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Abstract. MacLane homology of a rin@ is the Hochschild homology of the so called cubical
constructionQ«(R), which is a chain-algebra. If we take a commutative ridigthe Dixmier
product onQ . (R) is no longer commutative. The main result of this paper is that it is commutative
up to higher homotopies, i.e. that it is @o-algebra. TheEs.-operad which acts 0@ (R) is
constructed by using the analogue of thg-complex in the context of finite sets. For the precise
notation of an operad action on these complexes the definition @-gfmonoidal functor is
introduced.

1 Introduction

MacLane (co)homology of a ring with coefficients in amR-bimoduleM can be
defined as the Hochschild (co)homology of the differential graded @p@R)
with coefficients inM:

HML.(R, M) := H.(Q«(R), M)
HML*(R, M) := H*(Q4(R), M)

We will recall the definition oD..(R) below, but first we want to mention some of
the remarkable properties of this (co)homology: The second MacLane cohomol-
ogy HML?(R, M) classifies arbitrary extensions®by the bimoduleV/, unlike

the second Hochschild cohomology which classifies only split-extensions. If the
ring contains the rational numbers then Hochschild-theory and MacLane-theory
coincide. MacLane homology is isomorphic to stable K-the&ityintroduced

by Waldhausen and to topological Hochschild homol@gy H... For proves of
these statements see [P-W] and [D-McC].

For an arbitrary ringr the Dixmier product on the Eilenberg-MacLane cubi-
cal construction give®..(R) the structure of aring. Let us recall that Hochschild
homology of commutative algebras has a very rich structure with products and
A-operations (see [L] sections 4.2 and 4.5). As MacLane homology is a special
case of Hochschild homology it would be nice to have similar structures for it.
But unfortunately a commutative ring will not lead to a commutative product
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in 0.(R). The main goal of this paper is to show th@{(R) is equipped with
the structure of aif.-algebra.
This E-structure onQ..(R) will give operations not only of M L. (R) =
H.(Q.(R), R) which are essentially known, becaud&/ L.(R) = T H H,(R)
and it is well-known thaf” H H (R) is anE,,-ring spectrum folR commutative,
but we hope to get additional homology operations on the Hochschild homology
of 0.(R) with coefficients in itselfH,(Q.(R), O.(R)) which arises naturally
from the algebraic point of view, but has so far no counterpart in topology.
Before we will construct ark .. -structure forQ..(R), we will introduce the
notion of anE,-monoidal functor which describes an action of an-operad
on the images of a functor between symmetric monoidal abelian categories.
Instead of directly constructing af..-operad that acts 0@.(R) we show that
the analogue of th@-constructionS Q. in the set context is af ,-monoidal
functor. The transfer of this structure ¢, is done by using left Kan extensions.
Finally we extend our results from associative and commutative algebsas-to
andE ,.-algebras. Applying the same methods as for proving ¢hais anE .-
monoidal functor yields an easy proof that the chain complex fur€{drom
the category of simplicial abelian groups to the category of chain complexes is
an E..-comonoidal functor.
The fact thatQ..(R) is an E-algebra for every commutative ring leads to
new operations in MacLane homology. We will investigate these implications in
a different paper.

2 Eilenberg-MacLane’s cubical construction

Let us now recall the definition of the cubical construction. For a comprehensive
overview see [MLa], [L] chapter 13, [J-P] and [F-P-S-V-W].

Given an abelian grougd the Eilenberg-MacLane cubical construction as-
signs achaincomple®.(A) to this group in afunctorial way. This chain complex
0.(A) isaquotient of an auxiliary comple®’ (A) whichin turn is defined as the
free abelian group generated by all maps from the vertices af@dimensional
unit-cubeC, to A:

Q.(A) ==Z[A[G]]

Let(eq,...,&,) Withg; € {0, 1} denote a vertex of the-cube forn > 0 and let
() denote the single element 6§. Define two cubical face maps

Oi’ 11' : Cn — Cn+1
for 1 <i < n+ 1in the following manner:

