, for each α ∈ G
we have

e′α = ϕ(eα) = ϕ(α · e1) = αϕ(e1) =
∑
γ∈G

tα−1γeγ .

Thus the e′α form a complete set of orthogonal idempotents in S. Note that the eα

also form a basis for the free R-module S. The equation e′1e
′
1 = e′1 then shows that

t2γ = tγ and ∑
β

tβ =
∑

β

tβ
∑

γ

eγ =
∑
α,γ

tα−1γeγ =
∑
α

e′α = 1

proves that the tα also form a complete set of orthogonal idempotents in R.
Now for elements s ∈ S and xα ∈ R, consider the equation

(1.1.4)
∑
α∈G

xαe′α = s,

which is equivalent to ∑
α∈G

∑
γ∈G

xαtα−1γeγ = s.

Multiplying by eβ we obtain xαtα−1βeβ = rβeβ , where rβ ∈ R is the unique element
for which seβ = rβeβ . Thus for α, β ∈ G we have xαtα−1β = rβ. Multiplying
by tα−1β now gives xαtα−1β = rβtα−1β . Summing over β ∈ G we now obtain
xα =

∑
β∈G rβtα−1β , since

∑
β∈G tα−1β =

∑
γ∈G tγ = 1. Thus (1.1.4) has the

unique solution given by this formula. Hence ϕ is an isomorphism. �
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Because of the last result, we may define an equivalence relation ∼ on the objects
of Gal(R, G) by requiring that S/R ∼ T/R if and only if there is a morphism
ϕ : S −→ T in Gal(R, G). The equivalence classes are then the isomorphism classes
of G-Galois extensions of R.

Definition 1.1.11 (See [17] and [16, 3.2]). The Harrison set Har(R, G) is the set
of isomorphism classes of G-Galois extensions of R. When G is abelian, this is
naturally an abelian group often called the Harrison group.

There are some useful properties of this construction that will be required later.
Details can be found in [17, Theorem 4] or [16, Theorems 3.2, 3.3 and 3.5] or
supplied by the reader.

Proposition 1.1.12. Let R be a commutative ring.
(a) Har(R,−) defines a covariant functor

Har(R,−) : FinAbGps � AbGps

from finite abelian groups to abelian groups.
(b) Har(R,−) is left exact and is pro-representable.
(c) Har(R,−) preserves products, i.e., for finite abelian groups G and H there

is a natural isomorphism

Har(R, G × H) ∼= Har(R, G) × Har(R, H).

Of course, part (c) implies that Har(R,−) is determined by its values on cyclic
groups.

1.2. Abelian extensions and Kummer theory

In [17, 15, 16] a theory of abelian extensions of commutative rings was described,
including an analogue of Kummer theory. We will describe this algebraic theory,
and in Section 2.4 a topological analogue will be introduced. Our goal is to show
how Har(R, G) can be determined under certain conditions, making use of Propo-
sition 1.1.12, which reduces the problem to the case of cyclic groups.

Let R be a commutative ring containing 1/n and a primitive n-th root of unity
ζ. For a unit u ∈ R×, we set

R(n; u) = R[x]/(xn − u),

where x is an indeterminate. We will write z for the coset

z + (xn − u) ∈ R[x]/(xn − u).

Of course, for any t ∈ R× there is a canonical R-algebra isomorphism

R(n; tnu)
∼=−→ R(n; u); tx �→ x.

Note that R(n; u)/R is a Cn-Galois extension, where the action of the generator
γn ∈ Cn is given by

γn · x = ζx.

The set Kumn(R) of R-algebra isomorphism classes of such R(n; u) is an abelian
group with product on isomorphism classes given by

[R(n; u)][R(n; v)] = [R(n; uv)]



REALIZABILITY OF GALOIS EXTENSIONS BY RING SPECTRA 833

and whose unit is the class [R(n; 1)], where

R(n; 1) = R[x]/(xn − 1) =
n∏

i=1

R[x]/(x − ζi) =
∏
γ∈G

R

is the trivial G-Galois extension. Of course, Kumn(R) � Har(R, Cn). In fact there
is an isomorphism of groups

(1.2.1) R×/(R×)n ∼=−→ Kumn(R); u(R×)n �−→ [R(n; u)].

Now let S/R be a Cn-Galois extension. For k = 0, 1, . . . , n − 1, let

S(k) = {s ∈ S : γns = ζks} ⊆ S.

Then each S(k) is an R-submodule of S and is a summand, hence it is finitely
generated projective. Furthermore, the product in S gives rise to isomorphisms
S(k) ⊗R S(�) −→ S(k+�). In particular we obtain

n︷ ︸︸ ︷
S(1) ⊗R · · · ⊗R S(1) ∼=−→ S(1) ⊗R S(n−1) ∼=−→ S(0) = R.

This shows that S(1) is an invertible R-module which represents an element [S(1)]
of the Picard group Pic(R) whose order is a divisor of n; we write

Pic(R)[n] = {P ∈ Pic(R) : Pn = 1}.
Thus there is a group homomorphism

Har(R, Cn) −→ Pic(R)[n]; [S] �−→ [S(1)].

Now from [15, 16] we have

Proposition 1.2.1. There is an exact sequence of abelian groups

1 → R×/(R×)n −→ Har(R, Cn) −→ Pic(R)[n] → 1.

There is a generalization of these ideas to the case where G is any finite abelian
group and R contains 1/|G| as well as a primitive d-th root of unity ζ, where
d = lcm{|γ| : γ ∈ G} is the exponent of G. Presumably the following is known
to experts (it is hinted at in [15, 16]), but we give details since we know of no
convenient reference.

First note that as an R[G]-module, the group ring R[G] has a decomposition

(1.2.2) R[G] =
⊕

χ

R[G]eχ,

where the sum is over the characters χ ∈ Hom(G, 〈ζ〉) = Hom(G, R×). This de-
composition is effected by the orthogonal idempotents

(1.2.3) eχ =
1
|G|

∑
γ∈G

χ(γ−1)γ ∈ R[G]

which decompose 1. It is easily seen by direct calculation that the R-module
R[G]eχ = eχR[G] is free of rank 1.

Now for a G-Galois extension S/R as above there is a decomposition of R[G]-
modules

S =
⊕

χ

S(χ),

where S(χ) = eχS.
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Lemma 1.2.2. For characters χ1, χ2, the multiplication map S(χ1) ⊗R S(χ2) →
S(χ1χ2) is an isomorphism. Hence for each character χ, S(χ) is an invertible
R-module.

Proof. This is similar to the proof for the case of a cyclic group. The invertibility
comes about because each character χ has an inverse character χ defined by χ(γ) =
χ(γ)−1. �

The character group of G is the abelian group G◦ = Hom(G, Q/Z). Then G◦ is
finite of order |G| and G◦ ∼= Hom(G, 〈ζ〉). Now set

Pic(R, G) = Hom(G◦, Pic(R)) = Hom(G◦, Pic(R)[d]).

In order to give an estimate of Har(R, G), we state the following result. As we will
not use this result later on, we refrain from giving a proof.

Proposition 1.2.3. When G is abelian, there is a natural exact sequence of abelian
groups

0 → H2(G◦, R×) −→ Har(R, G) −→ Pic(R, G) → 0.

We now briefly discuss the graded version of Kummer theory. For a graded com-
mutative ring R∗, we have to distinguish between the cases where the characteristic
is two and the general case. In the former case the grading is easily dealt with, so
we concentrate on cases where two is not zero. Then the units of R∗ are in even
degrees only.

If we want to build the analogue of R(n; u) for a graded ring R∗, we need to
assume that the degree of u ∈ R×

∗ is divisible by 2n. Let Rr∗ be the subring of
R∗ of elements in degrees divisible by r. We can still identify Kumn(R∗) with a
quotient of units

R×
2n∗/(R×

2∗)
n ∼= Kumn(R∗).

We still obtain an eigenspace decomposition of every element in Har(R∗, Cn) and
therefore every Cn-Galois extension gives rise to a graded invertible module over
R∗ of order dividing n. Therefore we get a left-exact sequence

1 → R×
2n∗/(R×

2∗)
n −→ Har(R∗, Cn) −→ Pic(R∗)[n],

but not every element in Pic(R∗)[n] has to be in the image of Har(R∗, Cn). For in-
stance if R∗ is periodic such that R∗+n = R∗ with n even, then ΣR∗ is in Pic(R∗)[n]
but cannot come from a Cn-extension. However, if we restrict our attention to el-
ements in the Picard group which are concentrated in even degrees and of order
dividing n, the construction given in [16, p. 22] ensures that such elements stem
from the Harrison group.

