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GALOIS EXTENSIONS OF LUBIN-TATE SPECTRA

ANDREW BAKER and BIRGIT RICHTER

(communicated by J. Michael Boardman)

Abstract
Let En be the n-th Lubin-Tate spectrum at a prime p. There

is a commutative S-algebra Enr
n whose coefficients are built from

the coefficients of En and contain all roots of unity whose order
is not divisible by p. For odd primes p we show that Enr

n does not
have any non-trivial connected finite Galois extensions and is
thus separably closed in the sense of Rognes. At the prime 2 we
prove that there are no non-trivial connected Galois extensions
of Enr

n with Galois group a finite group G with cyclic quotient.
Our results carry over to the K(n)-local context.

1. Introduction

For a prime p, let En be the Lubin-Tate spectrum whose coefficient ring is

π∗(En) = WFpn [[u1, . . . , un−1]][u±1],

where u is an element of degree −2 and the ui have degree zero. For a perfect field k,
Wk denotes the ring of Witt vectors of k. The ring WFpn [[u1, . . . , un−1]] represents
deformations of the height n Honda formal group law over Fpn . The spectrum E2

features prominently in the work of Goerss, Henn, Mahowald and Rezk [GHMR]
on the calculation of the homotopy groups of the K(2)-local sphere. Goerss, Hopkins
and Miller [Re, GH] establish an action of the extended Morava stabilizer group
Gn by E∞-maps on En. Work by Devinatz and Hopkins [DH] on homotopy fixed
point spectra identifies the K(n)-local sphere spectrum LK(n)S as the homotopy fixed
points of the action of Gn on En and Rognes [R, Section 5.4.1] interprets the map

LK(n)S ' EhGn
n −→ En

as a K(n)-local Galois extension with Galois group Gn.
As observed in [R, Section 5.4.1], there is a K(n)-local Galois extension En −→

Enr
n obtained by adjoining all roots of unity of order prime to p and then suitably

completing the result, so that

π∗(Enr
n ) = W F̄p[[u1, . . . , un−1]][u±1],

where F̄p is the algebraic closure of Fpn . See Section 2 for more details on Enr
n .
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Usually Enr
n is thought of as the maximal (abelian) unramified extension of En and

our goal is to investigate the extent to which it deserves this name. The coefficients do
not allow for non-trivial connected Galois extensions of graded commutative rings,
and we will show that there are no non-trivial connected finite Galois extensions
of Enr

n as a commutative S-algebra, at least if we work away from the prime 2.
Here, we use the notion of connectedness in the sense of Rognes [R, 10.2], thus a
connected commutative S-algebra is one without non-trivial idempotents. This is
crucial because for every commutative S-algebra A we can always consider the trivial
G-Galois extension A −→∏

G A for an arbitrary finite group G. We will recall some
basic facts about connectedness in Section 3.

Our main result confirms Rognes’ [R, Conjecture 1.4].

Theorem 1.1. For an odd prime p, let B/Enr
n be a finite Galois extension with non-

trivial Galois group. Then B is not connected. Hence Enr
n is a maximal connected

Galois extension of En.

For p = 2 we show that any finite Galois extension B/Enr
n whose Galois group has

a cyclic quotient is not connected. At the moment we are unable to prove that there
are no non-trivial connected Galois extensions of Enr

n at p = 2 with a Galois group
which has only finite simple non-abelian quotients.

This result extends our earlier work of [BR:2, Example 42], in which we showed
that each abelian Galois extension Enr

n −→ B with Galois group whose order is prime
to p gives rise to an algebraic Galois extension π∗(Enr

n ) −→ π∗(B), where the target
is concentrated in even degrees.

Rognes [R, Definition 10.3.1] calls a connected commutative S-algebra A separably
closed if there are no G-Galois extensions A −→ B with G finite and non-trivial and
B connected, i.e., if each finite G-Galois extension A −→ B has a trivial Galois group
or B not connected.

In this terminology we prove that for an odd prime p the spectrum Enr
n is separably

closed. We conjecture that it is also separably closed when p = 2.
In Section 7 we will show that our results hold K(n)-locally, i.e., that there are no

non-trivial connected K(n)-local Galois extensions with finite Galois group at odd
primes and with finite Galois group with cyclic quotient for the even prime.

So far, not many examples of separably closed commutative S-algebras are known.
In [R, Theorem 10.3.3], Rognes proves that the (unlocalised) sphere spectrum is
separably closed. His proof uses the fact that the ring of integers is separably closed,
see [R, Proposition 10.3.2]. We show that Enr

n is a separable closure of the sphere in
the K(n)-local category for all n and all odd primes p. Hovey and Strickland showed
that the K(n)-local category is irreducible, i.e., it has no non-trivial localising (or
colocalising) subcategories [HS, Section 7].

