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Introduction

This diploma thesis investigates an attempt to show that the Brown-Peterson
spectrum BP has a strictly commutative multiplication. More precisely, it
proves that BP is not the localization of a Thom spectrum M(f) associated to a
second and thus an infinite loop map. If it was this would imply an E∞-structure
and hence a strictly commutative multiplication on BP .
The result is due to Priddy but is unfortunately unpublished. L. G. Lewis
mentions it in his Ph. D. thesis and gives a short description of the proof (see
[14], p.145). Its details will be explained here.
Cause of this thesis was a paper of Birgit Richter where she proves that BP
cannot be a Thom spectrum associated to n-fold loop maps to BSF for certain
n > 2 by use of Dyer-Lashof operations (see [23], section 7).

Spectra, as they will be presented here, are a sequence of topological spaces
with additional structure. They play an important role in stable homotopy
theory where we say a phenomenon is stable, if it occurs in any sufficiently large
dimension and in essentially the same way independent of dimension (compare
[2]).
In particular, the Brown-Peterson spectrum BP is of interest in the context of
calculating stable homotopy groups of spheres. The best tool to calculate these
groups is presently the Adams-Novikov spectral sequence with use of the Thom
spectrum MU . Unfortunately, MU is rather difficult to handle since π∗(MU) is
a polynomial algebra with generators whose degree increases linearly. Instead,
one considers localizations of MU and this is the great entrance of BP : The
p-localization of MU splits into copies of BP and fortunately, π∗(BP ) is a
polynomial algebra with generators whose degree increases exponentially.
Knowing that BP is of relevance when considering such an important problem
as stable homotopy groups of spheres, one naturally asks what kind of structure
there is on BP . Definitely, one would like to have a commutative multiplication
on it. However, when it comes to spectra, multiplication very often is only
homotopy-commutative. Nevertheless, there are theorems giving conditions for
a Thom spectrum to be strictly commutative and saying that the localization of
a spectrum inherits the striclty commutative structure. Thus, since BP arises in
the p-localization of the Thom spectrum MU it is obvious to try to understand
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BP as the localization of a Thom spectrum satisfying the conditions of these
theorems and thereby prove that BP is strictly commutative. However, this
attempt fails and this thesis will explain why.

The most important chapter - besides the last one of course - is the one about
spectra. The theory of spectra forms the background of the question that will be
discussed. However, the theory of spectra is very complex. There are different
models of spectra and the first encounter might be a little bit confusing. For
a better understanding, I tried to present the required facts as homogenous as
possible. Disappointingly, we need some deep theorems I can only state but not
give any details as this would require too much theory.
The other chapters essentially deliver technical tools needed for the proof.
Mainly, these tools are the Eilenberg-Moore spectral sequence (chapter (2)) and
secondary cohomology operations (chapter (4)).
Finally, in chapter (5) I prove that BP is not the localization of a Thom
spectrum M(f) associated to a two-fold loop map following the outline in [14]
and filling in the details.

My greatest thanks go to Professor Birgit Richter, who always was very patient
and helpful.
Moreover, I thank Konrad Waldorf for being the best colleague I could wish for
and Fridolin Roth for many helpful discussions and for sharing all books with
me.
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Chapter 1

Spectra

There are several models of spectra. We will give a definition in the sense of a
sequential spectrum because this bears two advantages: Firstly, it is the easiest
approach to the complex theory of spectra and secondly, there are nice sequential
models of the spectra we need. Naturally, there are also disadvantages which
will be explained later. Our notation and nomenclature follows mainly Adams’
presentation in [2] and Switzer’s in [25].

Definition 1.0.1 A spectrum E is a sequence of pointed topological spaces En
together with basepoint-preserving maps ΣEn = S ∧ En → En+1.

Definition 1.0.2 We call a spectrum E a CW -spectrum if En is a CW -complex
with basepoint for all n and each map ΣEn → En+1 is an homeomorphism from
ΣEn to a subcomplex of En+1.

Example 1.0.3 An easy but important example is the sphere spectrum S with
ΣSn ∼= Sn+1. It is a ’natural’ case of the suspension spectrum Σ∞X where we
start with an arbitrary pointed space X and define En = ΣnX.

Example 1.0.4 A further class of examples are Ω-spectra. A Ω-spectrum is a
sequence of CW complexes E1, E2, . . . together with homotopy equivalences En →
ΩEn+1 for all n. This is a spectrum in the above sense because of the adjoint
relation [ΣX, Y ] = [X,ΩY ].