1.3. Duality in a symmetric monoidal category

The Galois theory for commutative rings of Section 1.1 has some crucial aspects
which can be generalized to the context of symmetric monoidal categories. At the
heart of this are the notions of strong duality and self-duality, both of which are
visible in the above account. The appropriate notions are described in detail in [9],
and some aspects appear in [18, 19]. We give an account based on [9] but with
some modifications of notation.

Let C be a closed symmetric monoidal category with multiplication �, twist
map τ and unit I. We denote the internal homomorphism object on X, Y ∈ C by
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F (X, Y ) and write DX for F (X, I). For every X ∈ C we have a canonical evalu-
ation morphism ε = εX : DX � X −→ I which corresponds to idX ∈ C (X, X) ∼=
C (DX � X, I). An object X is weakly self-dual if X is isomorphic to DX. There
is always a map δ = δX : X −→ DDX which corresponds to

X � DX
τ−→∼= DX � X

ε−→ I.

Definition 1.3.1. An object X is reflexive if δX is an isomorphism.

We may define µ = µXY : DX � DY −→ D(Y � X) corresponding to the
composite

DX � DY � Y � X
id�εY �id−−−−−−→ DX � I � X ∼= DX � X

εX−−→ I.

Definition 1.3.2. An object X is strongly dualizable if it is reflexive and µX DX

is an isomorphism. This condition is equivalent to the requirement that the com-
position

DX � X
id�δX−−−−→ DX � DDX

µ−→ D(DX � X)

be an isomorphism, and this means that DX � X is canonically weakly self-dual.
If X is strongly dualizable and weakly self-dual, we call X strongly self-dual.

When X is strongly dualizable, the coevaluation η = ηX : I −→ X � DX is the
composite

I = DI
Dε−−→ D(DX � X)

µ−1

−−→∼= DX � DDX
id�δ−1

−−−−−→∼=
DX � X

τ−→∼= X � DX.

The following result taken from [9, Theorem 1.3] summarizes the main properties
of duality.

Theorem 1.3.3. Let X be an object of C and ε : DX � X −→ I the evaluation.
Then the following conditions are equivalent:

(a) X is strongly dualizable.
(b) There is a morphism η : I −→ X�DX for which the following compositions

are the identity morphisms idX and idDX , respectively:

idX : X ∼= I � X
η�idX−−−−→X � DX � X

idX�ε−−−−→ X � I ∼= X,(1.3.1a)

idDX : DX ∼= DX � I
idDX�η−−−−−→DX � X � DX

ε�idDX−−−−−→ I � DX ∼= DX.(1.3.1b)

(c) For every pair of objects U and V , the map

ϕUV : C (U, V � DX) → C (U � X, V ),

which sends f : U −→ V � DX to the composite

U � X
f�idX−−−−→ V � DX � X

idV �ε−−−−→ V � I ∼= V,

is a bijection.
Furthermore, if these conditions are satisfied, then the morphism η of (b) is nec-
essarily the coevaluation and the bijection ϕUV of (c) sends η to the composition
I � X ∼= X

idX−−→ X.

We end this section with a useful result mentioned in the proof of [21, Theo-
rem XVI 7.4].
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Proposition 1.3.4. Let C be closed and let X be strongly dualizable in C . Suppose
that R is a retract of X with maps j : R −→ X and r : X −→ R satisfying rj =
idR : R −→ R. Then R is strongly dualizable with the natural evaluation ε′ : DR �
R −→ I and coevaluation given by the composite

η′ : I
η−→ X � DX

r�j∗

−−−→ R � F (R, I),

where j∗ : DX −→ DR is dual to j : R −→ X.

1.4. Brave new Galois extensions

The notion of a Galois extension in the context of the commutative S-algebras
of [11] was introduced by John Rognes. We restrict our attention to the case of
finite Galois groups, and all Galois extensions which we consider are ‘global’, i.e.,
we work in the unlocalized setting.

Given a commutative S-algebra A, we will work in the categories of A-modules
MA and its derived category DA. These categories are complete and symmetric
monoidal under the smash product ∧A. In DA, an A-module L has as a weak dual
DAL = FA(L, A).

Then L is strongly dualizable if for every A-module M , FA(L, M) ∼ FA(L, A)∧A

M , while L is strongly self-dual if in addition FA(L, A) ∼ L.
The following useful result on strongly dualizable objects in DA is taken from

[18, §2] (see also [21] and [22]).

Proposition 1.4.1. Let X be an A-module. Then X is strongly dualizable in DA

if and only if it is weakly equivalent to a retract of a finite cell A-module.

Our next definition is of course suggested by the algebraic notion of faithful
flatness.

Definition 1.4.2. An A-module N is faithful (as an A-module) if whenever M is
an A-module for which N ∧A M ∼ ∗, then M ∼ ∗.

Remark 1.4.3. If N is faithful, then the homology theory NA
∗ (−) = π∗(N ∧A −)

detects weak equivalences since a morphism of A-modules f : M −→ M ′ is a weak
equivalence if and only if the induced homomorphism f∗ : NA

∗ M −→ NA
∗ M ′ is an

isomorphism.

We can now give the key definition of a Galois extension essentially due to
Rognes [26].

Definition 1.4.4. Let A be a commutative S-algebra and let B be a commutative
cofibrant A-algebra. Let G be a finite (discrete) group and suppose that there is
an action of G on B by commutative A-algebra morphisms. Then B/A is a weak
G-Galois extension if it satisfies the following two conditions:
(BNG-1) The natural map A −→ BhG = F (EG+, B)G is a weak equivalence of

A-algebras.
(BNG-2) There is a natural equivalence of B-algebras Θ: B ∧A B

∼−→ F (G+, B)
induced from the action of G on the right hand factor of B.

B/A is a G-Galois extension if it also satisfies

(BNG-3) B is faithful as an A-module.
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In fact Rognes does not insist on (BNG-3), but calls extensions satisfying (BNG-
1) and (BNG-2) Galois extensions and adds faithfulness as a requirement whenever
needed. So far, there are no known examples of Galois extensions which are not
faithful.

In (BNG-2), we use the topological analogue of the map Θ from (1.1.2). We also
consider the maps γ̃ defined in (1.4.5). These have product

(1.4.1) B ∧A B −→
∏
γ∈G

B.

The following base-change results can be found in [26, §7].

Proposition 1.4.5. Let A be a commutative S-algebra and let A −→ B and A −→
C be maps of commutative S-algebras.

(a) C ∧A B admits a canonical commutative C-algebra structure.
(b) If G acts on B by A-algebra morphisms, then there is a canonical extension

of the action of G on B to one by C-algebra morphisms on C ∧A B.
(c) If G acts on B by A-algebra morphisms and C is strongly self-dual in DA

and C is faithful as an A-module, then B/A is a G-Galois extension if and
only if C ∧A B/C is a G-Galois extension.

Here are some examples. Proofs that these are actually Galois extensions can
be found in [26].

Example 1.4.6. For a commutative S-algebra A and finite group G, the morphism

A −→ F (G+, A) ∼=
∏
γ∈G

A

induced from the trivial action of G on A is the trivial G-Galois extension.

Example 1.4.7. Let R −→ S be a G-Galois extension in the algebraic sense of
Section 1.1. Then the natural morphism of Eilenberg-Mac Lane spectra HR −→
HS makes HS/HR into a G-Galois extension.

Example 1.4.8. Let EG be any contractible space on which G acts freely. Let
B/A be a G-Galois extension. Then F (EG+, B)/A is a G-Galois extension, and the
collapse map EG+ −→ S0 induces a morphism of A-algebras B −→ F (EG+, B)
commuting with the actions of G and which is an equivalence of B-algebras.

Example 1.4.9. Let ι : KO −→ KU be the complexification morphism which can
be given the structure of a morphism of commutative S-algebras.

The action of C2 = 〈γ2〉 originates in the action of the stable operation ψ−1

whose action on KU2n = Zun satisfies

γ2 · un = ψ−1(un) = (−1)nun.