In [BR:3] we used the convention that for a Galois extension of commutative S-
algebras A −→ B it is assumed that B is faithful as an A-module in the sense of [R,
Definition 4.3.1]. For the investigation of possible Galois extensions of Enr

n we do not
need this assumption because we can exploit the fact that Enr

n has a residue field that
is a finite cell Enr

n -module spectrum. We are grateful to John Rognes who suggested
that line of argument. Therefore a G-Galois extension of commutative S-algebras
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A −→ B is understood to consist of the following data (compare [R, Definition 4.1.3]
and [BR:3, Definition 1.4.4]).

Let A be a commutative S-algebra and let B be a commutative cofibrant A-algebra.
Let G be a finite (discrete) group and suppose that there is an action of G on B by
commutative A-algebra morphisms. Then B/A is a G-Galois extension if it satisfies
the following two conditions:
• The natural map i : A −→ BhG = F (EG+, B)G is a weak equivalence of A-

algebras.
• The canonical map of B-algebras

h : B ∧A B −→ F (G+, B)

that is induced from the action of G on the right hand factor of B is an equiv-
alence.

If i and h are X-equivalences for some spectrum X, then B/A is called an X-local
G-Galois extension.

2. The spectrum Enr
n

For ease of reference, we provide some details on the spectrum Enr
n , expanding on

the discussion of [R, Section 5.4.1].
For each k > 1, using the methods of [SVW, BR:3], it follows that there is a

Galois extension WFpnkEn/En with Galois group Gal(Fpnk/Fpn) ∼= Ck and

π∗(WFpnkEn) = WFpnk ⊗WFpn π∗(En).

Whenever k | m, there is an En-algebra morphism WFpnkEn −→WFpnmEn which
on homotopy groups induces the obvious homomorphism obtained from the natural
inclusions WFpnk −→WFpnm . Taking the colimit in the category of commutative En-
algebras leads to a spectrum which is not K(n)-local, although each of the WFpnkEn

is K(n)-local since it is a finite wedge of copies of En. The homotopy ring

π∗(colim
k

WFpnkEn) ∼= colim
k

WFpnk [[u1, . . . , un−1]][u±1]

is Noetherian, regular and local. Let Kn denote the En-module spectrum En/m
with m denoting the maximal ideal (p, u1, . . . , un−1) in π0(En). The finiteness of
K ′ = colimk WFpnkKn over E′ = colimk WFpnkEn ensures that we can apply [BL,
Theorem 6.4] and obtain that

LE′
K′E′ = holim

k
E′/mk

and
π∗LE′

K′E′ = lim
k

(π∗E′)/mk = W F̄p[[u1, . . . , un−1]][u±1].

Finally, a Γ-cohomology obstruction theory argument similar to [RR, BR:1] applies
to show that LE′

K′E′ = Enr
n does indeed have a unique commutative En-algebra struc-

ture.
An alternative way to construct Enr

n is by considering the Honda formal group
law over F̄p and its deformation theory with respect to the complete local ring
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W F̄p[[u1, . . . , un−1]]. Then Goerss-Hopkins-Miller obstruction theory [GH, §7] shows
that Enr

n has a unique E∞-structure realizing (Enr
n )∗(Enr

n ) as a commutative π∗(Enr
n )-

algebra and also that Enr
n has an action of the group Sn o Ẑ via maps of E∞ ring

spectra. Rognes [R, 5.4.6] shows that

LK(n)S −→ Enr
n

is a K(n)-local profinite Galois extension.

3. Some results on Galois theory

We recall some facts about algebraic and topological Galois theory. We begin with
some algebraic results about Galois extensions of graded commutative rings. In the
following, G will always be a finite group.

Let R −→ S be a G-Galois extension of graded commutative rings. We include
the following discussion along the lines of [CHR, Theorem 1.3] at the suggestion of
the referee, because we do not know of any convenient source that states that in the
context of graded Galois extensions S is finitely generated projective over R. The
impatient reader is invited to move on directly to Proposition 3.3.

The unramified condition gives an isomorphism of S ⊗R S-modules

h : S ⊗R S
∼=−→

∏

G

S; x⊗ y 7→ (xg(y))g∈G,

where the bimodule structure on the right hand side is given by

a(tg)b = (atgg(b))g∈G.