Example 1.0.5 Let E be a spectrum and X a CW complex. Then E ∧X is a
spectrum with (E∧X)n = En∧X and the obvious maps Σ(En∧X) ∼= ΣEn∧X →
En+1 ∧X.

The spectrum defined in the last example will be of some importance as it will
be needed for the definition of the E-homology of a CW -complex X.
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Chapter 1. Spectra

1.1 Maps between spectra

An obvious attempt of defining a map between spectra would be to define it on
space level and demand that it commutes with the maps ΣEn → En+1. However,
this would be too strict and there are cases in which we do not find enough maps
like this to do what we want (see for example [2], pp.141,142). Thus, we will
call them function and then present a more appropriate notion of a map between
spectra.

Definition 1.1.1 A function f : E → F between spectra (of degree 0) is a
sequence of maps fn : En → Fn such that the following diagram is strictly com-
mutative for each n

ΣEn
Σfn //

��

En+1

fn+1

��
ΣFn // Fn+1.

Definition 1.1.2 Let E be a CW -spectrum. A supspectrum E ′ ⊂ E is called
cofinal if for each n and each finite subcomplex K ⊂ En there is an m such that
ΣmK maps into E ′

m+n. That is, each cell in each En is sent to E ′ after enough
suspensions.

With this we can now actually define a map between spectra.

Definition 1.1.3 Let E be a CW -spectrum and F a spectrum. Take all cofinal
subspectra E ′ ⊂ E and all functions f ′ : E ′ → F . We say that two functions
f ′ : E ′ ⊂ F and f ′′ : E ′′ → F are equivalent if there is a cofinal subspectrum E ′′′

contained in E ′ and E ′′ such that the restrictions of f ′ and f ′′ to E ′′′ coincide.
We call an equivalence class of such functions a map from E to F and it is
represented by a pair (E ′, f ′).

Naturally, we want to compose maps. Let E,F be CW -spectra and G a
spectrum. Then define the composition of maps E → F, F → G by composition
of representatives. Obviously, for this purpose we need to know that for each
function E → F and a cofinal subspectrum F ′ ⊂ F there exists a cofinal
subspectrum E ′ ⊂ E such that E ′ is mapped into F ′. Moreover, we need that if
E ′ is a cofinal subspectrum of E and E ′′ is a cofinal subspectrum of E ′, then E ′′

is in fact a cofinal subspectrum of E. Both statements are of course true (see
[2], p.143).

Finally, we explain what we mean by homotopic maps of spectra.

Definition 1.1.4 Let I+ be the union of the unit intervall and a disjoint base-
point. Two maps of spectra f0, f1 : E → F are homotopic if there is a homotopy
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Chapter 1. Spectra

h : E ∧ I+ → F with h ◦ i0 = f0, h ◦ i1 = f1, whereas i0, i1 : E → E ∧ I+ are the
maps induced by the inclusions of 0 and 1 into I+. We write [E,F ] for the set
of homotopy classes of maps from E to F .

In the following, we will work in the stable homotopy category of spectra as
Adams defines it. That is, the objects of our category are CW -spectra and
its morphisms are homotopy classes of maps. This restriction is not too strict,
since every spectrum is weakly equivalent to a CW -spectrum (see [2], p.157, for
example).

1.2 Smash product of spectra

In order to explain a multiplicative structure on a spectrum E we need a
smash product E ∧ E. However, the construction of the smash product of two
CW -spectra is rather complicated. We will therefore only present the idea of
the construction.

As a first attempt, we would want E ∧ F to be thing to which En ∧ Fm tends as
n and m go to infinity. This idea leads to the following construction of the now
called naive smash product which goes back to J. M. Boardman.

Let A be some ordered set isomorphic to N as ordered set and let B ⊂ A be
a subset. We define a monotonic function β : A → N by saying that β(a) is
the number of elements b ∈ B with b < a. In particular we have α : A → N
corresponding to A ⊂ A. We then suppose that A is the union of two subsets
B,C with B ∩ C = ∅ and β, γ being the corresponding functions. Evidently,
β(a) + γ(a) = α(a) for all a ∈ A. We define the naive smash product E ∧BC F
by

(E ∧BC F )α(a) = Eβ(a) ∧ Fγ(a).

