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1 Introduction

The aim of this paper is to prove that the inverse of the normalization functor
in the Dold-Kan correspondence D : Ch(Ab) — sAb is an E,,-monoidal functor.
This proves that generalized Eilenberg-MacLane spectra on differential graded
commutative algebras are E,-monoids in the category of HZ-module spectra.

The Dold-Kan correspondence between the category of simplicial abelian
groups and the category of non-negative chain complexes of abelian groups is
a classical result. It states that the normalization functor N, which sends a sim-
plicial abelian group A, to its normalized chain complex possesses an adjoint
functor D, such that

N : sAb=—="Ch(Ab) : D

is an equivalence of categories (see for instance [13, 8.4]).

It is known that the functor N respects the tensor product of simplicial abelian
groups and that /V is in fact a lax symmetric monoidal functor: There is a classical
natural chain transformation from the tensor product of two normalized chain
complexes N(A,) and N(B,) to the normalized chain complex of the diagonal
tensor product (A,®B,), = A, ® B, (see for instance [13, 8.5.4]):

g: N(A,) ® N(B,) — N(A,&B,). (1)

As this transformation is given by shuffle maps, it is symmetric, i.e., the following
diagram commutes

N(A.) ® N(B,) 2— N(A.®B,)

e

N(B,) ® N(4,) 2— N(B,&A,).

Here t denotes the map, which twists tensor factors. In particular the normaliza-
tion of a commutative monoid in the category of simplicial abelian groups — that
is a commutative simplicial ring — is send to a differential graded commutative
algebra.

We will prove a slightly weaker result for the inverse of the normalization: The
functor D is lax monoidal. For two chain complexes X, and Y, the Alexander-
Whitney map yields a natural map D(X,)®D(Y,) — D(X, ® Y,) which is asso-
ciative but not symmetric. We will prove that the functor D maps commutative
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chain algebras to E,-monoids in the category sAb, i.e., there is an E-operad
which acts on the image D(R,) of every commutative chain algebra R,. Using
methods of [9], we will prove this fact via showing that D is an “FE.,,-monoidal
functor” (see Definition 2.3 below).

One important application of this statement is the proof that given a differ-
ential graded commutative algebra R, the generalized Eilenberg-MacLane spec-
trum H(R,) (see [10, §1]) is an Ey-monoid in the category of modules over
the Eilenberg-MacLane spectrum of Z in the category of symmetric spectra or
['-spaces.

2 FE-monoidal functors

The way how we will prove the result that the functor D maps a differential
graded commutative algebra to an E,-monoid is that we will show that there is
an E,-operad Op acting on the images of D. The aim of this section is to make
this statement precise.

We use the standard terminology of operads as it can be found for instance
in [6, part I], in particular an operad is always equipped with an action of the
symmetric groups 2,. Let (C,®, 1¢) be a symmetric monoidal category with ®
denoting the product and 1 being the unit of the monoidal structure. Recall
that the augmentation ¢ of an unital operad O is the map which is induced via
the following composition:

Assume that C has in addition a notion of weak equivalences, e.g. if C is a
monoidal model category.

Definition 2.1 Let C be a category as above. An Ey-operad in C is a unital
operad which is (non-equivariantly) weakly equivalent via its augmentation to the
operad Com with Com(n) = ll¢ which characterizes commutative monoids in C.

Note that we do not demand the n-th term of the operad C(n) to be free over
Y¥n. In the examples which we will consider, a replacement by a Y-free operad
can be achieved by taking a product (concerning the monoidal structure in C)
with an E -operad P which is ¥-free. The action of the product on an C-algebra
is then given by the augmentation of P and the action of C. We will apply this
definition in the following examples of monoidal model categories:

e The category of simplicial abelian groups sAb is closed symmetric monoidal
with the degreewise tensor product ®. The model category structure is
described in [8, II.4, Theorem 4].
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e The category Ch(Ab) of non-negative chain complexes of abelian groups
is closed symmetric monoidal concerning the usual tensor product of chain
complexes; its standard model category structure is determined by choosing
the weak equivalences as the maps which induce isomorphisms in homology
and the fibrations to be the maps which are surjective in positive degrees.

e Let R be a commutative ring and let H(R) denote the Eilenberg-MacLane
spectrum of R. In the categories of Gamma spaces and symmetric spectra
the category of module spectra over H(R) is a closed symmetric monoidal
model category if R is commutative. This fact is shown by Schwede and
Shipley in [11, Theorem 4.1]. The model category structure of H(R)-
modules is cofibrantly generated.