Then there is a map

σ : S −→ S ⊗R S; x 7→ (x⊗ 1)h−1(δ1),

where for each g ∈ G, δg = (δg,h)h∈G is the element of
∏

G S which has zeros every-
where except for a one in the entry corresponding to g. It is easy to see that σ is
a bimodule map and when composed with the product µ : S ⊗R S −→ S we obtain
µσ = idS . So S is separable. In particular there is an idempotent

e = h−1(δ1) ∈ S ⊗R S,

and we can write

e =
∑

i

ui ⊗ vi

for some finite collection of elements ui, vi ∈ S. Notice that

δ1 = h(e) =
(∑

i

uig(vi)
)

g∈G

,

so for each g ∈ G we have

∑

i

uig(vi) =

{
1 if g = 1,

0 otherwise.
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Define the following R-linear maps:

αi : S −→ R; x 7→
∑

g∈G

g(vi)g(x).

Calculating in S we have
∑

i

uiαi(x) =
∑

i

ui

∑

g∈G

g(vi)g(x) =
∑

g∈G

(∑

i

uig(vi)
)

g(x) = x.

Now we use a well known characterisation of finitely generated projective modules
that applies as well in the graded case.

Lemma 3.1. Let R be a graded commutative ring and let M be a graded R-module.
Then M is a finitely generated projective module if and only if for some n there are
elements b1, . . . , bn ∈M and R-linear maps α1, . . . , αn : M −→ R such that for every
x ∈M ,

x =
∑

i

αi(x)bi.

Thus we obtain the following result.

Lemma 3.2. A G-Galois extension R −→ S is a finitely generated projective R-
module.

Proposition 3.3. Let S/R be a G-Galois extension of graded commutative rings.
Then for any graded commutative R-algebra T , T ⊗R S/T is also a G-Galois exten-
sion. In particular, if I / R is an ideal, (S/SI)/(R/I) is a G-Galois extension.

Proof. A proof in the ungraded case can be found for instance in [CHR, Lemma 1.7]
and with the help of Lemma 3.2 it carries over to the graded case.

In the following we need to understand base-change properties of topological Galois
extensions.

Proposition 3.4. Let B/A be a G-Galois extension of commutative S-algebras. Sup-
pose that A −→ C is a map of commutative S-algebras and assume that C is weakly
equivalent to a retract of a finite cell A-module spectrum. Then C ∧A B/C is also a
G-Galois extension.

Proof. See [R, Lemma 7.1.3].

We need to understand base changes as above along C, where C is a residue field
in the sense of [BR:2] and which also happens to be an A-algebra. For instance,
we could take A = Enr

n , the n-th Lubin-Tate spectrum, and C = Knr
n , the associated

Morava K-theory with one of its strict multiplicative structures described in [A].
However, in these cases C is not a commutative S-algebra, but for our purposes it
suffices that its coefficient ring is a graded commutative ring.

Corollary 3.5. Let B be a cofibrant commutative A-algebra. Assume π∗(B)/π∗(A) is
a G-Galois extension and C is an associative A-algebra whose coefficient ring π∗(C)
is a graded commutative π∗(A)-algebra. Then π∗(C ∧A B)/π∗(C) is also a G-Galois
extension.
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Proof. The assumption on the homotopy rings implies that π∗(B) is a finitely gen-
erated projective π∗(A)-module. Therefore the relevant Künneth spectral sequence
of [EKMM] collapses to give an isomorphism

π∗(C ∧A B) ∼= π∗(C)⊗π∗(A) π∗(B).

Now the result follows from Proposition 3.3.

Note that the realizability results of [BR:3] imply that in the situation above the
algebraic G-Galois extension π∗(B)/π∗(A) can be realized by a G-Galois extension of
commutative S-algebras A −→ B′ with B′ ' B.

Proposition 3.6. Let B/A be a G-Galois extension of commutative S-algebras. Let
C be an associative A-algebra that is a retract of a finite cell A-module spectrum and
for which π∗(C) is a graded field. Then π∗(C ∧A B)/π∗(C) is an algebraic G-Galois
extension.

Proof. The assumption that C is a retract of a finite cell A-module spectrum guar-
antees that the homotopy fixed points (C ∧A B)hG are weakly equivalent to C ∧A

BhG ' C ∧A A ' C by [R, Lemma 6.2.6]. In particular, this shows that C ∧A B is
not contractible.

The unramified condition follows from the evident chain of isomorphisms

π∗(C ∧A B)⊗π∗(C) π∗(C ∧A B)
∼=−→ π∗(C ∧A B ∧A B)

∼=−→ π∗(
∏

G

C ∧A B)
∼=−→

∏

G

π∗(C ∧A B).

We know that π∗(C ∧A B) is a finite dimensional π∗(C)-vector space. Let k be the
dimension of π∗(C ∧A B) over π∗(C). The G-equivariant isomorphism

π∗(C ∧A B)⊗π∗(C) π∗(C ∧A B)
∼=−→

∏

G

π∗(C ∧A B)

maps π∗(C ∧A B)⊗π∗(C) π∗(C ∧A B)G isomorphically onto a subspace of
(∏

G

π∗(C ∧A B)
)G ∼= π∗(C ∧A B).