In order to define the maps of this product spectrum, we regard S1 as R1 com-
pactified by adding a point at infinity, which becomes the base point. This allows
us to define a map of degree −1 from S1 to S1 by t 7→ −t.
Let e ∈ Eβ(a), f ∈ Fγ(a), t ∈ S1 and ζ : S1∧Eβ(a) → Eβ(a)+1, η : S1∧Fγ(a) → Fγ(a)+1

be the appropriate maps from E and F .
If a ∈ B then (E ∧BC F )α(a)+1 = Eβ(a)+1 ∧ Fγ(a) and we define

πα(a) : S ∧ (E ∧BC F )α(a) → (E ∧BC F )α(a)+1

by πα(a)(t ∧ e ∧ f) = ζβ(a)(t ∧ e) ∧ f .
If a ∈ C then (E ∧BC F )α(a)+1 = Eβ(a) ∧ Fγ(a)+1 and πα(a) is defined by
πα(a)(t ∧ e ∧ f) = e ∧ ηγ(a)((−1)β(a)t ∧ f).
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Chapter 1. Spectra

The smash product we have so far constructed is natural with respect to functions,
but if B or C is finite, we will get problems with maps. Moreover, we get a naive
smash product E ∧BC F for each partition A = B ∪ C, some of them being
commutative, some associative. So which partition shall we choose if we want
our smash product to have all these nice properties? In fact, we will not choose
a particular partition, but pick all the possible spectra E ∧BC F and put them
together in a construction called telescope.

Definition 1.2.1 Given a sequence X = {· · · fn−1−→ Xn
fn−→ Xn+1

fn+1−→ . . . } of
maps, we define its telescope TX to be the space

TX :=
(⋃

(Xn × [n, n+ 1])
)
/ ∼

where (x, n+ 1) ∈ Xn × [n, n+ 1] ∼ (fn(x), n+ 1) ∈ Xn+1 × [n+ 1, n+ 2].

To define the telescope TE of a spectrum E, let us regard again Sn as Rn compact-
ified by adding a point at infinity that becomes the basepoint. The isomorphism
Rn × Rm ∼= Rm+n then gives an isomorphism Sn ∧ Sm ∼= Sm+n which should be
kept in mind during the following definition. Let

TEn =

(
(
n∨
i=0

Sn−i ∧ Ei ∧ [i]+) ∨ (
n−1∨
i=0

Sn−i ∧ Ei ∧ [i, i+ 1]+)

)
/ ∼

where
[t, e, i] ∈ Sn−i ∧ Ei ∧ [i]+ ∼ [t, e, i] ∈ Sn−i ∧ Ei ∧ [i, i+ 1]+

and

[t, ζ(s∧e), (i+1)] ∈ Sn−i−1∧Ei+1∧[i+1]+ ∼ [s, t, e, (i+1)] ∈ S1∧Sn−i−1∧Ei∧[i, i+1]+.

Thereby, ζ : S1 ∧ Ei → Ei+1.

Finally, one can construct E ∧ F as a kind of ’two-dimensional telescope’. This
construction is similar to the one above, though more complicated and longer.
The interested reader may take a look at [2], (III.4). As promised, this smash
product stands in close relation to the naive smash product discussed before.

Lemma 1.2.2 eqBC : E ∧BC F → E ∧ F is a homotopy equivalence if any one
of the following is satisfied:

1. B and C are both infinite

2. B has d elements and ΣEr ∼= Er+1 for r ≥ d

3. C has d elements and ΣFr ∼= Fr+1 for r ≥ d
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Chapter 1. Spectra

The smash product E ∧ F has the following properties:

Theorem 1.2.3 (a) X∧Y is a covariant functor of two variables with arguments
and values in our stable homotopy category.
(b) There are natural homotopy equivalences (natural in the above category)

a = a(E,F,G) : (E ∧ F ) ∧G→ E ∧ (F ∧G)

τ = τ(E,F ) : E ∧ F → F ∧ E
l = l(E) : S ∧ E → E

r = r(E) : E ∧ S → E

with S being the sphere spectrum.

A proof may be found in [2], III.4, or [25], chapter 13.

The construction of the smash product we presented so far is rather long and
intricate. In addition, we constructed it in our stable homotopy category where
we only have homotopy classes maps. Naturally, we would like to have a product
on a category of spectra where we have maps as morphisms. Unfortunately, we
do not have this for sequential spectra. However, as we said in the beginning,
there are other models of spectra with more structure. Some of them do have a
strictly commutative (smash) product.