Oi(819 ,{;‘n) = (817 e &1, Oa Eiy o 98}1)
11(817 R ’8'1) = (81’ .. ’81'71’ 1’ 81’ .. ’gn)
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Define for 1< i < n the maps

R, S/, P/ : A[C,] — A[Cy_1]

as follows:
(RIf)(e) == f(Qe), (S.f)(e):= f(Lie), (P/f)(e):= f(Oe) + f(Lie)

Let P;, S;, R; denote the linearizations of these maps frof(A) to Q) _,(A).
With the help of these maps we can define the boundary mag’for

§:=>Y (=D'(P,— R — 5))

i=1

As 82 =0, Q’.(A) is a chain complex.

Now Q. (A) is obtained fromQ’ (A) by a normalization. We divide out all
maps fromC,, to A, which are zero on one face of the cube, i.e. maAp<, —
A with f(0;e) = 0or f(lie) =0 Ve € C,_;andf() = 0forn = 0. Let
N.(A) denote all elements in the subgroup generated by such maps. Then

Q.(A) := Q,(A)/N.(A)

Since the boundary is well-defined on the quotient, this defines a chain complex
as well.

The homology of this complex is isomorphic to the stable homology of
Eilenberg-MacLane spaces (see [P])

H,(Q+(A)) = Hyk (K (A, k) Vk > n

For two abelian groupd and B one can define thBixmier productof Q. (A)
with Q..(B)

0.(A)® 0.(B) — 0.(A® B)
For two generators of)’, f € A[C,] andg € B[C,] the product is given by
(f&)(ers - s Engm) = f(E1, ..., €0) @ E(Ent1, - s Encim)
Obviously this product is well-defined on the normalizat@n

If Risaring, the Dixmier product equigs, (R) with the structure of a differential
graded ring. IfM is anR-module thenQ . (M) is a Q.. (R)-module by extending
the Dixmier product with the module action

0.(R)® Q.(M) — Q.(RQ® M) — Q.(M)
In addition we have an augmentation map

e:0,A) — A
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for any abelian groupl. OnC, with n > 0, ¢ is zero and orCy, it just evaluates
the function on)

e(f) =10
This map provided/ with the structure of @, (R)-module.

3 E.-monoidal functors

The aim of this section is to introduce a reasonable notion af gamonoidal
functor between monoidal categories. Since operads in our context consist of
chain complexes of abelian groups, we should have an action of the category
Ch(Ab) of chain complexes of abelian groups on our monoidal category.

The category i (Ab) is a symmetric monoidal category with the usual tensor
product of complexes, i.e. the tensor product is associative, unital and commu-
tative up to coherent isomorphisms (see for instance [MLDb], chapter VII,1). Let
B denote an abelian category which is enriched @vetAb) and is in addition
tensored and cotensored o¥®t(Ab) (see [Du] p. xiii for the terminology). We
recall that this means that for all objects Y, Z € B there is a chain complex
Hompg(X, Y) and a chain map

Homp(Y, Z) @ Homp(X,Y) — Homp(X, Z)

and for everyX there is an element itH{om g (X, X))o called the unit. ASB is
tensored and cotensored oveli (Ab), we haveAd, ® X andhom(A,, X) € B
for every chain comple®.. and every object iB. These two constructions have
to satisfy some natural conditions ([Du] pp.18-22).

We will abbreviate the phrase "abelian category which is enriched, tensored
and cotensored ov&rh(Ab)" just by "Ch(Ab)-category”. Let(B, O) be a sym-
metric monoidal abelian category which i€a(Ab)-category.

Definition 3.1 The action ofCh(Ab) on B is said to becompatibleif it fits to
the monoidal structure i, i.e. if there are natural isomorphisms

A, ® (XOY) = (A, ® X)OY
which are compatible with the monoidal structureGn(Ab) and B.
Now let (4, A) and(B, O) denote two symmetric monoidal categories.