Note that this shows that k2 = k|G| and thus k is the cardinality of the group. Now
we know that

dimπ∗(C) π∗(C ∧A B)⊗π∗(C) π∗(C ∧A B)G = k dimπ∗(C) π∗(C ∧A B)G 6 k

and therefore π∗(C ∧A B)G is 1-dimensional over π∗(C).

In our work we will need a basic lemma on idempotents in Galois extensions. For
background on idempotents on commutative S-algebras, see [R, 10.2]. We just recall
some of the main results.

Let R be a commutative S-algebra; then we say that a commutative R-algebra A
splits if there is a weak equivalence of commutative R-algebras A ' A1 ×A2 for some
commutative R-algebras A1, A2 which satisfy A1 6' ∗ 6' A2, i.e., they are homotopi-
cally non-trivial as commutative R-algebras. If A admits no such splitting it is said
to be connected, otherwise it is non-connected.
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Let E(A) denote the mapping space of non-unital commutative A-algebra endo-
morphisms of A. Rognes shows in [R, Lemma 10.2.3] that A is connected if and only
if the map of spaces {0, 1} −→ E(A) that takes 0 to the constant map and 1 to the
identity map is a weak equivalence. Furthermore he proves in [R, Proposition 10.2.2]
that π0E(A) corresponds to the idempotents of the ring π0(A), thus A is connected
if and only if π0(A) is connected in the sense of algebra.

Lemma 3.7. Let ι : A −→ B be a G-Galois extension of commutative S-algebras. If
A splits as A ' A1 ×A2, then as a commutative A-algebra, B splits as B ' B1 ×B2,
such that there are compatible maps of commutative S-algebras A1 −→ B1 and A2 −→
B2 which are G-Galois extensions.

We are grateful to the referee who replaced our earlier clumsier proof by the fol-
lowing straightforward line of argument.

Proof. Let Bi = Ai ∧A B for i = 1, 2. Since A1 and A2 are retracts of a finite cell
A-module, namely A itself, Ai −→ Bi is a G-Galois extension for i = 1, 2 by Proposi-
tion 3.4. The equivalence of commutative S-algebras A→ A1 ×A2 induces the equiv-
alence

B ' A ∧A B → (A1 ×A2) ∧A B

and the latter is equivalent to

(A1 ∨A2) ∧A B ' A1 ∧A B ∨A2 ∧A B = B1 ∨B2 ' B1 ×B2.

4. Calculations with residue fields

We recall from [BR:2, §3] the notion of a residue field for a commutative S-algebra
R. Let m be a maximal ideal in π∗(R). If there is an R-module spectrum W for which
the π∗(R)-module π∗(W ) is isomorphic to π∗(R)/m, then we call W a residue field
of R with respect to m. Note that in general no multiplicative structure on W is
assumed.

In the case of Enr
n , there is a version of the Morava K-theory spectrum Knr

n with
coefficient ring

π∗(Knr
n ) = π∗(Enr

n )/m = F̄p[u, u−1].

Thus π∗(Knr
n ) is the residue field of the local ring π∗(Enr

n ) and so Knr
n is a residue

field for Enr
n . By work of [A], Knr

n admits the structure of an associative Enr
n -algebra.

Notation. To simplify notation, we set E = Enr
n and K = Knr

n from now on.

For two E-modules M,N , at least one of which is cofibrant, there is a Künneth
spectral sequence

E2
s,t = Torπ∗(K)

s,t (π∗(K ∧E M), π∗(K ∧E N)) =⇒ π∗(K ∧E M ∧E N)

which collapses to give a Künneth isomorphism of π∗(K)-modules

π∗(K ∧E M ∧E N) ∼= π∗(K ∧E M)⊗π∗(K) π∗(K ∧E N).

Since these homotopy groups are 2-periodic, we can view them as Z/2-graded
modules. For a K-module V , π∗(V ) is equivalent to a Z/2-graded F̄p-vector space



34 ANDREW BAKER and BIRGIT RICHTER

and then we can consider the dimensions of the even and the odd parts separately.
For an E-module spectrum M we set

d0 = dimF̄p
π0(K ∧E M), d1 = dimF̄p

π1(K ∧E M).

Lemma 4.1. Suppose that an E-module spectrum M satisfies

M ∧E M '
∏

X

M

for some finite set X of cardinality |X| = m. If π∗(K ∧E M) is a non-trivial finite
dimensional π∗(K)-module, then the dimensions d0 and d1 satisfy one of the following
conditions:
• d1 = 0 and d0 = m.
• d1 6= 0, m is even and d0 = m/2 = d1.

In particular, if m is odd, then we must have the first condition.