1.3 Spectra and (Co-)homology theories

What makes spectra so special is that one gets a (co-)homology theory out of
each spectrum, and each (co-)homology theory can be represented by a spectrum.

Definition 1.3.1 We define the homotopy groups of a spectrum E to be πi(E) =
lim−→πi+n(En) where the direct limit is computed using the composition

πi+n(En)→ πi+n+1(ΣEn)→ πi+n+1(En+1).

In the case of the suspension spectrum of a space X, the homotopy groups of the
spectrum are the same as the stable homotopy groups of X.

Proposition 1.3.2 Let E be a CW -spectrum and X a CW -complex. The groups

En(X) = πn(E ∧X) = [Sn, E ∧X]

form a reduced homology theory, called E-homology of X. Moreover, the groups

En(X) = [Σ∞X,ΣnE],

where Σ∞ is the suspension spectrum of X defined in example (1.0.3), form a
reduced cohomology theory, called E-cohomology of X. For f : (X, x0)→ (Y, y0)
we take En(f) = (1∧ f)∗ and En(f) = (Σ∞f)∗ respectively. Both theories satisfy
the wedge axiom.
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Chapter 1. Spectra

An explicit proof can be found in [25]. We want to concentrate on the extension
of this definition on a category of spectra.

Definition 1.3.3 Let f : E → F be a map of CW -spectra. To begin with, we
define CE := E∧I where I is given the basepoint 0. We then define the mapping
cone F ∪f CE as the spectrum with (F ∪f CE)n = Fn ∪f ′n (E ′

n ∧ I) where (E ′, f ′)
represents f .

Remark: F ∪f CE is well-defined. If (E ′′, f ′′) is another representative, then
the mutual cofinal supspectrum E ′′′ of E ′ and E ′′ extends to a mutual cofinal
subspectrum {Fn∪f ′′′ (E ′′′

n ∧I)} of {Fn∪f ′ (E ′
n∧I)} and {Fn∪f ′′ (E ′′

n∧I)}. Thus,
the last two are equivalent.

Definition 1.3.4 For any map of CW -spectra f : E → F we call the sequence

(∗) : E
f−→ F

j→ F ∪f CE and any sequence equivalent to it a cofiber sequence.

A sequence that is equivalent to (∗) is a sequence G
g−→ H

h−→ K for which there
is a homotopy commutative diagram

G
g //

α

��

H
h //

β

��

K

γ

��
E

f // F
j // F ∪f CE

with α, β, γ being homotopy equivalences.

Proposition 1.3.5 Let E,F be CW -spectra. Then

En(F ) = [Sn, E ∧ F ] and En(F ) = [F,ΣnE] respectively

form a homology theory and cohomology theory respectively in the following sense:
(1) E∗(F ) is a covariant functor of two variables E,F and with values in the
category of (abelian) groups. E∗(F ) is a functor between the same categories
which is covariant in E and contravariant in F .
(2) If F

f→ G
g→ H is a cofiber sequence (of CW -spectra) and E is a CW -

spectrum, then

En(F )
f∗ // En(F )

g∗ // En(H) and En(F ) En(F )
f∗oo En(H)

g∗oo

are exact.
(3) There are natural isomorphisms En(F ) ∼= En+1(ΣF ) = En+1(S1 ∧ F ),
En(F ) ∼= En+1(ΣF ).

Remark: Statement (2) is equivalent to the usual exactness axiom (compare
definition (6.1.1)) of an reduced homology theory.
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Chapter 1. Spectra

Sketch of the proof: (Compare [2].)
(1) Follows by definition.
(2) We restrict to here to the homology case since this is the one that requires a
little bit of work. For the cohomology case see [2], p. 155.

Clearly, if we show that [W,E]
f∗ // [W,F ]

i∗ // [W,F ∪f CE] is exact for

E
f // F

i // F ∪f CE then the homology case will be a corollary of this.

Let g be an element in [W,F ] such that i ◦ g ' 0. We have to show that g ' f ◦ l
for some l ∈ [W,E]. To see this, consider the following diagram:

E
f // F

i // F ∪f CE // ΣE
−Σf // ΣF

W // W

g

OO

// CW //

h

OO

ΣW
−id //

k

OO

ΣW

Σg

OO

The maps in the lower row are the obvious ones and the map h exists because of
i ◦ g ' 0. The only non-obvious map is definitely F ∪f CE → ΣE. This follows

from the fact that we can extend the cofibre sequence E
f // F

i // F ∪f CE
to the right by adding another mapping cone:

E
f // F

i // F ∪f CE // (F ∪f CE) ∪i CF .

