Exercises in Algebra (master): Homological Algebra

Prof. Dr. Birgit Richter Summer term 2018

Exercise sheet no 6

for the exercise class on the 30th of May 2018

1 (Tor-calculations)

Let A and B be finitely generated abelian groups. Describe $\operatorname{Tor}_n^{\mathbb{Z}}(A,B)$ for all $n \geq 0$.

2 (5-Lemma) Consider the following commutative diagram of exact sequences

$$A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} A_{4} \xrightarrow{\alpha_{4}} A_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} B_{4} \xrightarrow{\beta_{4}} B_{5}.$$

Under which assumptions on f_1 , f_2 , f_4 , f_5 can we deduce that the map f_3 is a monomorphism or an epimorphism? In particular, what assumptions are needed in order to ensure that f_3 is an isomorphism?

- 3 (Snake Lemma) https://www.youtube.com/watch?v=etbcKWEKnvg
 - (1) Use the long exact sequence in homology to prove the weak form of the Snake Lemma: If

is a commutative diagram with exact rows, then there is an exact sequence

$$0 \longrightarrow \ker(\alpha) \longrightarrow \ker(\beta) \longrightarrow \ker(\gamma)$$
$$\longrightarrow \operatorname{coker}(\alpha) \longrightarrow \operatorname{coker}(\beta) \longrightarrow \operatorname{coker}(\gamma) \longrightarrow 0.$$

Specify the maps.

(2) Prove the stronger form: If

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

$$\alpha \downarrow \qquad \beta \downarrow \qquad \gamma \downarrow \qquad \qquad 0$$

$$0 \longrightarrow N' \xrightarrow{h} N \xrightarrow{k} N''$$

is a commutative diagram with exact rows, then there is an exact sequence

$$\ker(\alpha) \longrightarrow \ker(\beta) \longrightarrow \ker(\gamma)$$

$$\longrightarrow \operatorname{coker}(\alpha) \longrightarrow \operatorname{coker}(\beta) \longrightarrow \operatorname{coker}(\gamma).$$