Proof. Using the Künneth formula based on K, we have

dimF̄p
π0(K ∧E M ∧E M) = d2

0 + d2
1, dimF̄p

π1(K ∧E M ∧E M) = 2d0d1.

On the other hand, by the assumed splitting of M ∧E M we obtain the equations

d2
0 + d2

1 = md0, 2d0d1 = md1.

Using these we establish the result.

5. Separable closure property at odd primes

For an odd prime p we can prove a general result.

Theorem 5.1. Let G be an arbitrary finite group and p an odd prime. Then for every
G-Galois extension B of E there is a weak equivalence of commutative E-algebras

B '
∏

G

E.

Proof. We know from Proposition 3.6 that the Galois extension E −→ B gives rise to
a G-Galois extension π∗(K) −→ π∗(K ∧E B) of graded rings, in particular, π∗(K ∧E

B) is a graded separable π∗(K)-algebra. DeMeyer and Ingraham showed in [DeMI,
Proposition II.2.3] that for a separable (ungraded) algebra A over a commutative
ring R any R-projective A-module M is also A-projective. Their proof translates
to the graded setting without any changes, thus any π∗(K)-projective π∗(K ∧E B)-
module is also π∗(K ∧E B)-projective. Assume that z is a non-trivial element in
π1(K ∧E B). Then the cyclic π∗(K ∧E B)-submodule π∗(K ∧E B)z ⊆ π∗(K ∧E B)
is projective and so the surjection ϕ : π∗(K ∧E B) −→ π∗(K ∧E B)z given by ϕ(a) =
az is split by a π∗(K ∧E B)-homomorphism ρ : π∗(K ∧E B)z −→ π∗(K ∧E B) under
which ρ(z) = 1 + w for some w satisfying wz = 0. Using π∗(K ∧E B)-linearity we
obtain

ρ(z2) = z(1 + w) = z + zw = z 6= 0.

But we are working in odd characteristic, hence z2 = 0. Therefore the odd part of
π∗(K ∧E B) has to vanish.
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Let K ′ be the E-module spectrum E/(p, u1, . . . , un−2). We consider the long exact
sequence corresponding to the cofibre sequence

K ′ ∧E B
un−1−−−→ K ′ ∧E B −→ K ∧E B.

As we know from above, π∗(K ∧E B) is concentrated in even degrees. Thus we obtain
the exactness of

0→ π2q(K ′ ∧E B)
un−1−−−→ π2q(K ′ ∧E B)

j−→ π2q(K ∧E B) δ−→ π2q−1(K ′ ∧E B)
un−1−−−→ π2q−1(K ′ ∧E B)→ 0.

The associated Bockstein spectral sequence (see [We, 5.9.9]) has B0
∗ = π∗(K ∧E

B) = 0 in odd degrees and all differentials have degree −1 and are therefore trivial.
Denote π∗(K ′ ∧E B) by A0

∗. Then we obtain a short exact sequence

0→ A0
i /(un−1A

0
i + ur

n−1
A0

i )
j̄r−→ Br

i
δr

−→ un−1A
0
i−1 ∩ ur

n−1A
0
i−1 → 0

for every r > 0. As we have that the evenly graded part of A0
∗ is un−1-torsion free

and that

B0
∗ = B1

∗ = · · · = B∞
∗ ,

this yields that for an even degree i = 2q we have

un−1A
0
2q−1 = un−1A

0
2q−1 ∩ ur

n−1A
0
2q−1

for all r > 0. As π∗(K ′ ∧E B) is a finitely generated π∗(E)-module, we can deduce
that π2q−1(K ′ ∧E B) is un−1-torsion free. But then the multiplication with un−1 has
to be an isomorphism on π2q−1(K ′ ∧E B) so we see that π2q−1(K ′ ∧E B) is actually
trivial for all q and

π0(K ∧E B) ∼= π0(K ′ ∧E B)/(un−1).

Considering the spectra E/(p, u1, . . . , uj) for j = n− 3, . . . , 0 (with p = u0) in a sim-
ilar fashion we obtain

π0(K ∧E B) ∼= π0(B)/(p, u1, . . . , un−1) ∼= π0(K)⊗π0(E) π0(B).

The quotient π0(B)/m is a separable extension of the separably closed field F̄p, so
by [DeMI, Corollary II.2.4], this extension has to split as

π0(K ∧E B) ∼=
∏

G

F̄p.

As B is a finite cell E-module we know that π0(B) is a finitely generated module
over the Noetherian ring π0(E) and the calculation above shows that

π0(K ∧E B) ∼= π0(B)/m.