Moreover, we have to know that this last spectrum is equivalent to Y ∪f CX)/Y
and that this one is in fact ΣX.
Recall now that we wanted to show that g ' f ◦ l for some l ∈ [W,E]. The map
k : ΣW → ΣX comes from a map l ∈ [W,X] : k = Σl. Then the last square on
the right tells us that Σ(f ◦ l) ' Σg and thus g = f ◦ l.
(3) The cohomology case is obvious. In the case of homology we need
that X → S1 ∧ X is an equivalence of degree one (see for example [2]).
This gives En(X) = [Sn, E ∧ X] ∼= [Sn+1, E ∧ S1 ∧ X] = En+1(ΣX).

�

Example 1.3.6 (Eilenberg-MacLane spectrum) Let G be an abelian group.
Then the Eilenberg-MacLane spectrum HG is a Ω-spectrum with spaces HGn =
K(G, n) and maps K(G, n)

'−→ ΩK(G, n+ 1).
It is

πn(HG) =

{
G n = 0

0 otherwise

and the corresponding homology theory on a CW -complex is ordinary singular
homology: HGi(X) ∼= Hi(X;G).

We see here that we get a homology and cohomology theory respectively out of
each spectrum. So what about the way back? Do we find for each (co-)homology
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Chapter 1. Spectra

theory a spectrum that represents it? Satisfactorily, the answer is ’yes’ though
this way is not that easy. In the case of cohomology, it follows from Brown’s
representability theorem which we will present in the following. In the case
of homology however, things are again a little bit more complicated. (See for
example [2], pp. 199,200)

Definition 1.3.7 A contravariant functor F on PW ′, the category of pointed
CW -complexes and homotopy classes of basepoint preserving maps, fulfills the
Mayer-Vietoris Axiom, if for any CW -triad (X;A1, A2), that is X = A1 ∪ A2,
and for any x1 ∈ F (A1), x2 ∈ F (A2) with

i∗1(x1) = i∗2(x2) ∈ F (A1 ∩ A2), ij : A1 ∩ A2 → Aj, j = 1, 2,

there is a y ∈ F (X) with

i
′∗
1 (y) = x1 ∈ F (A1), i

′∗
2 (y) = x2 ∈ F (A2), i

′

j : Aj → X, j = 1, 2.

Definition 1.3.8 Let PS be the category of pointed sets and functions preserving
basepoints and let F : PW ′ → PS be a contravariant functor satisfying the Wedge
axiom (defined in (6.1.2)) and the Mayer-Vietoris axiom. An element u ∈ F (Y )
is called n-universal if

Tu : [Sq, s0;Y, y0]→ F (Sq)

is an isomorphism for q < n and an epimorphism for q = n. We call u universal
if it is n-universal for all n ≥ 0.

Theorem 1.3.9 (Brown’s theorem) If F : PW ′ → PS is a contravariant
functor as above, then there is a classifying space (Y, y0) ∈ PW ′ and an universal
element u ∈ F (Y ) such that Tu : [−;Y, y0] → F , Tu[f ] = f ∗(u) ∈ F (X) for any
f : (X, x0)→ (Y, y0), is a natural equivalence.

A proof may be found in [25], chapter 9, for example. The main work lies in
constructing appropriate (Y, y0) and u ∈ F (Y ).

As a special case, we get the analogon to example (1.3.6).

Theorem 1.3.10 Let X be a CW -complex. There are natural bijections T :
[X,K(G, n)] → Hn(X;G) for all n > 0 with G being any abelian group. Such
T is given as follows: Let α be a certain distinguished class in Hn(K(G, n);G).
Then for each class x ∈ Hn(X;G), there exists a map f : X → K(G, n), unique
up to homotopy, such that f ∗(α) = x. Thus, T ([f ]) = f ∗(α).