Remark 2.2 For the category of (co)chain complexes Hinich and Schechtman in
[4] called algebras over acyclic operads “May algebras”.

Let C and C' be two categories with the above properties. We denote the product
in the monoidal structure of C by ® and the one in C' by ®. Note that we do
not assume our monoidal structure to be strict. Thus the following diagrams
should be actually written down with parentheses. But as this would lead to
heavy notation, we omit this.

Definition 2.3 A functor F from C to C' is called an E.-monoidal functor, if
there is an Ey-operad Op in C' and if for every n-tupel (Cy,...,Cy) of objects
in C there are natural maps

with the following properties:

e The action is unital: Let n : lew — Op(1) denote the unit of the operad,
with 1¢ being the unit in the monoidal structure of C'. Then the diagram

e © F(C) 22 0p(1) © F(C)

|

F(C)
18 commutative.

o The action is equivariant: For every o € X,, the right action with o on
Or(n) interacts nicely with the left action on n-fold products by permuting
the entries :



4 Birgit Richter

Or(n) ® (F(C) ®---0 F(C,)) i F(Ci®---0C,)

la@a \LF(G)

OF(TL) ® (F(Ca—l(l)) ®--0® F(Ca—l(n))) T (00_1(1) ©®---0© Co.—l(n))

e The more or less obvious associativity condition is fulfilled (see [9, p.552]).

The reason for introducing this terminology is the following fact.

Proposition 2.4 Given an Es-monoidal functor F', the tmage of a commutative
monoid R in C under F is an E-monoid in C'.

Proof Let us denote the multiplication map of R by pu. We prolong the given
operad action on F' with this multiplication and obtain

F(w)

Or(n) ®F(R)®---® F(R) —>F(R®---®R) —=> F(R).

As R is commutative, this is a well defined operad action of the Fy-operad O
on F(R).
O

3 Definition of the operad

Let us briefly recall the definition of the normalized chain complex associated
to a simplicial abelian group A,. In degree n the complex N(A,) is N(A.), =
(i, ker d;; here the d; are the face maps arising from the simplicial structure of
A,. The differential on N(A,) is the remaining zeroth face map dy.

The aim of this section is to define an F.-operad Op which acts on the
images of the functor D. The natural attempt is to use an enriched analog
of the endomorphism operad. To be more precise we define an operad in the
category of simplicial abelian groups in the following way. Let A denote as usual
the category of finite ordinal numbers and order preserving maps and let Z[A]
denote the free abelian group on the standard k-simplex Ay = homa(—, k). We
will use the definition of D which comes out of this equivalence, namely as D and
N are adjoint and as we can apply the Yoneda-lemma to Z[A], we obtain for a
chain complex X,

D(X,)r = homgap (Z[Ag], D(X,)) Zaqgj. homenap) (NZ[Ag], X,).
Hence D is given by D(—), = homchap) (NZ[Ag], —).

We construct our operad using the natural transformations of two functors from
the products of the category of chain complexes Ch(Ab) to the category of sim-
plicial abelian groups. For n > 0 and n chain complexes C1, ..., C, define

D& (Cy,...,C,) = D(C)&---&D(C,)
D®n(01,...,0n) = D(Cl®®0n)
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Definition 3.1 Let Op be the operad of simplicial abelian groups whose n-th
term in simplicial degree k is

Op(n)y, = Natg,,cm (DE"QZ[A], DP™).

The action of the symmetric groups on the operad is given in the standard way,
i.e. if f is a natural transformation in Op(n); and o is a permutation in 3,,, then
for an n-tuple of chain complexes (X7, ..., X,) the transformation f.o is defined
via the following diagram:

D(X)®- - ®D(X,) DX ®---® X,)

xa o

SR f
D(X;-11))® - @D (Xp-1(n)) —= D(Xo-1(1) @ - -+ ® Xo-1())

The composition in Op is given by the composition of natural transformations.
This operad acts naturally on the images of D via the evaluation map. Its zeroth
term Op(0) consists of the enriched natural transformations from the constant
functor which assigns Z to every chain complex to the functor D. Here Z is the
simplicial abelian group which is Z in every simplicial degree and which has the
identity of Z as all face and degeneracy maps. Note that Op(0) can be identified
with Z because the functor D applied to the chain complex (Z,0) which is Z
in degree zero and zero in all other degrees gives the constant simplicial abelian
group Z.