By the lifting of idempotents result of [E, Corollary 7.5] for instance, the orthogonal
idempotents that give rise to this splitting lift to the π0(E)-algebra π0(B) and we
obtain the desired splitting of B into G copies of E.
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6. Galois groups with cyclic quotients

We will consider Galois extensions of E with Galois groups having finite cyclic
quotients. We note that the result concerning these extensions is valid for all primes.

Theorem 6.1. Let B/E be a G-Galois extension where G is a finite group with a
cyclic quotient of prime order. Then B is non-connected.

Corollary 6.2. Every G-Galois extension B of E with finite solvable Galois group G
is non-connected. In this sense, the commutative En-algebra E is a maximal connected
solvable Galois extension of En.

Of course for odd primes this result is covered by Theorem 5.1. We include a
complete proof for all primes, because a reduction to the case p = 2 does not yield a
much shorter proof and we feel that the full proof offers some insight.

Proof. By assumption, there is a normal subgroup N / G for which one of the follow-
ing holds:

(A) G/N ∼= C` with ` a prime different from p,

(B) G/N ∼= Cp.

Case (A): We consider the extension π∗(K) −→ π∗(K ∧E BhN ) in which π∗(K ∧E

BhN ) is a finite dimensional algebra over the graded field π∗(K) and is an algebraic
C`-Galois extension by Proposition 3.6.

The argument of [BR:2, Example 42] shows that the homotopy groups π∗(K ∧E

BhN ) have to be concentrated in even degrees: as π∗(K ∧E BhN ) is a C`-Galois
extension of π∗K, each homotopy group π2n+1(K ∧E BhN ) is a C`-representation
and it has a decomposition into character eigenspaces because ` 6= p. If there were
odd-degree elements and if p is an odd prime then the map x1 ⊗ x2 7→ (x1g(x2))g∈G

would have a non-trivial kernel, thus contradicting the unramified condition. For
p = 2, every irreducible character has odd order, and thus an odd degree element of
the corresponding summand is nilpotent, because some odd power lies in the invariant
part which is trivial in odd degrees. If x is such an element with xj = 0, then xj−1 ⊗ x
would be in the kernel of the above mentioned map, because xj−1g(x) = λgx

j = 0,
where g(x) = λgx.

Thus we can focus on the extension π0(K ∧E BhN )/π0(K). Now π0(K) = F̄p is a
separably closed field, so this extension has to split completely, i.e.,

π0(K ∧E BhN ) ∼=
∏

C`

F̄p.

We know that π0(BhN ) is a finitely generated π0(E)-module, and π0(E) is complete
with respect to the maximal ideal m / π0(E). A Bockstein spectral sequence argument
similar to the proof of Theorem 5.1 shows that π0(K ∧E BhN ) ∼= π0(BhN )/m. There-
fore by the usual lifting of idempotents result of [E, Corollary 7.5], the ` orthogonal
idempotents that give rise to this splitting lift to the π0(E)-algebra π0(BhN ). Thus
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we obtain a splitting of π0(E)-algebras

π0(BhN ) ∼=
∏

C`

π0(E),

and accordingly

BhN '
∏

C`

E,

so we see that BhN splits completely. Now by Lemma 3.7, in Case (A) we obtain a
non-trivial splitting of B.

Case (B): When G/N ∼= Cp, we consider two cases.
First let us assume that

dimF̄p
π0(K ∧E BhN ) = p, dimF̄p

π1(K ∧E BhN ) = 0.

By Proposition 3.6, the pair π0(K ∧E BhN )/π0(K) forms an algebraic Cp-Galois
extension. As in Case (A), we can now deduce that this extension splits, so

π0(K ∧E BhN ) ∼=
∏

Cp

π0(K).

From this isomorphism we obtain p orthogonal idempotents in π0(K ∧E BhN ), each
realised by a map

K −→ K ∧E BhN .

Again we can lift the idempotents that cause this splitting because of the completeness
of π0(E) and therefore we can realise the corresponding splitting as

BhN '
∏

G

E.

For p = 2, according to Lemma 4.1 we have to exclude the possibility that

dimF̄p
π0(K ∧E BhN ) = 1, dimF̄p

π1(K ∧E BhN ) = 1.

As the C2-action preserves degree, we know that

dimF̄p
π0(K ∧E BhN )C2 = 1, dimF̄p

π1(K ∧E BhN )C2 = 0

because π∗(K) is concentrated in even degrees. Thus the C2-action on π0(K ∧E BhN )
has fixed points, whereas the action on π1(K ∧E BhN ) must have no non-trivial fixed
points.

To finish, we adapt the argument in the proof of [Sh, Proposition 17] to show that
π1(K ∧E BhN ) must be trivial: If a finite p-group P acts on an arbitrary abelian p-
torsion group M , then for any non-zero element x ∈M , the subgroup of M generated
by the P -orbit of x is a finite p-group which is also a P -submodule and so by [Sh,
Proposition 17] it has non-trivial fixed points.

