Exercises in Algebra (master): Homological Algebra

Prof. Dr. Birgit Richter

Summer term 2018

Exercise sheet no 9

for the exercise class on the 20th of June 2018

 $\mathbf{1} \ (\text{Adjunctions}) \quad \text{Let} \ \mathcal{C} \underset{R}{\xleftarrow{L}} \mathcal{D} \ \text{be a pair of functors}.$

(1) Prove that L and R are adjoint to each other if and only if there are natural transformations $\varepsilon: LR \Rightarrow \mathrm{Id}_{\mathcal{D}}$ and $\eta: \mathrm{Id}_{\mathcal{C}} \Rightarrow RL$ such that the composites

$$L(C) \xrightarrow{L(\eta_C)} LRL(C) \xrightarrow{\varepsilon_{LC}} L(C) \text{ and } R(D) \xrightarrow{\eta_{R(D)}} RLR(D) \xrightarrow{R(\varepsilon_D)} R(D)$$

are the identity for all objects C of C and all D of \mathcal{D} .

- (2) Let \mathcal{A} and \mathcal{B} be abelian categories. Assume that an additive functor $R: \mathcal{A} \to \mathcal{B}$ is right adjoint to an exact functor L. Show that for any injective object I of \mathcal{A} the object R(I) is injective in \mathcal{B} . Dually, if an additive functor $L: \mathcal{B} \to \mathcal{A}$ is left adjoint to an exact functor R and if P is a projective object of \mathcal{B} , show that L(P) is projective in \mathcal{A} .
- (3) Let Top be the category of topological spaces and continuous maps. Show that the forgetful functor from Top to the category of sets, Sets, has both a left and a right adjoint.

2 (Hilbert's Theorem 90 for cyclic Galois extensions) Let $K \subset L$ be a Galois extension with $\langle t, t^n = 1 \rangle = C_n = \operatorname{Gal}(L/K)$. In the context of Galois extensions the *trace of an* $x \in L$ is the element $\operatorname{tr}(x) = x + tx + \ldots + t^{n-1}x$. Deduce from Hilbert's Theorem 90 that the inclusion $i: K \to L$ and the trace fit into an exact sequence

$$0 \longrightarrow K \xrightarrow{i} L \xrightarrow{t-1} L \xrightarrow{\mathrm{tr}} K \longrightarrow 0.$$

3 (Shapiro and transfer)

- (1) Let G be a finite group with |G| = n. Show that for any G-module M multiplication by n annihilates $H^k(G; M)$ and $H_k(G; M)$ for all $k \ge 1$.
- (2) We know by Shapiro's lemma that $H_*(C_3; \mathbb{Z}) \cong H_*(\Sigma_3; \operatorname{Ind}_{C_3}^{\Sigma_3}\mathbb{Z})$. Show that $\operatorname{Ind}_{C_3}^{\Sigma_3}\mathbb{Z}$ is isomorphic to a free abelian group on two generators and identify the corresponding Σ_3 -module structure on $\mathbb{Z} \oplus \mathbb{Z}$.