4 Proof of the E,-property

What remains to be shown is that the operad Op is weakly equivalent to the
operad Com of commutative monoids in sAb which is Com(n) = Z for all n.

Theorem 4.1 The operad Op is an E-operad.

Proof For a cosimplicial and simplicial set X} the total space Tot of X is the
simplicial set given in simplicial degree k£ by the maps of cosimplicial simplicial
sets

A x Ak — X**

Let us denote by nat(D®", D®") the functor from A% x A into abelian groups

given by
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Then our operad is the total simplicial space of the cosimplicial simplicial abelian
group nat(D®", D®") (compare [1, X,3.3]):

—~—

Tot (EE(D@’", D®")) >~ Op(n)

and we can use the tower of fibration spectral sequence for the total space which
arises from the skeleton filtration of A (as described in [1, X,§§6,7] or [3, VIIL.1]).
The corresponding E?-term is the following:

BB = nr, EE(DQTM’ D®") = m,_,Tot (EE(D@L’ D®n)> = mypOp(n).

With the following slight generalization of the Yoneda lemma we can finish the
proof:

Lemma 4.2 Let G be a functor from the n-fold product of the category of chain
complezes Ch(Ab)" to the category of abelian groups Ab, which is linear in every
component. Then the natural transformations from the n-fold tensor product of
representables homey (X5, —) to G is isomorphic to G evaluated on the X;:

Natypenn (homen (X1, —) @ -+ - @ homen (Xy, —), G) = G(Xy, ..., Xi).

Proof The usual proof of the Yoneda lemma works, but the multilinearity of G
leads to the identification with the tensor product of the representable functors.

O
In the above situation this n-dimensional version of the Yoneda-lemma identifies
nat(Dg", D) with D®"(NZA,,), because D is representable. Determining ho-

motopy in simplicial direction in the above E?-tableau thus reduces to calculate
the homotopy groups of D(NZA,, ® ---® NZA,).. The shuffle-map from (1) is
a homotopy equivalence. As D preserves quasi-isomorphisms we obtain that

TD(NZA, @ - -+ @ NZA ), 2 7, D(N(ZAp® - - - RLAR,)),

which is nothing but the homotopy of Z[A,, x --- x A,,]. Hence the homotopy
groups are trivial except in dimension zero where they are Z. The codifferen-
tials in m-direction are induced by maps A,, — A,,.1; hence depending on the
parity of m the codifferential is the identity of Z or zero and the cohomotopy is
concentrated in degree zero.

O

Remark 4.3 The augmentation ¢ : Op(n) — Op(0) = Z provides a weak equiv-
alence from Op(n) to Z. The map € restricts a natural transformation from D®"
to D®™ to its value on the n-fold tensor product of the simplicial abelian group Z
and the calculation in the spectral sequence shows that the terms NZA,, ~ (Z,0)
determine the homology of Op(n).
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5 Symmetries of N and D

Given an equivalence of categories with one functor of the equivalence lax sym-
metric monoidal, one can dualize the symmetry properties of the involved func-
tors:

Let us note that the lax symmetry of the functor N translates to the fact that
D is lax symmetric comonoidal. That means there are natural transformations

¢(x.v.) - DX, ®Y,) — D(X,)®D(Y,)

for any two chain complexes X, and Y, which are symmetric and coherent with
respect to coassociativity and counit. The transformation c is given by

D(shuffle) : D(N o D(X,) ® N o D(Y;)) — D(N(D(X,)®D(Y})))

where the latter term is naturally isomorphic to D(X,)®D(Y,). The symmetry
results from the symmetry of N and the naturality of D.

Dually to 2.3 one can define the notion of E-comonoidal functors (see [9,
p.553]). Using that D is an E,-monoidal functor via the operad Op leads to
an action of the Ey-operad N(Op) on N. This makes N an E,-comonoidal
functor: First the lax symmetric transformation given by the shuffle map induces

N(Op(n)) @ N(Al® - ®A™) — N(Op(n)®DN(A)&®--- QDN (A™)).