Thus in each of Cases (A) and (B), BhN is not connected and therefore by using
Lemma 3.7, we see that B as an N -Galois extension of BhN is not connected either.
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7. The K(n)-local case

Again we let (E,K) be the pair (Enr
n ,Knr

n ), but note that the discussion in this
section carries over to the pairs (En,Kn) and (Ê(n),K(n)) as well. Let DE denote the
stable homotopy category of E-module spectra and let DE,K be the full subcategory
generated by K-local E-modules. We denote the localization functor from DE to
DE,K by L = LE,K .

Remark 7.1. We note that by [Ho, Proposition 2.2], for X ∈ DE (which gives rise to
an element X ∈ DS by restriction of scalars)

X ∈ DE,K ⇐⇒ X ∈ DS,K .

This implies that for an E-module spectrum X the two conditions K ∧X ' ∗ and
K ∧E X ' ∗ are equivalent.

The aim of the following is to provide a reference for the fact that dualizable
objects in DE,K are retracts of finite cell E-modules. The argument we present here
is due to Mark Hovey and we are grateful to him for allowing us to include it here.
We recall from [HS, Definition 1.5] the definitions of dualizable and F -small.

We note that K ∧E X is in DE,K , because it is a K-module spectrum and therefore
it is K-local. We also know that K is small in DE,K since it is a finite cell E-module.
This can be seen by expressing it as K = E/m with m = (p, u1, . . . , un−1), where the
generating sequence of m is regular. More generally there are finite cell E-module
spectra E/ms (s > 1) which fit together to form the m-adic tower

K = E/m←− E/m2 ←− E/m3 ←− · · ·
constructed in full generality in [BL]. By [Wü, Theorem 1.1], this is can be con-
structed as a tower of associative E-algebras. The fibre of the map E/ms+1 −→ E/ms

is a finite wedge of suspensions of K, and this can be used to show that the Bousfield
classes of E/ms and K coincide.

We also remark that if X is a retract of a finite cell E-module, then π∗(X) is a
finitely generated π∗(E)-module since π∗(E) is Noetherian; the converse also holds
since π∗(E) is a regular local ring.

Lemma 7.2. If X is dualizable in DE,K , then for an arbitrary indexing set A and
Yα ∈ DE,K , the natural map

L
∨

α∈A

FE(X, Yα) −→ FE(X,L
∨

α∈A

Yα)

is an isomorphism, i.e., X is F -small in DE,K in the sense of [HS, Definition 1.5].

Proof. As X is dualizable in DE,K , we obtain

FE

(
X,L

∨

α∈A

Yα

)
∼= L

(
FE(X, E) ∧E L

∨

α∈A

Yα

)

∼= L
∨

α∈A

(FE(X, E) ∧E Yα)

∼= L
∨

α∈A

FE(X,Yα).
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Lemma 7.3. If X is F -small in DE,K , then K ∧E X is also F -small in DE,K .

Proof. The standard adjunction yields

[K ∧E X, L
∨

α∈A

Yα] = [K, FE(X, L
∨

α∈A

Yα)].

As X is F -small this coincides with [K,L
∨

α∈A FE(X, Yα)] and the smallness of K
turns this into ⊕

α∈A

[K, FE(X, Yα)] ∼=
⊕

α∈A

[K ∧E X, Yα].

Lemma 7.4. If K ∧E X is small in DE,K , then π∗(K ∧E X) is a finite-dimensional
π∗(K)-vector space.

Proof. As K is a field spectrum K ∧E X splits as

K ∧E X ∼=
∨

i

ΣνiK.

Thus, if K ∧E X is small, the isomorphism

K ∧E X −→
∨

i

ΣνiK = L

(∨

i

ΣνiK

)

factors through a finite subwedge and hence the wedge must be finite.

Lemma 7.5. If X ∈ DE, then LX is isomorphic to the homotopy limit

holim
s

(E/ms ∧E X)

taken in the category of E-module spectra.

Proof. Each term E/ms ∧E X is an E/ms-module spectrum and therefore it is E/ms-
local which is equivalent to being K-local. As we know that the Bousfield classes of
E/ms and K = E/m coincide for all s > 1, the homotopy limit holim

s
(E/ms ∧E X) is

K-local.
We know that K ∧E X is already K-local and the image of the reduction homo-

morphism
π∗(K ∧E E/ms+1) −→ π∗(K ∧E E/ms)

is π∗(K) by [BL, Corollary 5.11], hence using the commutative diagram coming from
the Künneth isomorphism

π∗(K ∧E E/ms+1 ∧E X)
∼= //

²²

π∗(K ∧E E/ms+1)⊗π∗(K) π∗(K ∧E X)

²²
π∗(K ∧E E/ms ∧E X)

∼= // π∗(K ∧E E/ms)⊗π∗(K) π∗(K ∧E X)

we find that
π∗(holim(E/mn ∧E K ∧E X)) ∼= π∗(K ∧E X).
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Therefore the map X −→ holim
s

(E/ms ∧E X) is a K-equivalence because

K ∧E holim
s

(E/ms ∧E X) ∼= holim
s

(K ∧E E/ms ∧E X)

∼= K ∧E X.