Such a class α ∈ Hn(K(G, n);G) is called a fundamental class. The proof of the
theorem (see [9], Section 4.3) yields an explicit fundamental class, namely the
element of Hn(K(G, n);G) ∼= Hom(Hn(K(G, n); Z), G) given by the inverse of
the Hurewicz isomorphism G = πn(K(G, n))→ Hn(K(G, n); Z).
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Chapter 1. Spectra

1.4 Ringspectra

Definition 1.4.1 A ring spectrum is a CW -spectrum E with product µ : E∧E →
and unit ι : S0 → E such that the following diagrams commute up to homotopy:

E ∧ E ∧ E
µ∧idE //

idE∧µ
��

E ∧ E
µ

��
E ∧ E

µ // E

S0 ∧ E
ι∧idE //

%%KKKKKKKKKKK E ∧ E
idE∧ι //

µ

��

E ∧ S0

yysssssssssss

E

µ is homotopy-commutative if the diagram

E ∧ E τ //

µ
##GG

GG
GG

GG
G E ∧ E

µ
{{ww

ww
ww

ww
w

E

also commutes up to homotopy.

We see here that we so far only get commutativity up to homotopy. Naturally,
we are also interested in strict commutativity. In the case of sequential spectra,
the smash product is commutative only up to homotopy, so how could the above
diagram be strictly commutative? Moreover, in the case of a different model
of spectra which has a strictly commutative smash product and thus a chance
to have a strictly commutative multiplication this turns out very hard to prove.
In most cases, it is in fact easier to prove that there is an action of an operad
on the spectrum in question that then induces commutativity. Therefore, we
will now introduce operads and explain shortly how they induce a commutative
multiplicative structure on a spectrum.

Definition 1.4.2 An operad O is a collection of spaces {O(k)}k≥0 together with
an element 1 ∈ O(1) and maps

γ : O(k)×O(j1)× · · · × O(jk)→ O(j1 + · · ·+ jk)

for each choice of k, j1, . . . , jk ≥ 0 such that
(a) for each k and each s ∈ O(k), γ(1, s) = s and γ(s, 1, . . . , 1) = s, and
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Chapter 1. Spectra

(b) the following diagram commutes for all choices of k, j1, . . . , jk, i11, . . . , ik,jk :

O(k)×
k∏

m=1

(
O(jm)×

jm∏
n=1

O(imn)

)
1×γ //

=

��

O(k)×
k∏

m=1

O(im1 + · · ·+ imjm)

γ

��

(
O(k)×

k∏
m=1

O(jm)

)
×
∏
m,n

O(imn)

γ×1

��
O(j1 + · · ·+ jk)×O(i11 × · · · × O(ikjk)

γ // O(i11 + · · ·+ ikjk)

Moreover, if Sk is the symmetric group of k elements, for each k there is a right
action ρ of Sk such that for each σ ∈ Sk and τi ∈ Sji the following diagrams
commute:

O(k)×
∏
O(ji)

γk,j1,...,jk// O(j) O(j)
ρ(σ)oo

O(k)×
∏
O(ji) //

σ×1

OO

O(k)×
∏
O(jσ−1(i))

γk,j
σ−1(1)

,...,j
σ−1(k)

OO
(1.1)

O(k)×
∏
O(ji)

γ // O(j)

O(k)×
∏
O(ji)

γ //

1×
∏
τi

OO

O(j)

τ1⊕···⊕τk

OO
(1.2)

Definition 1.4.3 Let O be a operad and let Y be a space. An action of O on Y
consists of a map θ : O(k)× Y k → Y for each k ≥ 0 such that
(a) θ(1, y) = y for all y ∈ Y ,
(b) the following diagram commutes for all k, j1, . . . , jk ≥ 0:

O(k)×

(
k∏

m=1

O(jm)

)
× Y j1+···+jk = //

γ×1

��

O(k)×
k∏

m=1

(O(jm)× Y jm)

1×
∏
θ

��
O(k)× Y k

θ

��
O(j1 + · · ·+ jk)× Y j1+···+jk θ // Y

(c) and θ : O(k) × Y k → Y factors through O(k) ×Sk
Y k = O(k) × Y k/ ∼,

with (τ(c), y) ∼ (c, τ(y)) for τ ∈ Sk, c ∈ O(k), y ∈ Y k and Sk acts on Y k in the
obvious way.
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Example 1.4.4 For any space Y , the collection {Map(Y k, Y )}k≥0 together with
the compact-open topology and its usual multivariable composition builds an op-
erad, called the endomorphism operad, and we will denote it End(Y ). Obviously,
End(Y ) acts on Y in the described way.

Definition 1.4.5 An E∞ operad is an operad O for which each space O(k) is
weakly equivalent to a point.