With the help of the action of Op on D we end up in N(D(N(A})®---@ N(A7))
and by the equivalence of N and D this is naturally isomorphic to

N(D(N(A;) ® -+ ® N(A))) = N(4,) @ -+ ® N(A7).

Thus the image of the E-operad Op under N can be used to split the image
of a product under N into pieces. Note that we used the lax symmetry of N for
this process.

Remark 5.1 For the functor C : sAb — Ch(Ab) which maps a simplicial
abelian group to its unnormalized chain complez, it is already known that C' s
E-comonoidal (see [9, §7,p.563] and [12]).

In [2, Satz 1.6] Dold proved the necessary identifications: The homology of the
enriched natural transformations from the (unreduced) chain complex on the n-
fold tensor product of simplicial abelian groups C((—)®---®(—)) to the tensor
product of the complexes C(—)®---® C(—) is concentrated in degree zero where
it is Z.
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5.1 The Eilenberg-Zilber operad

For the normalization functor N* of cosimplicial abelian groups, Hinich and
Schechtman [4] proved the acyclicity of the corresponding operad, called the
Eilenberg-Zilber operad. We will abbreviate this operad with £Z. Let Ch®(Ab)
denote the category of cochain complexes and let cAb be the category of cosim-
plicial abelian groups. We consider N(Z[A]) as the cosimplicial object in chain
complexes which is N(Z[A]), in cosimplicial degree k and chain degree n. The
normalization N* of a cosimplicial abelian group A* € cAb is then given by the
morphisms of cosimplicial abelian groups from N(Z[A]) to A*. The differential on
the normalized chain complex makes this object a cochain complex. The operad
EZ is defined as the cochain complex of the morphisms from this normalization
to its n-fold tensor product

£2(n) = homeay(N(Z[A]), N(Z[A])*").

Here ® denotes the degreewise tensor product of cosimplicial abelian groups. In
degree n this operad gives natural transformations from N*(4A*) ® --- @ N*(A4*)
to N*(A*) for any cosimplicial commutative ring A*

The natural attempt would be to let an analog of £2Z act as well on the images
of D : Ch(Ab) — sAb using the definition of D as homcpap) (NZ[A], —) but to
this end one would have to give £Z a structure of a simplicial abelian group.

6 Generalized Eilenberg-MacLane spectra

The category of symmetric spectra defined in [5] and the category of I'-spaces
(see [7] and [10]) lead to nice symmetric monoidal categories of spectra. In both
of these models for the stable homotopy category there is a standard model of an
Eilenberg-MacLane spectrum for a given simplicial abelian group. The functor
H which assigns the Eilenberg-MacLane spectrum H(A,) to a simplicial abelian
group A, is a symmetric functor.

The construction of this functor is straightforward in both categories: Let S!
be the simplicial model of the 1-sphere given by A;/0A; and let S™ be defined
as S" = S'A...AS'. For A, € sAb the spectrum H(A,) can be defined as

—_—

H(A,), :=A,®S™and H(A,), is the n-th term of the diagonal of the bisimplicial
set (A, ® S7),,4 The homotopy groups of the spectrum H(A,) are naturally
isomorphic to the ones of A,. The symmetry of H is then encoded in the diagram

H(A,) ® H(B,) — H(A.®B,)

e

H(B,) ® H(A,) —= H(B,&A,).
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The horizontal maps are induced by the tensor product of A, and B, and the
smash product of finite pointed sets (see [10, p.332-333]).

We want to clarify the symmetry of the functor H precomposed with the
functor D:

Proposition 6.1 Given a differential graded commutative algebra R,, the Eilen-
berg-MacLane spectrum H(D(R,)) is an Ey-monoid in the category of HZ-
module spectra in symmetric spectra resp. I'-spaces.

Proof We already know that D(R,) is an E-monoid in the category of simpli-
cial abelian groups. The image of our operad Op under H is weakly equivalent
to HZ and the functor H is lax symmetric monoidal; hence the action of the
operad Op on D(R,) translates to an action of the operad H(Op) on H o D(R,)
and the operad H(Op) is still an E-operad.
O
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