Lemma 7.6. If X is in DE,K , then its homotopy π∗(X) is an L-complete π∗(E)-
module in the sense of [HS, Definition A.5].

Proof. Each term π∗(E/ms ∧E X) is bounded m-torsion and hence it is L-complete.
But the class of L-complete modules is closed under limits, lim1-terms and exten-
sions [HS, Theorem A.6], and therefore the Milnor sequence yields the result.

Lemma 7.7. If X ∈ DE,K and π∗(K ∧E X) is finite-dimensional over π∗K, then
π∗(X) is finitely generated over π∗(E). In particular, X is a retract of a finite cell
E-module.

Proof. We prove that π∗(E/(p, u1, . . . , ui) ∧E X) is finitely generated over π∗(E) by
downward induction on i. The case i = n− 1 is guaranteed by the assumption because
π∗(K) is finitely generated over π∗(E).

We set

X/(p, u1, . . . , ui) = E/(p, u1, . . . , ui) ∧E X.

Then there is a long exact sequence of homotopy groups induced by the cofibre
sequence

X/(p, u1, . . . , ui−1)
ui−→ X/(p, u1, . . . , ui−1) −→ X/(p, u1, . . . , ui).

Denoting the annihilator of ui in π∗(X/(p, u1, . . . , ui−1)) by

ann(ui, π∗(X/(p, u1, . . . , ui−1)),

the long exact sequence yields the short exact sequence

0→ π∗(X/(p, u1, . . . , ui−1))/ui −→ π∗(X/(p, u1, . . . , ui))
−→ ann(ui, π∗(X/(p, u1, . . . , ui−1))→ 0.

Since it injects into π∗(X/(p, u1, . . . , ui)), π∗(X/(p, u1, . . . , ui−1))/ui is finitely gen-
erated. Hence there is a free π∗(E)-module F∗ together with a map

f : F∗ −→ π∗(X/(p, u1, . . . , ui−1))

such that the induced map

F∗ −→ π∗(X/(p, u1, . . . , ui−1))/ui



GALOIS EXTENSIONS OF LUBIN-TATE SPECTRA 41

is surjective. Let N be the cokernel of f . The diagram of exact sequences

F∗
f //

ui

²²

π∗(X/(p, u1, . . . , ui−1))

ui

²²

// N

ui

²²
F∗

f //

²²

π∗(X/(p, u1, . . . , ui−1))

²²

// N

²²
F∗/ui

f̄ // π∗(X/(p, u1, . . . , ui−1))/ui
// 0

tells us that uiN = N and L-completeness of N implies that N = 0. Hence the map
F −→ π∗(X/(p, u1, . . . , ui−1)) is surjective, and so π∗(X/(p, u1, . . . , ui−1)) is finitely
generated over π∗(E) for all 0 6 i 6 n− 1.

As π∗(E) is a regular local ring, this implies that X is a retract of a finite cell
E-module.

Lemma 7.8. Let G be a finite group. If E −→ B is a K(n)-local G-Galois extension,
then

π∗(K) −→ π∗(K ∧E B)

is a G-Galois extension.

Proof. Let Ch be the cofibre of h : B ∧E B −→∏
G B in the category of E-module

spectra. We know that K ∧ Ch ' ∗ and with the facts mentioned in Remark 7.1 we
see that this is equivalent to K ∧E Ch ' ∗. The argument for the map i : E −→ BhG

is similar. With these two facts at hand we can mimic the proof of Proposition 3.6 to
obtain the result.

Theorem 7.9.

(a) For an odd prime p and a finite group G, every K(n)-local G-Galois extension
of E is non-connected.

(b) For p = 2 and G a finite group possessing a cyclic quotient, every K(n)-local
G-Galois extension of E is non-connected.

Proof. From Lemma 7.8 we know that π∗(K) −→ π∗(K ∧E B) is a G-Galois exten-
sion. As a Galois extension B is dualizable in DE,K and the finiteness discussion above
ensures that it is in fact a retract of a finite cell-E-module spectrum. We can therefore
transfer our proofs to the K(n)-local setting, to show that π0(K) −→ π0(K ∧E B)
splits and we can lift the corresponding idempotents to π0(E) −→ π0(B).
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