# Exercises in Algebra (master): Homological Algebra 

Prof. Dr. Birgit Richter

Summer term 2018

## Exercise sheet no 11

for the exercise class on the 4 th of July 2018

1 (Rows of the cyclic bicomplex) Each row of the cyclic bicomplex, $C C_{*, n}(A)$, is a chain complex.
(1) What are the homology groups of the row-complexes $C C_{*, n}(A)$ for all $n \geqslant 0$ ?
(2) What happens if the ground ring $k$ has $\mathbb{Q}$ as a subring?

2 (Even more structure on $\mathrm{HH}^{*}(A)$ ) Consider two elements $f \in C^{m}(A)$ and $g \in C^{n}(A)$ where $A$ is an associative $k$-algebra and $C^{*}(A)$ is the Hochschild cochain complex with coefficients in $A$. Define the operation of inserting $g$ into the $i$ th spot of $f$ :

$$
\left(f \circ_{i} g\right)\left(a_{1} \otimes \ldots \otimes a_{m+n-1}\right):=f\left(a_{1} \otimes \ldots \otimes a_{i-1} \otimes g\left(a_{i} \otimes \ldots \otimes a_{i+n-1}\right) \otimes a_{n+i} \otimes \ldots \otimes a_{m+n-1}\right)
$$

We consider

$$
f \circ g=\sum_{i=1}^{m}(-1)^{(i-1)(n-1)} f \circ_{i} g
$$

and the bracket given by the antisymmetrization of the o-product:

$$
[f, g]:=f \circ g-(-1)^{(m-1)(n-1)} g \circ f
$$

(1) Show that the coboundary in the Hochschild cochain complex $\delta(f)$ agrees with $-[f, \mu]$ where $\mu: A \otimes_{k}$ $A \rightarrow A$ is the multiplication map of $A$.
(2) You may use the fact, that the bracket induces a well-defined map on Hochschild cohomology (see Murray Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78, 1963, 267-288 for a proof):

$$
[-,-]: \mathrm{HH}^{m}(A) \otimes \mathrm{HH}^{n}(A) \rightarrow \mathrm{HH}^{m+n-1}(A)
$$

Make the bracket explicit on $\mathrm{HH}^{1}(A)$.
(3) The o-product interacts nicely with the cup-product. Prove that

$$
(f \cup g) \circ h=(f \circ h) \cup g+(-1)^{m(p-1)} f \cup(g \circ h)
$$

for $f, g$ as above and $h \in C^{p}(A)$.
On $\mathrm{HH}^{*}(A)$, the bracket $[-,-]$ defines a graded Lie-algebra structure that satisfies

$$
[f \cup g, h]=[f, h] \cup g+(-1)^{p(m-1)} f \cup[g, h] .
$$

Such a structure is called a Gerstenhaber algebra.
3 (Exact couples) Let $D, E$ be two $R$-modules for some ring $0 \neq R$. Assume that we have $R$-linear maps $i: D \rightarrow D, j: D \rightarrow E$ and $k: E \rightarrow D$ with $\operatorname{im}(i)=\operatorname{ker}(j), \operatorname{im}(j)=\operatorname{ker}(k)$ and $\operatorname{im}(k)=\operatorname{ker}(i)$. This is usually depicted as


Then $(D, E, i, j, k)$ is an exact couple. Define $d=j \circ k$.
(1) Show that $d^{2}=0$.
(2) Define $D^{\prime}=\operatorname{im}(i)=i D \subset D$ and let $E^{\prime}$ be the homology of $E$ with respect to $d$.

Set $i^{\prime}(i(x))=i(i(x))$ for $x \in D, j^{\prime}(i(x))=[j(x)]$, where $[j(x)]$ denotes the homology class of $j(x)$. Finally, let $k^{\prime}[y]$ be $k(y)$. Prove that the maps are well-defined and that $\left(D^{\prime}, E^{\prime}, i^{\prime}, j^{\prime}, k^{\prime}\right)$ is again an exact couple.