Recall that

(1.4.2) KO∗ = Z[η, y, w, w−1]/(2η, η3, yη, y2 − 4w),

where η ∈ KO1, y ∈ KO4 and w ∈ KO8.
By the ‘Theorem of Reg Wood’ [1, p. 206], multiplication by the non-zero element

η ∈ KO1 induces a cofibre sequence of KO-modules

ΣKO
η−→ KO −→ KO ∧ cone(η)
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in which KO∧cone(η) ∼ KU as KO-modules. This makes it clear that KU is self-
dual in DKO since in DS we have D cone(η) ∼ Σ−2 cone(η). Then as KU -modules,
KU ∧KO KU ∼ KU ∧ cone(η). Using this equivalence, Rognes shows in [26] that
(BNG-2) holds.

Note that although KU∗ is not a projective module over KO∗, KU is in fact
faithful over KO since if M is a KO-module with KU ∧KO M ∼ ∗, then using the
cofibre sequence

ΣKO ∧KO M
η∧id−−−→ KO ∧KO M −→ KU ∧KO M

we see that ΣKO∧KO M
η∧id−−−→ KO∧KO M ∼= M is a weak equivalence. Now since

η ∈ KO1 is nilpotent, this implies that M ∼ ∗.

In the following, we state and prove some basic results about Galois extensions
which we will need later. These were stated by J. Rognes around 2000, and proofs
can now be found in [26, Lemmas 6.1.2, 6.4.3, Proposition 6.4.7].

Theorem 1.4.10. Let A and B be commutative S-algebras and let A −→ B be a
G-Galois extension. Then in the derived category of A-modules DA, the following
hold:

(a) B is strongly self-dual.
(b) For every B-module N , N ∧A B ∼ F (G+, N).
(c) For every B-module N , N ∧ G+ ∼ FA(B, N). In particular, B ∧ G+ ∼

FA(B, B).

Proof. In the proof we will make extensive use of notions developed in Section 1.3.
The key part is (a), the others follow by formal arguments involving strong duality,
and we omit these.

The idea is to emulate as far as possible the ideas used in proving the algebraic
results of Section 1.1. The most important ingredient is a (weak) trace morphism

B −→ BhG ∼−−→ A

which factorizes the symmetrization map
∑

γ∈G γ : B −→ B. A construction for
such a map can be found in [14, Theorem 5.10]. In our context (with BG denoting
the naive G-spectrum associated with B), this produces a homotopy commutative
diagram

(1.4.3) (BG ∧ G+)/G ∼= B

∑
γ∈G γ

��

(id∧inc)/G

��

tr

������������
B ∼ F (EG+, B)

(BG ∧ EG+)/G
τ

�� A ∼ BhG = F (EG+, BG)G

inc

��

and we take for our trace map the composition

(1.4.4) tr = trB/A = τ ◦ (id ∧ inc)/G : B −→ A.

It is straightforward to check that this is in fact a morphism of A-modules. Having
obtained a trace map, we can now define an evaluation map to be the trace pairing

ε : B ∧A B
mult−−−→ B

tr−→ A

which is a morphism of A-modules.
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Remarks 1.4.11.
(i) If BG is G-equivariantly of the form A ∧ G+, then it is known from [14,

Proposition 2.4] that the map τ in (1.4.3) is an isomorphism.
(ii) If N � G, then there is a homotopy factorization

trB/A ∼ trB/BhN trBhN /A .

We are grateful to J. Greenlees for showing us a verification of this formula.
(iii) We claim that the trace map tr : B −→ A is G-invariant in the sense that

for any γ ∈ G, the composition

B
γ−→ B

tr−→ A

is homotopic to tr.
Using the description in [14, pp. 38–42] we can write the trace map as the

composition

B ∼= (BG ∧ G+)/G

tr

��

(id∧i)/G �� (BG ∧ EG+)/G
τ̃ �� i∗i∗(BG ∧ EG+)G

ε

��
F (EG+, BG)G ∼ �� F (EG+, i∗i∗(BG))G i∗i∗(BG)GεG

��

We should mention that there is a G-action on (BG ∧ EG+)/G. We consider the
semidirect product G � G, where we take the conjugation action of G on itself.
Then G � G acts on BG ∧ EG+, and if we divide out by the normal subgroup, we
are still left with a G-action on the quotient. This is the G-action that Greenlees
and May use on (BG ∧ EG+)/G (see [14, p. 38]).

The map τ̃ is a transfer map and is natural, hence it is equivariant. We denote
by ε maps induced by the collapse map EG+ −→ S0. The last map is the unit
of the adjunction (i∗, i∗) defined in [14, Lemma 0.1]; this is an equivariant map
although it is not a weak equivalence in the equivariant setting. Therefore the
trace is G-invariant as claimed, and hence the self-duality of Theorem 1.4.10(a) is
given by a G-equivariant equivalence B −→ FA(B, A). This map is adjoint to the
trace pairing

B ∧A B
mult−−−→ B

tr−→ A

which is clearly equivariant if we take the diagonal G-action on B ∧A B.

We also need to produce a coevaluation η : A −→ B∧AB. Working in the derived
category DA, this is done using the map B −→ B∧AB implicit in condition (BNG-2)
of Definition 1.4.4 and splitting the multiplication map B ∧A B −→ B which corre-
sponds to projection onto the identity element component of

∏
γ∈G B ∼= F (G+, B).

The composition η : A −→ B −→ B ∧A B can be viewed as the unique element of
π0(B ∧A B) projecting to the element of (δγ,1) ∈

∏
γ∈G π0B, where

δα,β =

{
1 if α = β,

0 otherwise.

Now to show that B is strongly self-dual with evaluation ε and coevaluation η,
we have to verify condition (b) of Theorem 1.3.3. We need to check that when
P = B = Q, the compositions in the diagrams (1.3.1) are indeed the identity
morphisms.
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For each γ ∈ G, there is a map of A-ring spectra

(1.4.5) γ̃ : B ∧A B
id∧γ−−−→ B ∧A B

µ−→ B.

Recalling that as maps from B to B,

ι ◦ tr ∼
∑
γ∈G

γ,

we find that the composition in (1.3.1a) is∑
γ∈G

γ̃ ◦ (id ∧ mult) ◦ (η ∧ id) : B ∼= A ∧A B −→ B.

Since each γ̃ is a B-bimodule morphism and because of the way η was characterized
in terms of its projections under the γ̃, this composition is homotopic to∑

γ∈G

δγ,1γ = id.

A similar discussion applies to the composition in (1.3.1b). �

Remark 1.4.12. In general, in distinction to part (b) of Theorem 1.1.5, the trace
map tr = trB/A need not induce an epimorphism tr∗ : B∗ −→ A∗. For example,
in the case of KU/KO discussed in Example 1.4.9, the trace map tr agrees with
the realification map and tr∗(u) = η2. To see this, note that we are dealing with
KO-module maps KU −→ KO. Then by the self-duality of the KO-module KU ,

(1.4.6) π0FKO(KU, KO) ∼= π0FKO(KO, KU) ∼= π0KU ∼= Z.

This means that elements of DKO(KU, KO) ∼= π0FKO(KU, KO) are detected by
their induced effect on the free abelian homotopy groups π4nKU −→ π4nKO for
n ∈ Z, and using the KO∗-module structure we find that this is determined by the
homomorphism π0KU −→ π0KO. Thus it suffices to know the standard fact that
the realification map KU −→ KO induces 2: π0KU −→ π0KO.

When the order of the Galois group G is invertible in A∗, such anomalies do not
occur.

Proposition 1.4.13. Let A and B be commutative S-algebras and let A −→ B be
a weak G-Galois extension for which A∗ is a Z[1/|G|]-algebra. Then the following
hold:

(a) The unit A −→ B induces a monomorphism A∗ −→ B∗.
(b) The unit A −→ B and trace tr : B −→ A compose to an equivalence on A.

Hence an A-module M is a retract of B ∧A M . In particular, B is faithful.

Proof. (a) There is a spectral sequence

(1.4.7) Es,t
2 = Hs(G; Bt) =⇒ (BhG)t−s.

Under the above hypotheses, the E2-term is concentrated in the zero-line where
E0,t

2 = (Bt)G. Hence on homotopy groups, the unit induces the inclusion of the
fixed points of B∗.

(b) In the diagram of (1.4.3), precomposition of the top row with the unit
ι : A −→ B induces an equivalence tr ι : A −→ A. Thus the trace and unit are
split. It follows that an A-module M is a retract of B ∧A M . �

Part (b) of the last proposition implies the following.