Remark: There are other definitions of an E∞ operad (e.g. O is E∞ if Sk acts
freely on O(k)), but this is the most useful one for us here.

An important fact about E∞-spaces is the following one:

Theorem 1.4.6 Let Y be a topological space. Then Y is weakly equivalent to an
infinite loop space if and only if Y has a grouplike action of an E∞ operad.

(See [20].)

Moreover, a space with an action of an E∞ operad inherits structure from
this action. In particular, the action of O(2) induces a multiplication on Y :
O(2) × Y 2 → Y, (c, y1, y2) 7→ µ(y1, y2). This multiplication is unique up to
homotopy, since O(2) is weakly equivalent to a point and thus path-connected.
In fact, it is homotopy-associative and -commutative.

Associativity:
Consider

O(2)×O(2)×O(1)× Y 3 γ−→ O(3)× Y 3 θ−→ Y,

(c, c, 1, y1, y2, y3) 7−→ µ(µ(y1, y2)y3)

and
O(2)×O(1)×O(2)× Y 3 γ−→ O(3)× Y 3 θ−→ Y,

(c, 1, c, y1, y2, y3) 7−→ µ(y1, µ(y2, y3)).

Since O(3) is weakly equivalent to a point, it is path-connected. That is, γ(c, c, 1)
and γ(c, 1, c) are homotopic and thus, µ(µ×1) and µ(1×µ) are homotopic as well.

Commutativity:
Follows immediately from Definition (1.4.3), (c), if O(2) is path-connected.

The action of an operad on a spectrum E can be explained in the same way
as for a space, if Ek denotes the k-fold smash product. However, we get again
commutativity only up to homotopy. Fortunately, there is a theorem telling us
that an E∞-spectrum has a strictly commutative multiplication which may be
found in [6]. Obviously, this does not make sense for sequential spectra. We
definitely need other models of spectra here, for example symmetric spectra (see
[12]) or spectra as ’S-modules’ like they are explained in (see [6]).
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1.5 Localization of a spectrum

1.5.1 Localization via Moore spectra

Theorem 1.5.1 (Moore spectrum) For every abelian group A, there exists a
spectrum M(A) with the following properties:
i)πi(M(A)) = 0, i < 0
ii)π0(M(A)) = A = H0(M(A))
iii)Hi(M(A)) = 0, i 6= 0
M(A) is called Moore-spectrum and is unique up to equivalence.

Definition 1.5.2 Let A be a subring of Q and M(A) the corresponding Moore-
spectrum. We define the A-localization of E by EA := E ∧ M(A) for every
spectrum E.
Especially: E(p) = EZ(p) with Z(p) = {m

n
|m,n ∈ Z, p 6| n} ⊂ Q denoting the p-local

integers.

The following proposition states that EA does indeed behave like a localization.

Proposition 1.5.3 Let E be a spectrum and let A be a subring of the rational
numbers Q. Then there is a map of spectra j : E → EA and for every spectrum
X there is an isomorphism

EA∗(X) ∼= E∗(X)⊗ A

such that j∗ : E∗(X)→ EA∗(X) is given by j∗(x) = x⊗ 1.
Moreover, if E is a ringspectrum then ER is a ringspectrum and J : E → ER is
a map of ringspectra.

The proof can be found in [13], pp. 168,169.

It will be of some importance if there is a strictly commutative ring structure on
E(p) provided there is one on E. Luckily, the answer is yes. However, we have to
make a detour in order to see this. There is another way to define a localization of
spectra, the Bousfield localization. It may be regarded as a generalization of the
localization discussed above since in certain cases these localizations are equal.
Moreover, Bousfield localizations of strictly commutative ringspectra are again
strictly commutative which makes this detour worth while.

1.5.2 Bousfield localization

Let E∗ be a homology theory and E its representing spectrum.

Definition 1.5.4 We call a spectrum F E∗-acyclic if E∗(F ) = 0 and a spectrum
G E∗-local if [F,G] = 0 for each E∗-acyclic spectrum F .
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Definition 1.5.5 A map f : F → G of spectra is an E∗-equivalence if it induces
an isomorphism in E∗-homology.