Definition 3.2 A functorT : A — B is alax monoidal functoiif there are
natural maps

T(A1)DT(A2) — T(A1AA3)
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which satisfy the usual associativity and unit coherence conditions (see [T] Sect. 1
and the references therein).
If a functor F : A — B is equipped with natural maps

F(A1AA2) — F(A1)UF(A2)

having the dual properties, thefi is called alax comomoidal functor

RemarkA lax monoidal functor sends a monoid.into a monoid inB and the
image of a comonoid under a lax comonoidal functor is again a comonoid. If both
categories are symmetric monoidal then the image of a commutative (co)monoid
under a lax (co)monoidal functor is not commutative in general. Commutativity
is preserved if one assumes that the functor is in addition symmetric, that means
that the following diagramm commutes for all objectsAin

T'(ApDT(A2) — T(A1AAz)

\ \
T(A2)DT (A1) —> T(A2A8Ay)

We will deal with two functors which are not symmetric, but which satisfy an
E.-condition.

Definition 3.3 LetA andB denote two CpAb)-categories. Afunctaf : A —
B is aCh(Ab)-functorif there are natural isomorphisms

lex 1 Ci®@TX) =T(C ® X) VC,. € Ch(AD) VX € A.

satisfying the natural conditions concerning the symmetric monoidal structure
in Ch(Ab).

We will use the standard notations and results concerning operads, as they can be
found for instance in [K-M], part I. According to their terminology we will use

the term "operad” for an operad with an action of the symmetric group. Operads
without such an action are called nanoperads. We call an oper&ian E .-

operad if it is weakly equivalent to the operad of commutative algebras via an
augmentation map and if it 5-free i.e.P, is free over the group algebrd X, ].

RemarkIn the following part of the paper a lot of diagrams occur in which we
should set parentheses, because our monoidal category is not supposed to be
strict. But as every symmetric monoidal category is equivalent to a strict one
(see [MLDb], XI, 3), we will not set any parentheses.

Definition 3.4 Let (A, A) and (B, O) be two symmetric monoidal categories,
and letB be in addition abelian with a compatible Chb)-action. A functofT :

A —> B is said to be arE.-monoidal functoyif there exists ark.-operadO

in Ch(Ab) with the following property:
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There are natural maps
O(n) @ (T(A)D...OT(A,)) — T(A1A...AA,)

which satisfy the identities of an operad action on an algebra (Compare [K-M],
p.14), namely

1) The unit element in the operad acts in a compatible way:

ZQT(A) =T(A)

y

0 ®T(A)
2) The action of the operad is equivariant:

0 @ (T (Ag-1)) O+ OT (Ag10))) — T (Ag10)2 - AlG 1))

071®0

0 @ (T(ApDD---0OT(Ay)) T (A1A...AAy)

3) The following associativity diagram commutesyof_, j; = jande;ll Ji+
1=j"

(O ® (0D ® - ®0>n) ®(T(ADPD---OT(A)) > 0()®(T(ApD---OT(4)))

|

0 ® (0 @ (T(ADD-+-DT(4;))0-+-0 (00 ® (T(4;)0--0T(4)))

l T(A1A... AA))

0 & (T(A14...84;)0 0T (4,8, 84;))

Lemma 3.5 Assumel’ : A — B is an E..-monoidal functor and assuné
is a commutative monoid iA. ThenT (M) is an E,,-monoid inB. That means
there are maps

O(m)@ (T (MU ---OT(M)) — T(M)

which fulfill all the axioms for operad action.
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Proof. The restriction of the operad action to the imaga@bfjives a map
on)IT(MO.---OTM)) — T(MA---AM)
Composing this map with the map which is induced by the monoid map
MA---AM 5 M
we obtain
On)(T(M)D---OT(M)) — T(M).