REALIZABILITY OF GALOIS EXTENSIONS BY RING SPECTRA 841

Corollary 1.4.14. Let A and B be commutative S-algebras and let B/A be a weak
G-Galois extension for which A∗ is a Z[1/|G|]-algebra. Then B/A is a G-Galois
extension.

The following example is straightforward to verify. Let p be an odd prime. The
Johnson-Wilson spectrum E(1) agrees with the Adams summand of KU(p). Passing
to the p-completions, there is an action of Cp−1 on (KUp) (see [4, Theorem 9.2],
[13, §7]) that is easily seen to turn KUp into a weak Galois extension of E(1)p. We
can use Corollary 1.4.14 to obtain

Example 1.4.15. KUp/E(1)p is a Cp−1-Galois extension.

There is analogue of Proposition 1.1.10, namely

Proposition 1.4.16. Let B/A and C/A be G-Galois extensions and let ϕ : B −→ C
be a morphism of A-algebras which commutes with the action of G. Then ϕ is a
weak equivalence.

Proof. By the faithfulness of B and C, it suffices to check this for the morphism
ϕ̃ = id ∧ id ∧ ϕ between the G-Galois extensions B ∧A C ∧A B/B ∧A C and B ∧A

C ∧A C/B ∧A C. But then

B ∧A C ∧A B ∼
∏
γ∈G

B ∧A C ∼ B ∧A C ∧A C.

Now by construction, the map id ∧ Θ of Definition 1.4.4(BNG-2) is B ∧ C-linear,
hence ϕ̃ induces a BA

∗ C-algebra homomorphism

ϕ̃∗ :
∏
γ∈G

BA
∗ C −→

∏
γ∈G

BA
∗ C

which is G-equivariant, and by Proposition 1.1.10, this is an isomorphism. �

Part 2. From algebraic Galois extensions to brave new Galois
extensions

2.1. Topological realization of algebraic Galois extensions

Let A be a commutative S-algebra and let G be a finite group. Also recall
Proposition 1.1.10.

Theorem 2.1.1. If B∗ is a G-Galois extension of A∗, then there is a commutative
A-ring spectrum B realizing B∗ as π∗B and a homotopy action of G on B by
morphisms of A-ring spectra which induce the action of G on B∗. Furthermore, if
C∗ is also a G-Galois extension of A∗ and there is a G-isomorphism Φ: B∗ −→ C∗
of A∗-algebras, then there is a map of A-ring spectra ϕ : B −→ C which induces Φ.
It is G-equivariant up to homotopy.

Proof. By Theorem 1.1.4(d), B∗ is a finitely generated projective A∗-module, so we
can realize B∗ as the image of an idempotent e :

⊕n
i=1 ΣmiA∗ −→

⊕n
i=1 ΣmiA∗.

We can model the map e on a wedge of suspensions of A. Therefore the mapping
telescope of

(2.1.1)
∨

ΣmiA
e−→

∨
ΣmiA

e−→ · · ·

gives rise to an A-module spectrum B with π∗B ∼= B∗.
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The Künneth spectral sequence

(2.1.2) E2
p,q = TorA∗

p,q(B∗, B∗) =⇒ B A
p+qB

of [11] collapses to give

(2.1.3) BA
∗ B = B∗ ⊗A∗ B∗.

More generally, for each n � 2,

(2.1.4) π∗B
(n) ∼=

n−1︷ ︸︸ ︷
BA

∗ B ⊗B∗ BA
∗ B ⊗B∗ · · · ⊗B∗ BA

∗ B,

where ( )(n) denotes the n-fold smash product over A. This is projective, both as
an A∗-module and as a B∗-module.

From [11], for each A-module Y there is a universal coefficient spectral sequence

(2.1.5) Ep,q
2 = Extp,q

A∗
(π∗B

(n), Y∗) =⇒ Y p+q
A (B(n)).

By the projectivity of the first variable, this spectral sequence collapses to give

(2.1.6) Y ∗
A(B(n)) ∼= Hom∗

A∗(π∗B
(n), Y∗).

The product on B∗ is an element of HomA∗(π∗(B ∧A B), B∗) which corresponds
to a unique element of B0(B ∧A B). Since B∗ is a commutative A∗-algebra, this
product on B is homotopy associative, commutative and unital over A.

Similarly, the action of elements of G on B∗ induces a homotopy action of G
on B by morphisms of A-ring spectra.

Since B∗ is finitely generated and projective as an A∗-module, the relevant uni-
versal coefficient spectral sequence collapses, and for m, k ∈ N, n ∈ Z there are
isomorphisms

DA(B(k), ΣnC(m))
∼=−→ Homn

A∗((B∗)⊗k, (C∗)⊗m),

where ( )(k) denotes the k-fold smash product over A.
Let HomA∗−alg(B∗, C∗) denote the set of G-equivariant A∗-algebra maps from

B∗ to C∗, and let HomA∗−alg(B∗, C∗)G ⊆ HomA∗−alg(B∗, C∗) be the subset of G-
equivariant maps. The latter can be written as an iterated equalizer: first we obtain
HomA∗−alg(B∗, C∗) as the equalizer

HomA∗−alg(B∗, C∗) �� HomA∗(B∗, C∗)
�� �� HomA∗(B∗ ⊗A∗ B∗, C∗).

The projectivity of B∗ over A∗ therefore gives that HomA∗−alg(B∗, C∗) is the same
as the homotopy classes of maps of A-ring spectra from B to C, [B, C]A−ring.
Similarly, as G is finite we know that (G+ ∧ B)∗ is finitely generated projective
over A∗, and we obtain that the homotopy classes of G-equivariant maps of A-
ring spectra, [B, C]GA−ring, are the same as HomA∗−alg(B∗, C∗)G. The map Φ is an
element of the latter; therefore there is a realization ϕ : B −→ C, which is homotopy
G-equivariant and a map of A-ring spectra. �
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2.2. Realizing Galois extensions

In this section we will assume that the following two conditions hold.
(GE-1) A is a commutative S-algebra, and B is a commutative A-ring spectrum.

There is a homotopy action of the finite group G on B viewed as an A-
module, i.e., there is a homomorphism of monoids G −→ DA(B, B) which
is in fact an action by automorphisms of B as an A-ring spectrum, i.e., the
homomorphism G −→ DA(B, B) is compatible with the product µ : B ∧A

B −→ B in DA.
(GE-2) The A∗-algebra B∗ is a G-Galois extension with respect to the induced

action of G, thus the action of G on B∗ is effective, i.e., G � AutA∗(B∗),
and satisfies the axioms of a Galois action (see Definition 1.1.1).

For instance, these conditions are satisfied when we start with a situation as in
Theorem 2.1.1.

Proposition 2.2.1. As an A∗-algebra,

BA
∗ B = π∗(B ∧A B) ∼=

∏
γ∈G

B∗,

where the map is induced by that of (1.4.1). Hence BA
∗ B is an étale B∗-algebra.

Proof. Recalling (2.1.3), we see that

BA
∗ B ∼= B∗ ⊗A∗ B∗.

As the edge homomorphism in the Künneth spectral sequence (2.1.2) is multiplica-
tive, this is an isomorphism of A∗-algebras. Since B∗ is étale over A∗, B∗ ⊗A∗ B∗
is étale over B∗. Hence BA

∗ B is étale over B∗. �

Corollary 2.2.2. For any BA
∗ B-bimodule M∗ and BA

∗ B-module N∗, the Hochschild
cohomology and the Γ-cohomology of BA

∗ B relative to B∗ vanish, i.e.,

HH∗∗(BA
∗ B | B∗; M∗) ∼= M∗ and HΓ∗∗(BA

∗ B | B∗; N∗) = 0.

Proposition 2.2.3. Assume that A, B, G satisfy conditions (GE-1) and (GE-2).
Then the A-ring spectrum structure on B has a refinement to a commutative A-
algebra structure which is unique up to contractible choice.

Proof. We will use adaptations of the obstruction theory of Robinson to the relative
case. This approach has been set up to establish the existence of E∞ structures (or
equivalently commutative S-algebra structures) on spectra. Our aim is to establish
commutative A-algebra structures on a homotopy commutative A-ring spectrum B.

