Exercises in Algebra (master): Homological Algebra

Prof. Dr. Birgit Richter

Summer term 2018

Exercise sheet no 7

for the exercise class on the 6th of June 2018

1 (Equivalence of extensions)

Let p be an odd prime and consider the extensions

$$0 \longrightarrow \mathbb{Z}/p \xrightarrow{p \cdot} \mathbb{Z}/p^2 \xrightarrow{\pi} \mathbb{Z}/p \longrightarrow 0$$

and

$$0 \longrightarrow \mathbb{Z}/p \xrightarrow{2p} \mathbb{Z}/p^2 \xrightarrow{\pi} \mathbb{Z}/p \longrightarrow 0$$

Prove that despite the fact that the middle group is the same, these two extensions are not equivalent.

2 (Some right derived things)

- (1) Let R be an arbitrary ring $\neq 0$. Show that $\operatorname{Ext}_{R}^{1}(P, M) = 0$ for all R-modules M is equivalent to P being a projective R-module. Dually, $\operatorname{Ext}_{R}^{1}(N, I) = 0$ for all R-modules N is equivalent to I being an injective R-module.
- (2) What are the Ext-groups $\operatorname{Ext}_{\mathbb{Z}}^*(\mathbb{Z}/n,\mathbb{Z}/m)$ for natural numbers n and m? Relate your answer to the first exercise above.
- (3) What is $\operatorname{Ext}_{\mathbb{Z}}^*(\mathbb{Q}, \mathbb{Z}/p)$ for p a prime?
- (4) Let A be a torsion abelian group. Show that $\operatorname{Ext}^{1}_{\mathbb{Z}}(A, \mathbb{Z}) \cong \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q}/\mathbb{Z}).$
- (5) Ist $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z}) = 0$?
- (6) Define the functor $T: Ab \to Ab$ by $T(A) = \ker(A \mapsto A \otimes \mathbb{Q})$, so T(A) is the torsion subgroup of A. Show that T is a left exact additive functor and calculate its right derived functors.

3 (Free groups) Let F_n be a free group on n generators with $n \ge 2$. Show that there is a free resolution of the trivial $\mathbb{Z}[F_n]$ -module \mathbb{Z} of length one, *i.e.*, a short exact sequence

$$0 \to P_1 \to P_0 \to \mathbb{Z} \to 0$$

such that P_1 and P_0 are free $\mathbb{Z}[F_n]$ -modules.