As the monoid map is associative and respects the unit, we get the associativity
of the operad action and the unit condition. The commutativity of the monoid
mapu makes the following diagramm commute

O @ (T(M)D---OT(M)) T(MA...AM)
071 Ko o

O @ (T(M)D---OT(M)) T(MA...AM) T (M)

ThereforeT (M) is an E,,-monoid. O

Dually we obtain the notion of af,.-comonoidal functarA functor F between
two symmetric monoidal categories with a compatilg Ab)-action is anE -
comonoidal functor, if there exists dh,,-operadP, which acts on the images
of F in the following way:

There is a natural map

Pn)® F(A1A ... AA,) — F(A)O---0OF(Ay)

which fulfills the analogue conditions for an operad action, only the associativity
condition needs to be modified.

The following diagram has to be commutative Jof_, j; = j andzi”;ll Ji+
1=j"

(OM®O0GD®---®O0Un)®F(A1A...AA)) 5 O()®F(A1A...AA))

(0D ® F(A1A ... AAj)D - O(0(n) ® F(AyA...AAj) 5 F(ADO---OF(4))

For the left vertical arrow we use the action@fn) and the usual shuffle maps
to split the image of the product.

RemarkIn our applications our functors will already be lax (co)monoidal but for
the definition of ank .,-(co)monoidal functor this assumption is not necessary.
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4 SQ, as anE-monoidal functor

In order to show thap..(R) is an E.-algebra for every commutative ring

we will first show that the analogue functor in the set conte®, is an E.-
monoidal functor. This functor has much nicer properties t@anfor instance
SQ., — tis aprojective resolution in the category of all contravariant functors
from the categoryin, of finite pointed sets to abelian groups (see [P], Sect. 5
or [L], 13.2). Herer is the functorS, — Sets.(Sy,Z), whereSets, denotes
the category of pointed sets. With the help of the left Kan extensiomwef can
transfer this statement 9., because SQ. = Q. (see [P], Sect.5).

4.1 E-operad in the set-context

Let us recall how the analogue of th#,.-complex in the set contexdQ, is
defined : For each finite pointed skt the chain-compleX Q’,(X.) in degree
n is the free abelian group generated by all famillgs ., of pairwise disjoint
subsets ofX indexed byn-tupels of elements; € {0, 1}. As in Q. we divide
out all elements that map a face of the cube to the empty set, the result of this
normalization process i$Q. (X, ). The boundary map is analogoussttor Q..
For a detailed description see [P], Sect. 5. The aim of the following section is to
show thatS Q.. : (Finy’, A) — (Ch(Ab), ®) is an E,,-monoidal functor.

We are interested in the functa§©™” andS Q" from Finl’ x ... x Fin’
to Ab, which are defined as

SO®(S1, ..., 8,) = S0.(51) ® - ® SQ.(Sy)
SOM(S1, ..., S) =SO.(S1A...AS,).

The operad that is supposed to act$8, will consist of the homomorphism
complex of two chain-complexes. For arbitrary chain-complekeand B, this
complex is

Homj(A, By) = 1_[ Hom(Ayg, Biyj) jel
keZ

The differentiald is defined componentwise in the following way
df)i = fii108+ (=D"8 o fi Vf € Hom;(A,, By)

We denote the category of functors frafiiny’ x ... x Fin;’ to Ab by F, .
Now we are prepared to define the operad which is supposed to &QEh
We define

Os0.(n) = Homz, (SO, 50.")
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Hence eaclds, consists of chains of abelian groups and is dimensionwise free.
The product in this operad is just defined to be the composition

y(fi 81, 8)i=fo(g1®--®g)

wheneverf isin O, (n) and theg; are elements s, (k;) with }"_; k; = n.
The action of the symmetric group is given in the following way:

Forany permutatioa € X, for any natural transformatiofiin O, () and for

anyn-tupelSy, ... , S, of finite pointed sets lef.o be the natural transformation
which is defined by the following diagram:
SOL(SD)® -+ @ SOL(Sy) L S0 (SiAL AS)
lo +8Q.(c7Y

f
SQ>‘< (Safl(l)) ® .. ® SQ,.< (Sofl(n)) —> SQ* (Sofl(l) VANAVAN Sa’l(n))
We have natural transformations

OSQ*(H) ®(504(51) ® - ® S504(S,) —> SO(S1A...ASy).