The geometric nature of Robinson’s obstruction groups as described in [23, §5]
ensures that the obstructions for imposing a commutative A-algebra structure on B
live in Γ-cohomology HΓ∗∗(BA

∗ B | B∗; B∗) of (B ∧A B)∗ relative to B∗. Using the
notation of [23, Definition 5.3], an n-stage for such a structure corresponds to action
maps

µm : ∇nTm �Σm

m︷ ︸︸ ︷
B ∧A · · · ∧A B −→ B

for m � n and certain compositions. As we have assumed that A∗ −→ B∗ is G-
Galois, we find that B∗ is A∗-projective; hence one obtains universal coefficient and
Künneth isomorphisms which identify B∗

A(B ∧A B) with HomB∗(B∗ ⊗A∗ B∗, B∗).
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The result is now immediate using the modified obstruction theory of Robin-
son [23, 24] and general properties of Γ-cohomology established by Robinson and
Whitehouse [25] for A −→ B, because B∗ ⊗A∗ B∗ is étale over B∗ and hence the
obstruction groups vanish. �

Now by making use of results of Robinson and Whitehouse [23, 24, 25], and
Goerss and Hopkins [13], we obtain

Theorem 2.2.4. Assume that A, B, G satisfy conditions (GE-1) and (GE-2). Then
the following hold:

(a) Each element γ ∈ G induces a morphism of A-algebras from B to B which
is unique up to contractible choice.

(b) The morphisms of part (a) combine to give an action of G on B by A-
algebra automorphisms.

(c) Suppose that A, C, G also satisfy the conditions of (GE-1) and (GE-2), thus
there is a unique A-algebra structure on C as in (a). If ϕ̃ : B −→ C is a
map of A-ring spectra which is G-equivariant up to homotopy, then there are
commutative A-algebras B′′ and C ′′ together with weak equivalences B ∼
B′′ and C ∼ C ′′. These weak equivalences are zigzags of weak equivalences
of commutative A-algebras which are G-equivariant up to homotopy. There
is a map of commutative A-algebras ϕ : B′′ → C ′′ which is strictly G-
equivariant and which induces ϕ̃.

Proof. For (a) and (b), the desired result comes from the triviality of the spectral
sequence for the homotopy of the derived space of commutative A-algebra self-maps
of B based at any choice of map in the A-algebra homotopy class of an element
of G realized as an A-algebra morphism. More precisely, we use the generalization
of [13, Theorem 4.5] to the setting of A-algebras and take E = X = Y = B. Note
that the description of B as in (2.1.1) ensures that B satisfies the Adams condition
required in [13, Definition 3.1].

Now we make a modification of [13, Definition 3.2], using as P the set of spectra
consisting of the A-sphere SA, B, their suspensions and finite wedges of these. As
B∗ is finitely generated A∗-projective, we have a universal coefficient isomorphism.

The second quadrant spectral sequence converging to the homotopy groups of
the derived space of self-maps of B in the category of E∞-algebras in A-modules,
mapE∞-A-alg(B, B), looks as follows. The E2-term is

Es,t
2 =

{
HomB∗-alg(B

A
∗ B, B∗) for (s, t) = (0, 0),

Ders
B∗(B

A
∗ B, ΩtB∗) for t > 0,

where Ders
B∗(B

A
∗ B, ΩtB∗) denotes the s-th derived functor of derivations into the

t-th shift of B∗ and HomB∗-alg(B
A
∗ B, B∗) are the morphisms of B∗-algebras from

BA
∗ B ∼= B∗⊗A∗B∗ to B∗. For s > 0 we know that Ders

B∗(B
A
∗ B, ΩtB∗) vanishes since

BA
∗ B is étale over B∗. The reader might wish to use the comparison result of [6]

to see that. In this case it provides an isomorphism between Ders
B∗(B

A
∗ B, Ω−tB∗)

and HΓs,t(BA
∗ B|B∗; B∗). There should be a direct proof as well. As a basepoint

for the derived mapping space mapE∞-A-alg(B, B), we take the identity map of B.
Since B∗ is G-Galois over A∗, each group element γ ∈ G gives rise to an element

in the morphism set HomB∗-alg(B
A
∗ B, B∗) which sends b1 ⊗ b2 to b1

γb2.
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Using the partially invisible corollary [13, Corollary to Theorem 4.5, analogous
to 4.4], we see that the vanishing of the obstruction groups Ders

B∗(B
A
∗ B, ΩsB∗) and

Ders+1
B∗

(BA
∗ B, ΩsB∗) implies that the Hurewicz map

π0(mapE∞-A-alg(B, B)) −→ HomB∗-alg(B
A
∗ B, B∗)

is a bijection, hence each component is labelled by an element of the latter. (The
condition for surjectivity is stated in [13, Theorem 4.5].) Therefore the derived
mapping space mapE∞-A-alg(B, B) has contractible components, because for étale
algebras like BA

∗ B Gamma cohomology vanishes with arbitrary coefficients. In
addition we see that the group G is a submonoid of π0(mapE∞-A-alg(B, B)), in
particular every γ ∈ G gives a self-map of B in the homotopy category of E∞-A-
algebras. In the terminology of [10] (or of [8, Definition 2.1]) the diagram category
consisting of the group viewed as a one-object category gives rise to an h∞-diagram:
Let X(0) be B and for every γ ∈ G we obtain a self-map X(0, γ) of B. The path-
component of the image of γ is contractible. Using [8, Theorem 2.2] we can strictify
this diagram such that there is a weakly equivalent E∞-A-algebra B′ with a strict
G-action.

For part (c) the arguments are a little bit more involved. As we saw, we can re-
alize A-algebras B′ and C ′ with actual G-actions, such that B′ is weakly equivalent
to B and C ′ is weakly equivalent to C via maps of E∞-A-algebras. As ϕ̃ was a map
of A-ring spectra, it gives rise to a map ϕ of homotopy A-ring spectra from B′ to
C ′ which is G-equivariant up to homotopy. In particular, the map on C-homology,
C∗(ϕ), is a map of commutative C∗-algebras. As B∗ is étale over A∗ a base-change
argument implies that CA

∗ B ∼= C∗ ⊗A∗ B∗ is C∗-étale.
Using the Hurewicz argument again, C∗(ϕ) gives rise to a map ϕ′ of E∞-A-

algebras from B′ to C ′ which is still G-equivariant up to homotopy.
We claim that the following is an h∞-diagram: take X(0) = B′ and X(1) = C ′

as vertices, and for every group element γ ∈ G we get morphisms X(γ, 0) from X(0)
to itself and X(γ, 1) on X(1). We place the map ϕ′ : B′ −→ C ′ in the diagram as
a connection between X(0) and X(1):

X(0) = B′ ϕ′
��

X(γ,0)

��

X(γ′,0)

��

����X(γ′′,0) ����
C ′ = X(1)

X(γ,1)

��

X(γ′,1)

��

���� X(γ′′,1)����

For the element in π0 (mapE∞-A-alg(B, C)) corresponding to C∗(ϕ) we get an arrow
from X(0) to X(1) in the homotopy category of E∞-A-algebras. As every com-
ponent in mapE∞-A-alg(B, C) is contractible, one can strictify X to get a weakly
equivalent diagram X. By construction, these equivalences are maps of commu-
tative A-algebras which are G-equivariant up to homotopy. The arrow ϕ from
X(0) to X(1) is G-equivariant by construction and is a weak equivalence due to
three-out-of-four. �

Proposition 2.2.5. Assume that A, B, G satisfy conditions (GE-1) and (GE-2).
Then the trace map tr : B −→ A induces a surjection tr∗ : B∗ −→ A∗.
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Proof. As B∗/A∗ is G-Galois, the trace map is an epimorphism by Theorem 1.1.5(b).
�

Corollary 2.2.6. The unit A −→ B is split. Hence, B is faithful as an A-module.

Proof. Let b : A −→ B be an element of B0 = π0B for which tr∗(b) = 1. Then the
composition

B ∼ A ∧A B
b∧id−−−→ B ∧A B

mult−−−→ B
tr−→ A

splits the unit. Hence for any A-module M , M is a retract of B ∧A M , and so B
is faithful. �

Now we can state and prove the main result of this section.

Theorem 2.2.7. Assume that A, B, G satisfy conditions (GE-1), (GE-2). Then
B/A is a G-Galois extension.

Proof. Without loss of generality we can replace B by a cofibrant commutative
A-algebra: there is a functorial cofibrant replacement functor Q(−) (see [11, VII,
§§4, 5]); therefore Q(B) inherits the G-action from B. As π∗Q(B) ∼= B∗ is still
A∗-projective, Q(B) is unramified. In the following we write B instead of Q(B).

