Exercises in Algebra (master): Homological Algebra

Prof. Dr. Birgit Richter

Summer term 2018

Exercise sheet no 3

for the exercise class on the 2nd of May 2018

1 (Kernels and friends) Let \mathcal{C} be an abelian category and let $f \in \mathcal{C}(A, B)$.

- (1) Show that
 - the kernel of f is a monomorphism and
 - the cokernel of f is an epimorphism.
- (2) Prove that the image of f is a kernel of the cokernel of f and that the coimage is a cokernel of the kernel of f.

2 ((Co)Products in poset categories) Let (X, \leq) be a poset and consider the associated category.

- What is an initial object in (X, \leq) and what is a terminal object in (X, \leq) ?
- What is a coproduct or product in (X, \leq) ? Find examples where these do not exist.

3 (Initial, terminal and zero objects)

- If $F: \mathcal{C} \to \mathcal{D}$ is an additive functor, does F map the zero object of $\mathcal{C}, 0_{\mathcal{C}}$, to a zero object of $\mathcal{D}, 0_{\mathcal{D}}$?
- Identify the initial and terminal objects in the following categories (if they exist):
 - (1) Sets, the category of sets and functions,
 - (2) Gr, the category of groups and homomorphisms of groups,
 - (3) Rings, the category of rings and morphisms of rings,
 - (4) R-mod, the category of R-modules, for R an arbitrary ring, and R-linear maps,
 - (5) \mathcal{E}_G , the translation category of G. Here G is a group and we let the objects of \mathcal{E}_G be the elements of G. As morphisms we have

$$\mathcal{E}_G(g,h) = \{hg^{-1}\}.$$