satisfying the usual equations for operad actions.
Define

t:Finy — Ab, t(Xy)= Homges, (X4,7Z)

We definer” andr®” in the obvious way. Now we can compute the homology
of OSQ*-

Lemma 4.1

0 :1>0
H; (OSQ*(n)) = :E)C[]__—i (IIZn’ t/\n) - i<0

Proof. Pirashvili proofs ([P], p.885) th&8Q, — t is a projective resolution in
AbTin+ consequentlys Q%" — ¥ andSQ" — " are also resolutions
in F,. In addition S Q™" — ¥ are still projective resolutions because the
exterior tensor produc of two standard projective functors is again projective
(see 5.1.1). Therefore

Hom £, (SQ®", SO — Hom £, (SQP", 1)

is a weak equivalence and hence we get the result in homology. O

Obviously Homjfn(tgn, t") forms a new operad. If we truncate the chain-
complex’Homfn(SQ?”, SQ.") and use only its non-negative degrees we get
a map toHom £, (1", +"") via the augmentation map.
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For an arbitrary chain complex, we define the truncated complex

0 : k<O
T(C)y := Cy : k>0
cycleCo) : k=0

We have maps
1(0): ® T(C)s — T(C® ('),

for all chain-complexe€', andC’,. These maps are associative and commutative.
Hence for every opera#, t(P) is again an operad. Thus by truncatifig,, we

still have an operad and by the natural inclusto®s,,) — Os. the truncated
operadr (Osp,) acts onS Q.. as well. Ast(Osp,) consists only of the cycles in
degree zero, we get the projection map

T (OSQ*)O —> Hompg, (l‘&", l‘/\n)
We define the operad;, (n) to be this abelian group of morphisms
O,(n) = Hompr, <t®”, tA”> .

The composition and the action of the symmetric group are defined in the same
way as forOsy, .

In addition we are able to get a map from the commutative op€radto
O,.In Hom(t®", t"*) we have a multiplication map

mt(S) @ - ®t(Sy) =t(StA...AS,)
which commutes with the action of the symmetric group@n

m.o)(t(S) ® - @ 1(S)) = (o) m (t (Sy-2) ® -+ ® 1 (Sp-101)))
=t(SIA...AS5)=m({(S) ® - ®1(S,))

By sending the identity map to this multiplicatiom we obtain a map from
Com(n) to O,(n).
Hence we get the following diagramm of chains of abelian groups:
7(0sg,) (1)
\
Comn) — O;(n)

We can build the degreewise pullback(n) of these operads. The universal
property of the pullback guarantees that thé:) build again an operad.
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Since the map from (05, ) to O, is a surjection and a quasi-isomorphism
by Lemma4.1, we can conclude that the right downleading arrow is a quasi-
isomorphism, hence our operadis acyclic

H(Om) = {g A

In addition, this operad acts iR via the induced pullback-map. With this
construction we get

Theorem 4.2 The lax monoidal functaf Q.. from the symmetric monoidal cat-
egory(Fini’, A) to the symmetric monoidal categof@h(Ab), ®) is an E-
monoidal functor.

Remark.If one insists - as we do - that afi,.-operad has to b&'-free, the
following result provides & -free replacement of an acyclic operad.

Lemma 4.3 For an acyclic operad® whose component®(n) are free abelian
groups there is ark,-operad P’ and a map of operad®’ —> P.

Proof. Take an arbitrar .,-operadA and build the tensor product &f with A
(P®A)(J)=P>()®A)

This operad s still acyclic, because both components are. Using the augmentation
of Awegetmap® ® A —> P.FurthermoréP ® A)(n) isZ[X,]-free, because
A(n)isZ[X,]-free andP (n) is free. O

5 E-structure for Q.

Having constructed ai,,-operad acting or§ Q,, we want to pass to thg-
construction now. To this end we use the left Kan extens,ionAbFf”ip —
Ab®of the functorr. Hereab denotes the category of finitely generated abelian
groups. The functors and(z x --- x t), are both right exact, because they are
left-adjoint to the functors which are the precomposition wiimd(z x - - - x 1),
respectively. With the help of the following two lemmas we can transform the
operad-action o8 Q. to an operad-action o@...