We use the homotopy fixed point spectral sequence

Es,t
2 = Hs(G; Bt) =⇒ (BhG)t−s

to ensure that B has the correct homotopy fixed points with respect to the G-action.
We suppress the internal grading to ease notation.

Now by Proposition 1.1.8,

E∗
2 = E0

2 = HomA∗G(A∗, B∗) ∼= (B∗)G = A∗.

Therefore π∗(BhG) ∼= A∗, and so BhG ∼ A. �
Example 2.2.8. For n � 1 and ζn� a primitive n�-th root of unity, we may consider
the ring Z[1/n, ζn� ] ⊆ C. The prime factors of the discriminant of Z[1/n, ζn� ]
over Z[1/n] are known to divide n, so Z[1/n, ζn� ] is unramified over Z[1/n]. Then
Z[1/n, ζn� ]/Z[1/n] is a (Z/n�)×-Galois extension, and there is an isomorphism of
Z[1/n, ζn� ]-algebras

Z[1/n, ζn� ] ⊗Z[1/n] Z[1/n, ζn� ] ∼=
∏

γ∈(Z/n�)×

Z[1/n, ζn� ].

For any commutative S-algebra A, by Theorem 2.1.1 we can give B = AZ[1/n, ζn� ]
the structure of a commutative A-ring spectrum. By applying Theorem 2.2.4, we see
that the ring A∗⊗Z[1/n, ζn� ] can be realized as the homotopy ring of a commutative
A[1/n]-algebra. Thus we find that B/A is a (Z/n�)×-Galois extension. This gives
a different approach to results of [27].

Example 2.2.9. For a prime p, let En denote the 2-periodic Lubin-Tate spectrum
whose homotopy ring is

(En)∗ = WFpn [[u1, . . . , un−1]][u, u−1],

where the ui are of degree zero and u is an element of degree −2. This is known to be
an algebra over the In-adic completion Ê(n) of the Johnson-Wilson spectrum E(n)
(see [4] for a proof that Ê(n) is commutative). On coefficients, the ring map from
Ê(n)∗ to (En)∗ is determined by vi �→ uiu

1−pi

. Then En/Ê(n) is a Cn �F×
pn -Galois

extension.



REALIZABILITY OF GALOIS EXTENSIONS BY RING SPECTRA 847

2.3. Topological Harrison groups

As we want to compare algebraic Galois extensions to topological ones, we pro-
pose the following definitions of Harrison sets for a commutative S-algebra A and
a finite group G.

Definition 2.3.1. We call two G-Galois extensions of A, B′ and B′′, weakly Har-
rison equivalent if there are commutative A-algebras with a homotopy G-action
(Bi)n

i=1 and commutative A-algebras with strict G-action (B′
i)

n−1
i=1 with weak equiv-

alences of A-algebras εi, ρi which are homotopy G-equivariant, as in the following
diagram:
(2.3.1)

B′ B′
1 B′

n−1 B′′

B1

ε1

���������� ρ1

		��������
B2

ε2

���������� ρ2



��������
···

ρn−1

		���������
Bn

εn

���������� ρn

		��������

We denote the set of such equivalence classes by Harw(A, G).

Definition 2.3.2. We call two G-Galois extensions of A, B′ and B′′ Harrison
equivalent if there are commutative A-algebras with a strict G-action (Bi)n

i=1 and
commutative A-algebras with strict G-action (B′

i)
n−1
i=1 with weak equivalences of A-

algebras εi, ρi which are G-equivariant and which fit diagram (2.3.1). Such equiv-
alence classes are denoted by Har(A, G).

Remark 2.3.3.
• The weak equivalence notion comes out of our realization result. We pro-

pose the definition of Har(A, G) as a compromise. It is strong enough to
prove structural results. Note that there is an obvious map

Har(A, G) −→ Harw(A, G).

• A map in the other direction would require us to replace A-algebras with
homotopy G-actions by A-algebras with strict G-action. This means that
we have to compare the mapping space of G-equivariant maps from EG
to the mapping space of A-algebra endomorphisms of an algebra spectrum
B with the mapping space of G-equivariant maps from a point to that
endomorphism space. This boils down to proving the Sullivan conjecture
for the endomorphism space of A-algebra maps on B.

Theorem 2.3.4. The constructions of the last section produce a map

(2.3.2) RealG : Har(A∗, G) −→ Harw(A, G).

Proof. We must show that the topological realization of an algebraic map Φ: B∗ −→
C∗ of G-Galois extensions is unique up to G-equivariant homotopy. Assume there
are two such realizations, ϕ and ψ, of Φ, which are maps of commutative A-algebras.
The connected components of mapE∞-A-alg(B, C) are labelled by the elements of
HomA∗−alg(B∗, C∗). Thus ϕ and ψ are in the same path-component, and a path
between these gives a homotopy H. The group action of G preserves the compo-
nents. Therefore any element g ∈ G applied to ϕ and ψ is again in that component,
and so is g applied to H. We connect ϕ with gϕg−1, and similarly ψ and H with
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their conjugates. Schematically this yields the following diagram:

ϕ

��

H�� ψ

��

gϕg−1
gHg−1
�� gϕg−1

As the components are contractible, we can fill in the rectangle whose boundary is
made out of homotopies. This proves that H is G-equivariant up to homotopy. �

Proposition 2.3.5. The Harrison set Har(A, G) is natural in G. When G is an
abelian group, then Har(A, G) is an abelian group as well.

Proof. We give a translation of Greither’s proof from [16] to the topological setting.
Given a group homomorphism ϕ : G −→ H, for a G-Galois extension B/A we define

ϕ∗B = F (H+, B)hG = F (EG+, F (H+, B))G,

the homotopy fixed points of the function spectrum F (H+, B) with the action
coming from the left G-action on H and B. Then ϕ∗B has a natural H-action
induced from the right action of H on itself.

Choose a free contractible left G-space EG and a free contractible left H-space
EH and also write E′H for EH with the trivial H-action but also viewed as a left
G-space through the homomorphism ϕ. We also view H as a left G-space via the
homomorphism ϕ and as a left H-space by inverse right multiplication. There is
a left G-action on H ×H EH induced from the action on the H factor, and the
isomorphism

H ×H EH ∼= E′H; [η, x] ←→ ηx

is G-equivariant.
Consider a chain of homomorphisms of groups G

ϕ−→ H
ψ−→ K. We have to prove

that

(2.3.3) ψ∗(ϕ∗B) ∼ (ψ ◦ ϕ)∗B.

To this end we have to compare F (K+, F (H+, B)hG)hH with F (K ′
+, B)hG, where

K ′ denotes K with the left action of G via ψ ◦ ϕ. There is a chain of equivalences

F (K+, F (H+, B)hG)hH = F (EH+, F (K+, F (EG+, F (H+, B))G))H

∼= F (EG × (H × EH) ×H K+, B)G

∼= F (EG × E′H × K ′
+, B)G

∼←− F (EG × K ′
+, B)G

∼= F (EG+, F (K ′
+, B))G = F (K ′

+, B)hG.

We consider B ∧A ϕ∗B. The left-hand factor of B has a trivial G-action, and B
is strongly dualizable. Hence it is equivalent to ϕ∗(B ∧A B) by the following chain
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of identifications:

B ∧A ϕ∗B = B ∧A F (EG+, F (H+, B))G

∼= B ∧A F ((EG × H)+, B)G

∼−→ F ((EG× H)+, B ∧A B)G

∼= F (EG+, F (H+, B ∧A B))G

= ϕ∗(B ∧A B).

Using Proposition 1.4.5(c) (or results of [26]) it is enough to check that B ∧A ϕ∗B
is an H-Galois extension of B.

In order to check this, we consider the two natural inclusions of the trivial group

G
i←↩ e

j
↪→ H.

It is obvious that i∗B ∼=
∏

G B and j∗B ∼=
∏

H B. Using naturality (2.3.3) and
ϕ ◦ i = j, we obtain

ϕ∗(B ∧A B) ∼= ϕ∗(
∏
G

B) ∼= ϕ∗(i∗B) ∼←− j∗B ∼=
∏
H

B.

Therefore ϕ∗B is unramified with respect to the H-action, and its H-homotopy
fixed points agree with A.