Lemma 5.1 Left Kan extensions commute with taking tensor products of func-
tors, i.e. for two functory’ : A — B and g : C — D, whereA, C are
small categories, and for two functofrs: A — Ab and G :C — Ab
there exists a natural isomorphism

(f x gW(FRG) —> fiF KgG
Here (F X G)(a,c) = F(a) ® G(c).
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Proof. First we construct a transformation
(fX(FXG) — ([F)X(g6)

By the definition of the Kan extension we have morphighia) — fiF(f(a))
andG(c) - g1G(g(c)) for everya € A and every € C, which are natural in
a andc. By tensoring these morphisms we get

F(a) ® G(c) — fiF(f(a)) ® G (g(c))
That means we have
(FXG)(a,c) — (HFXgG)((f x g)a,c))

Consequently, by the universal property of the Kan extension there is a natural
transformation

Yre: (f xgh(FXG) — fIFXgG

Since(f x g), is right-exact and preserves direct sums we have to check the claim
only for the projective generatois (x) = Z[Hom 4(a, x)]. Thus it is sufficient
to prove the claim foF = ¢ andG = h°.

But

(5.1.1) he K KE = p@o
Thus we have
(f x @n(h* XA = (f x g) (h(a,c)) — pf@.8()
On the other hand
fih* X ght = hl@ xpee — (fa)g)

This proves the lemma. |

RemarkFrom the proof of the lemma above it is clear that the natural isomor-
phism

(f x QW(FRG) — fiF KgG
is in fact symmetric monoidal wheA = C andB = D.

Lemma 5.2 The functor
(t X -+ x 1)y 1 ApFimxxFim™ _ ppAbx..xAb jg g CH Ab)-functor.
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Proof. For the same reasons as in the last proof it is sufficient to prove the claim
only for the functorsA @ kg, (X1) ® - - - ® h, (X,,) where theS; are finite pointed
sets andi is an abelian group.

We have to calculate

(I X ... X I)!(A (0%9] ]’lsl(X1) R Q hS,l(Xn))~
Applying the lemma above we see that this expression is isomorphic to
1A Q hs,(X1)) @ -+ - @ ti(hs, (X))

Butsn(A ® hs,(X1)) isisomorphic tod ® #(hs, (X1)), because this is true for
free. For arbitraryA this property is a consequence of the right-exactness of
Thus we obtain

(tx...x) (AR hs(X1) Q- ®hs, (X))
=AQ(t x...X l‘)!(hsl(Xl) K- ® hSn(Xn))

Now we have all means to state the following

Theorem 5.3 The functorQ,, : (Ab, ®) — (Ch(Ab), ®) is an E..-monoidal
functor and therefore the Eilenberg-MacLane cubical chain algeBt&R) is
an E.-algebra for any commutative ring.

Proof. Applying the last lemma and using tha§ 0, = Q. (see [P] Sect. 5, [L]
13.2) we get natural transformations
Om) ® QX" — (t x -+ x 1),5Q"
In addition we obtain natural transformations
(t x - x SO — Q%"

by using the universal property of Kan extensions, wh@f® is the functor
which takes first the tensorproduct/ofibelian groups and then applies ¢
functor, i.e.