If we consider abelian Galois extensions, then the source and target in (2.3.2)
have abelian group structures. On the algebraic side, the map induced by the
abelian multiplication µ : G × G −→ G is a homomorphism which sends two G-
Galois extensions B∗/A∗ and C∗/A∗ to µ∗(B∗⊗A∗ C∗)/A∗. Since the multiplication
homomorphism is surjective, there is a short exact sequence

0 → K = kerµ −→ G × G
µ−→ G → 0,

and so using Harrison’s formula [17, p. 3] we obtain

µ∗(B∗ ⊗A∗ C∗) = (B∗ ⊗A∗ C∗)K .

Mimicking this in the geometric situation we set B · C = (B ∧A C)hK for any
abelian G-Galois extensions B and C of A. The proof that the induced map
ϕ∗ : Har(A, G) −→ Har(A, H) of every homomorphism between abelian groups
ϕ : G −→ H is a homomorphism only uses naturality and is analogous to the proof
of [16, 3.2]. �

Remark 2.3.6. Let A be a commutative S-algebra.
(a) The Harrison functor Har(A,−) restricted to abelian groups is additive: for

abelian groups G1 and G2,

Har(A, G1 × G2) ∼= Har(A, G1) × Har(A, G2).

(b) If G is an abelian group of exponent n, then multiplication by n is induced
by multiplication by n on G which factors through the trivial group, so

n Har(A, G) = 0.

It would be interesting to have a better understanding of the function out of
Har(A, G) into a subcategory of the category of A∗-algebras which sends a G-
Galois extension B/A to B∗/A∗. In Section 2.4 we investigate the corresponding
question for Harw(A, G) in the case where G is abelian.
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2.4. Topological Kummer theory

We will now describe analogous constructions to those of Section 1.2 when the
following conditions are satisfied.

Condition 2.4.1. A is a commutative S-algebra, and G is a finite abelian group
for which

• A0 contains 1/|G|;
• A0 contains a primitive d-th root of unity ζ, where d is the exponent of G;
• A0 is connected (i.e., it has no non-trivial idempotents).

By generalizing constructions of [27] as in Example 2.2.8 we can always arrange
for the second condition to hold whenever the first does. The third condition is not
strictly necessary but simplifies the ensuing discussion.

Theorem 2.4.2. Suppose that A and G satisfy Condition 2.4.1 and let B/A be a
G-Galois extension. If for every invertible A-module U , U∗ is an invertible graded
A∗-module, then B∗/A∗ is a G-Galois extension.

We will see later that the invertibility condition is not void in general. For a
more thorough treatment of the question of when invertible module spectra give
rise to invertible coefficients, see [5].

Proof. Note that there is a decomposition of the form (1.2.2),

A0[G] =
⊕

χ

A0(χ),

defined using idempotents eχ as defined in (1.2.3). By Theorem 1.4.10(c), B∧G+ ∼
FA(B, B). Each eχ is an element of A0[G] and can be realized by a map of A-
modules A → A ∧ G+. Composing this with the unit of B gives rise to a map

A −→ B ∧ G+ ∼ FA(B, B),

whose action on B can be iterated to produce an A-module B(χ) = eχB which is
well defined up to homotopy equivalence. There is a homotopy decomposition of
A-modules

(2.4.1) B ∼
∨
χ

B(χ).

As in the algebraic case, there are also pairings

(2.4.2) B(χ1) ∧A B(χ2) −→ B(χ1χ2).

Now smash with B and recall that B is a faithful A-module. We can consider
the extension B ∧A B/B which is equivalent to (

∏
γ∈G B)/B. The decomposition

analogous to that of (2.4.1),

B ∧A B ∼
∨
χ

(B ∧A B)(χ),

is induced from that of B by smashing with B and

(B ∧A B)(χ) ∼ B ∧A (B(χ)).
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For the product maps we also have homotopy commutative diagrams

B ∧A (B(χ1) ∧A B(χ2)) ��

��

B ∧A B(χ1χ2)

��
(B ∧A B(χ1)) ∧B (B ∧A B(χ2)) �� (B ∧A B)(χ1χ2)

so if we can show that the bottom maps are equivalences of B-modules, then since
B is a faithful A-module, the maps of (2.4.2) are equivalences of A-modules. But
the necessary verification is formally similar to that for the algebraic case proved
in [16] since in homotopy there is an isomorphism of A∗[G]-modules

π∗(B ∧A B) ∼=
∏
γ∈G

B∗.

Thus we have shown that the map of (2.4.2) is a weak equivalence. In particular,
each B(χ) is an invertible A-module. Now by assumption B(χ)∗ is an invertible
graded A∗-module and so is projective. From this we conclude that B∗ is a direct
sum of projective A∗-modules, and so the Künneth spectral sequence collapses to
give

BA
∗ B ∼= B∗ ⊗A∗ B∗,

and therefore
B∗ ⊗A∗ B∗ =

∏
γ∈G

B∗.

As the order of the group is inverted in A0 we also have

(B∗)G = (BhG)∗ = A∗,

and therefore B∗/A∗ is a G-Galois extension. �

Here is a reinterpretation of what we have established by combining Theo-
rems 2.2.4 and 2.4.2.

Theorem 2.4.3. Suppose that A and G satisfy Condition 2.4.1 and that the coef-
ficients of invertible A-modules are invertible graded A∗-modules. Then there is a
natural bijection of sets

RealA,G : Har(A∗, G)
∼=−→ Harw(A, G).

Therefore the weak Harrison set is actually a group, because it inherits the group
structure from the algebraic Harrison group.

Remark 2.4.4. Note that under the above assumptions taking homotopy groups
always gives a map from either Harrison set to Har(A∗, G), but for Har(A, G) we
do not obtain an isomorphism, because we do not have an inverse map.

We close this section with an example where one can classify all of the topological
Kummer extensions of an S-algebra.

Example 2.4.5. We have

Harw(KO[1/2], C2) ∼= C2 × C2 × C2.

To see this, first from (1.4.2) we see that

KO[1/2]∗ = Z[1/2][y, y−1],
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where y ∈ KO[1/2]4. As we established in [5] that invertible KO[1/2]-modules
have invertible coefficients, Theorem 2.4.3 yields

Harw(KO[1/2], C2) ∼= Har(Z[1/2][y, y−1], C2).

By Proposition 1.2.1, we find that

Harw(KO[1/2], C2) ∼= (Z[1/2][y, y−1])×/
(
(Z[1/2][y, y−1])×

)2

∼= C2 × C2 × C2,

with generators the cosets of −1, 2, y with respect to
(
(Z[1/2][y, y−1])×

)2.
This leads to three non-trivial C2-extensions of KO[1/2] with coefficient rings

KO∗[1/2, i], KO∗[1/2,
√

2], KO∗[1/2, i
√

2]

which correspond to the cosets of −1, 2,−2 and the arithmetic extensions

Z[1/2, i]/Z[1/2], Z[1/2,
√

2]/Z[1/2], Z[1/2, i
√

2]/Z[1/2].

The extension KU [1/2]/KO[1/2] corresponds to KO∗[1/2,
√

y/2]. There are three
more exotic extensions associated with the rings KO∗[1/2,

√
y], KO∗[1/2, i

√
2y]

and KO∗[1/2, i
√

y]. These are the Harrison products of KU [1/2] with the three
above.

Note that we can adjoin an 8-th root of unity to KO[1/2] and get a C2 × C2-
extension (see Example 2.2.8). By taking homotopy fixed points with respect to
subgroups we obtain the arithmetic C2-extensions listed above.

KO[1/2, ζ8]

�����������

												

KO[1/2, i]












 KO[1/2,
√

2] KO[1/2, i
√

2]

������������

KO[1/2]

2.5. Topological abelian extensions

In the following we will consider finite abelian extensions B/A without assuming
that the order of the Galois group G is invertible in A∗.

Theorem 2.5.1. For every finite abelian G-Galois extension B/A, B is an invert-
ible A[G]-module.

Proof. For G abelian we have a natural evaluation map

ε : FA[G](B, A[G]) ∧A[G] B −→ A[G].