0F"(A1, ..., A) = 0u(A1® - ® A,).
Indeed, by definition of the Kan extension we have homomorphisms
$0.(8) — (1SQ.)((S))
which are natural irf. ReplacingS by S; A ... A S, leads to

SO(S1, .o s S) =SOu(S1A ... AS) — (1SO)E(S1A ... ASY)
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We can calculate the right-hand side

t(S1IA . AS)) = HOMges, (STA ... A Sy, Z)
= HornSets* (Sl; Z) ® - ® HOmSets* (Sna Z)
=t(S)®---®1(Sy)

and get a map

SO (S ... 8 — (1SQI(E(S) ® -+ ®1(Sp))
I
BS Q)" (t(S1), ... . 1(Sn)

Hence by the universality of the Kan extension we obtain the desired natural
transformation

(t - x SO —> (1SQ)®" = 0F"

Now we can apply the result that d&h,-monoidal functor maps a commutative
monoid, in our case a commutative ring, to Ag-monoid. ThusQ.(R) is an
E.-algebra for every commutative rirgj. |

6 Q. and algebras over operads

In our definition ofQ,. we considered the cubical construction for abelian groups.
With the result of the theorem above we know that the fun@omaps commu-
tative algebras t&,-algebras. It is easy to check that the cubical construction
of an associative algebra is again associative if we use the Dixmier product as
multiplication map. But what happens if we have an algebra over a given op-
erad0? Of special interest are the casesff- and A-algebras. In order to

give a meaning to this question one needs to extend the source of the functor
0. from the category of abelian groups to the category of chain complexes,
which can be done by degreewise extensiorQgf This extension preserves
homotopy relations becaugkg, is additive up to homotopy. For more details see
[J-McC],Sect. 6, Sect. 7.

Proposition 6.1 The cubical constructiorQ, maps algebras over a noB-
operadP to algebras over the no--operadQ..(P).

Proof. First of all we have to clarify the operad-structure @f(P): Define
the new operad a@.(P)(n) := Q.(P(n)). Since theP (n) are already chain
complexes, we have to take the total complex of the degreewise prolongation of

Qs
(Q«(P(m))1 1= Dp1q=1Qp(P(n)g)
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The composition inP

Pm)® P(k) ® - ® P(ky) —> P (Zki)

i=1
is taken to a composition i@, (P) by using the Dixmier product:

Q+(P(n) @ Q«(P (k1) @ -+ - ® Qx(P(kn))
\
Q«(P(n) ® P(k1) @ -+~ ® P(ky)) —  0.(P(XLik))

The associativity condition concerning this product is satisfied because the
Dixmier product is associative arfelis an operad. The unit map &f

n:Z— P
is taken to a map of complexes

72 0,2 %% 0.P(1)
with 7(Z) C Qo(P(1)g). But Qo(P (1)) = Z[P(1)p]. Hence we can define the
unitin Q..(P (1)) to be the image of the unit @ under this isomorphism. &
is a P-algebra, the algebra maps

P(n) ® A" 5 A
transfer to maps

0.(P(n) ® 0.(A)®" — 0.(P(n) ® A®") 2 0,(A).

ThusQ.(A) isaQ.(P)-algebra. O

Proposition 6.2 If O is an A,.-operad whose components are free abelian
groups thenQ..(0) is again anA.-operad.

Proof. What is left to show is tha, sends acyclic operads ovérto acyclic
ones. Since the augmentation— Z is aweak equivalence am@lis degreewise
free, we obtain that the augmentation is a homotopy equivalence. Fhu®)

has the same property by the result of Johnson and McCarthy ([J-McC], Sect.
7. |

MacLane homology of a ring with coefficients in a bimodule is defined as the
Hochschild homology 0. of this ring with coefficients in the same bimodule.
SinceQ, preserves .-algebras over componentwise free operads, it is possible
to extend the definition of MacLane homology to this kind of algebras, because
Hochschild homology ofi .-algebras has already been defined (see for instance
[G-J]). For a nonX'-operad,Q, preserves all the operad structures. But we had



562 B. Richter

to change the operad and apply to it. That this is not always necessary can

be seen if one considers the case of associative algebras. @inpreserves
associativity we do not have to change the operad at all. The reason for this is the
special structure of the operad. For the following type of operads a stronger
result can be gained.

Definition 6.3 AnoperadK is calledsimplicialifitis an operad in the symmetric
monoidal category of simplicial sets (s.set3, i.e. eachK (n) is a simplicial set
and we have the usual composition maps.