We will prove that this map is an equivalence. As B is a faithful A-module, it
suffices to consider the map B ∧A ε instead. As B is dualizable over A and self-
dual, we can identify B ∧A FA[G](B, A[G]) ∧A[G] B with FA[G](B, B[G]) ∧A[G] B.
Inducing up to B then yields an equivalence with FB[G](B∧AB, B[G])∧B[G]B∧AB.
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Then B ∧A ε factors as in the following diagram:

B ∧A FA[G](B, A[G]) ∧A[G] B

∼
��

B∧Aε �� B ∧A A[G]

∼=
��

FA[G](B, B[G]) ∧A[G] B ��

∼=
��

B[G]

FB[G](B ∧A B, B[G]) ∧B[G] B ∧A B

∼ Θ

��
FB[G](B ∧A B, B[G]) ∧B[G] F (G+, B)

FB[G](B[G], B[G]) ∧B[G] B[G]

∼ Υ

��

∼=

��

Here we use the equivalence

B ∧A B
∼−−−−→
Θ

F (G+, B) ∼←−−−−
Υ

B[G],

where Υ is the topological analogue of (1.1.3), in particular it is an equivalence of
B[G]-modules. �

Example 2.5.2. The result of Theorem 2.5.1 gives rise to examples of invertible
A[G]-modules whose coefficient groups do not yield elements in the algebraic Pi-
card group Pic(A∗[G]). Consider for instance the C2-Galois extension KU/KO.
We know that KU is an invertible KO[C2]-module, but KU∗ is definitely not an
invertible KO∗[C2]-module, because it is not even projective.

The Harrison group Har(A, G) is related to the Picard group of the group ring
A[G]. We will make use of the constructions introduced in Proposition 2.3.5.

Theorem 2.5.3. There is a homomorphism

ΨG : Har(A, G) −→ Pic(A[G]).

In particular, for every finite abelian group G of exponent n, the image of ΨG is
contained in the n-torsion subgroup of Pic(A[G]).

Proof. For a finite abelian group G we define

ΨG : Har(A, G) −→ Pic(A[G]); ΨG([B]) = [B],

where the first equivalence class is in the Harrison group of G-Galois extensions
of A and the second denotes an isomorphism class in the homotopy category of
A[G]-modules. Whenever we have to choose a representing element B′ for [B]
in Pic(A[G]) it will be a cofibrant A[G]-module. Equivalent G-Galois extensions
over A are in particular equivalent A-modules with G-action; therefore ΨG is well
defined.

We have to show that it is a homomorphism, i.e., that the isomorphism class of
µ∗(B′∧AC ′) = (B′∧AC ′)hK coincides with that of B′∧A[G]C

′. Here µ : G×G −→ G
is the multiplication in G and K = kerµ, while B′ and C ′ are A[G]-cofibrant models
of B and C, respectively.
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If M is a cofibrant A-module, then EG+ ∧ M is a cofibrant model for M in the
category of A[G]-modules: the fibrations and weak equivalences in the categories
MA and MA[G] are defined via the forgetful functor to MS. Therefore if U denotes
the forgetful functor from MA[G] to MA, the lifting diagram

∗ ��

��

U(X)

U(f)

��
M

ξ




�� U(Y )

for any acyclic fibration f : X −→ Y in MA[G] has a G-equivariant extension

∗ ��

��

X

f

��
EG+ ∧ M

ξ

��

�� Y

and therefore we can identify B′ ∧A[G] C
′ with EG+ ∧B ∧A[G] EG+ ∧C and this in

turn is equivalent to (E(G×G)+ ∧B ∧A C)/K. We are left with the identification
of the homotopy orbits (E(G×G)+∧B∧A C)/K = (B∧A C)hK and the homotopy
fixed points.

As B and C are both dualizable over A, we obtain the chain of identifications

(B ∧A C) ∧A (B ∧A C)hK ∼(B ∧A C ∧A B ∧A C)hK ∼ (
∏

G×G

(B ∧A C))hK

∼(
∏

G×G

(B ∧A C))hK ∼ (B ∧A C) ∧A (B ∧A C)hK ,

and this shows that (B ∧A C)hK ∼ (B ∧A C)hK , since B ∧A C is faithful over
A. Here we use the fact that

∏
G×G(B ∧A C) is equivalent to a wedge of copies

of F (K+, B ∧A C) which is a free K-spectrum, and hence it has a trivial Tate
spectrum [14, Proposition 2.4].

By Remark 2.3.6(b), when G is an abelian group of exponent n, the image of
ΨG is contained in the n-torsion subgroup of Pic(A[G]). �

2.6. Units of Galois extensions

One instance of Hilbert’s theorem 90 involves the vanishing of the first coho-
mology of Galois groups with coefficients in the units of a field extension and the
straightforward identification of the fixed points of the units of the extension with
the units in the base field. Note that for a general G-Galois extension of rings S/R
Hilbert’s theorem 90 does not hold: instead of a vanishing result for the first group
cohomology, there is an exact sequence [7, §5],

0 → H1(G, S×) −→ Pic(R) −→ H0(G, Pic(S)) −→ H2(G, S×)

−→ Br(S/R) −→ H1(G, Pic(S)) −→ H3(G, S×),

in which Br(S/R) is the relative Brauer group. Examples of Galois extensions
with non-trivial H1(G, S×) are mentioned in [7, 5.5(d)]. We will prove a version of
Hilbert’s theorem 90 corresponding to the classical statement for invariants.

In the following we use the concept of units of ring spectra. These were in-
troduced by Patterson, Stong and Waldhausen, and their multiplicative properties
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were developed in [20]. More material on these is contained in the notes [2], and
we are grateful to M. Ando for providing them.

Definition 2.6.1. Let R be a ring spectrum. The units GL1(R) of the ring spec-
trum R are defined via the following homotopy pullback square:

GL1(R) ��

��

Ω∞(R)

��
(π0(R))× �� π0(R)

in which Ω∞(R) denotes the underlying infinite loop space of the Ω-spectrum as-
sociated to R, i.e., the zeroth space of the spectrum R.

The quotient map from the space Ω∞(R) to its path components is a fibration.
Therefore the units of R are given by an actual pullback square.

Now assume that R possesses an action of some finite group G by maps of ring
spectra. More precisely, let R be a naive G-spectrum with a coherent E∞-structure
in the sense of [19, VII, Def. 2.1]. We recall from [19, VII, Proposition 2.8] that the
zeroth space R(0) = Ω∞(R) inherits a G-E∞-structure from R.

The homotopy groups of R inherit the G-action as well. As everything takes place
in a setting of Ω-spectra, the zeroth homotopy group π0(R) is given by π0(Ω∞(R)).
The inclusion of the units into the full ring π0(R) is clearly G-equivariant, and so
is the quotient map from Ω∞(R) to π0(R).

Theorem 2.6.2. Assume that R is a G-ring spectrum as above and for which
π0(RhG) ∼= (π0(R))G. Then the homotopy fixed points of the units GL1(R) are
given by the units of RhG.

Proof. Taking the zeroth space of a spectrum commutes with homotopy fixed
points, because using the setting of [19, I, §3] we have the following chain of iden-
tifications:

(Ω∞(R))hG = F (EG+, Ω∞(R))G = F (EG+, R(0))G

= (F (EG+, R)(0))G = (F (EG+, R)G)(0)

= Ω∞(RhG).

By assumption, the homotopy fixed points of the discrete set π0(R) are

F (EG+, π0(R))G ∼= (π0(R))G ∼= π0(F (EG+, R)G),

and therefore the pullback for the homotopy fixed points of GL1(R) is the pullback
of the diagram

Ω∞(RhG)

��
(π0(RhG))× �� π0(RhG)

and by definition this is GL1(RhG). �

We now obtain a topological version of Hilbert’s theorem 90 as an immediate
consequence of the above result. Note that the following result also holds if B is
ramified over A.
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Corollary 2.6.3. Let G be a finite group and let A −→ B be a weak G-Galois
extension with (π0(B))G ∼= π0(A). Then

GL1(B)hG ∼ GL1(A).

The condition on the zeroth homotopy group is of course satisfied in the case
of a realization of an algebraic G-Galois extension of a commutative S-algebra. In
the special case of Eilenberg-Mac Lane spectra HR −→ HS the result gives the
classical identity (S×)G ∼= R×. The C2-Galois extension KU/KO also satisfies the
condition on π0 and so do the naturally occurring examples in [26, §5]. However,
there are examples where this condition is not satisfied: take A to be

∨
n∈Z

Σ2nKO
and take B to be ∨

n∈Z

Σ2nKO ∧KO KU ∼
∨
n∈Z

Σ2nKU.

Therefore π0(B)C2 consists of copies of the integers, whereas π0(A) contains sum-
mands Z/2Z.
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