Remark.Every simplicial operak gives rise to an operad in the category of
chain complexes of abelian groups, if we take the chain complex associated with
the simplicial abelian groug[K].

For algebras over this type of operads we can prove the following result:

Proposition 6.4 If K is a nonX' simplicial operad andA is an algebra over
Z[K],thenQ.(A) is still aZ[K]-algebra.

Proof.We need maps
ZIK(n)] ® Q+(A)®" — Q.(A)

which describe an action of the operaK] on 0. (A). Lety denote the action
of Z[K] on A. For each element € K (n) we obtain maps

0.(A)®" — 0,(4%M 87 o (4)

We can extend these maps by linearization and get
ZIK(m)]® 0.(A)®" — 0.(A)

These maps fulfill all axioms of an operad action, because of the properties of
the Dixmier product and af . O

ExampleAs we already saw, we do not have to change the operad if we apply
0, to associative algebras. The operadconsidered as a noB-operad can be
viewed as the operad which comes from the simplicial opéfad) = .

For usual operads, i.e. operads which are equipped with an action of the
symmetric group, we obtain a slightly different result:

Proposition 6.5 If L is a simplicial operad and ifA is a Z[L]-algebra, then
0.(A) is an algebra over the operad[L] ® O, whereO is the E,-operad of
(4.1) which acts orQ,.(B) for any abelian groupB.
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Proof. Our goal is to define maps
ZIL(M]® O(n) ® Q.(A)®" — Q.(A)

First we can use the actioh of the operad) on Q, to get maps

ZILM)] ® O(n) ® 0.(A®" L Z[L(n)] ® 0.(A®")

Using the same trick as in the proof above we can compose this first map with
the action ofZ[L] on A. The equivariance ofr together with the equivariance

of the action ofZ[L] guarantees the equivariance of the whole map. All other
axioms for an operad action are fulfilled because we use only the composition
of two actions. O

Proposition 6.6 For every E..-algebra A there is a quasi isomorphi@ .-
algebraB, such thatQ.(B) is again anE ..-algebra.

Proof. Given two E ,-operadsA, B overCh(Ab)) and anA-algebraX there is a
functorial replacement of by a quasiisomorphi@-algebray (see [K-M], part

V, Thm. 1.7). In particular we can choose this operad to be one that comes from a
simplicial operad, i.e. an operad of the foRfi.]. Then we can apply the results

of the last proposition, and we obtain that (B) is an algebra over the operad
Z[L(n)] ® O(n). But the tensor product of twh.-operads is agaift,. This
proves the proposition. |

7 C. is an E,,-comonoidal functor

Using similar methods as for showing th&®.. is an E,,-monoidal functor we

can prove that the lax comonoidal and symmetric monoidal furi¢teinat maps

a simplicial abelian group to its associated chain complex B gfcomonoidal
functor. This fact is already known (see for instance [S]), but our method leads
to an easy proof. The necessary machinery can be found in [D],Sect. 1. For all
n-tupels of simplicial abelian groups;, ... , A, we have a map from the chain
complex of the inner tensor product to the exterior tensor product of the chain
complexes:

CI(AL, ..., A) = Cu(A1® - ® Ay) —> Cu(A) ® -+ ® Cu(Ay)

There is a canonical choice for an operad that acts on the imaggs vamely
define

O(n) = Hom, (Cf’", c=r)
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HereHom means natural transformations of these two functors. As is shown in
[D] the homology of this operad is trivial except in dimension zero

Z , r=0

H,O(m) = { 0 else

The isomorphism fronty (O (n)) to Z is given by the augmentation map. Hence
we obtain a map from (O) to Com which is an isomorphism in homology, that
means (0) is anE,-operad and’, is anE,,-comonoidal functor via the maps

T(0)n) ® Ci(A1® - ® Ay) — Cu(AD) ® - ® Ci(Ay)

As a consequence we get that the chain-complex of a topological space is an
E.-coalgebra.

Acknowledgementsltis a pleasure to thank Teimuraz Pirashvili, Carl-Friedricuheimer and
the referee for their helpful remarks.
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