Definition 1.5.6 An E∗-localization functor is a covariant functor on the stable
homotopy category LE : ST → ST together with a natural transformation η
from the identity functor to LE such that ηF : F → LE(F ) is the terminal E∗-
equivalence from F , that is ηF is an E∗-equivalence and for any E∗-equivalence
f : F → G there is a unique r : G→ LE(F ) such that rf = ηF :

F
f //

η
""EE

EE
EE

EE
EE G

∃!r
��

LE(F )

Bousfield proved in [5] that there is a localization functor LE : ST → ST for
every spectrum E.

Definition 1.5.7 We call a spectrum E n-connected if πi(E) = 0 for i ≤ n and
connected if it is (−1)-connected.

The following proposition is the first step to see that E(p) is a strictly commutative
ringspectrum if E is one:

Proposition 1.5.8 Let E,F be connective spectra and E∗ the homology theory
corresponding to E such that at least one element of E∗ has infinite order. More-
over, let J be a set of primes such that for each i Ei is uniquely p-divisible for
each p 6∈ J . Z(J) = {m

n
|m,n ∈ Z, p 6| n∀p ∈ J} is the localization of Z on J . Then

LE(F ) 'M(Z(J)) ∧ F .

The proof can be found in [5].

Example 1.5.9 The p-localization M(Z(p)) ∧ E corresponds to the HZ(p)∗-
localization with HZ(p) being the Eilenberg-MacLane spectrum for Z(p).

The second step is knowing that Bousfield localizations of E∞-ringspectra are
again E∞. This follows from theorem 2.2 in [6], chapter VIII.
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Chapter 2

Spectral sequences

The ideas presented in this chapter are mainly taken from a so far unfinished
book of Hatcher whose first chapters are available on the internet (see [10]).

Definition 2.0.10 (a) Let R be a ring. A differential bigraded R-module of
homological and cohomological type respectively is a collection of R-modules {Epq}
or {Epq}, p, q ∈ Z, together with an R-linear map dr : Epq → Ep+r,q+1−r and
dr : Epq → Ep−r,q+r−1 respectively satisfying d2 = 0. We call d a differential.
(b) A spectral sequence is a collection of differential bigraded R-modules {E∗∗

r , dr}
and {Er

∗∗, d
r} respectively, r ∈ N, such that ‖ dr ‖= (r, 1− r), ‖ dr ‖= (−r, r− 1)

and

E∗∗
r+1 = H∗(E∗∗

r , dr), E
r+1
∗∗ = H∗(E

r
∗∗, d

r).

Since we will later need a certain spectral sequence of homology type, we will
now confine ourselves to the homological case.

One may think of the Er-term as a page with lots of dots and arrows. The dots
stand for the entry Er

pq and the arrows are of course our differentials. Once a dot
is hit by an arrow, it will mapped to zero on the next page. Thus, when working
with spectral sequences, we are mainly concerned with when the entries go to
zero. Hopefully, we find a page from that on all the pages look the same, that is
Es = Es+1 = · · · = E∞ for some s ∈ Z. We say then that the spectral sequence
collapses. Unfortunately, it is not enough for a spectral sequence to collapse.

Definition 2.0.11 Let R be a ring and C an R-modul. A filtration F.C is a
ascending/descending sequence of submodules

. . . F−1C ⊂ F0C ⊂ F1C ⊂ · · · ⊂ FpC ⊂ · · · ⊂ C and

. . . F1C ⊂ F0C ⊂ F−1C ⊂ · · · ⊂ C respetively.
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Definition 2.0.12 Let F.C be a filtration of C. Then the associated graded object
is

grnC =

{
FnC/Fn−1C (ascending)

FnC/Fn+1C (descending)

Definition 2.0.13 A spectral sequence {Er
∗∗} converges to H if

(1.) H possesses a filtration and
(2.) grnH ∼= ⊕p+q=nE∞

pq for this filtration.

Later, we will mainly be considering free graded algebras and fortunately, there is
a general statement concerning convergence of spectral sequences involving such
algebras.

Lemma 2.0.14 If there is a spectral sequence converging to H∗ as an algebra
and the E∞-term is a free, graded-commutative, bigraded algebra, then H∗ is a
free, graded commutative algebra isomorphic to total(E∞

∗,∗), where (total(E∗,∗))
n =⊕

p+q=nEp,q.

Remark: There is a dual statement for free cocommutative coalgebras.

A detailed proof may be found in [19], p.25. It is not difficult, but a little bit
lengthy. Essentially, one defines a filtration on total(E∞

∗,∗) by assigning to each
generator and thus to each element a weight. Then, one shows that total(E∞

∗,∗)
and H∗ are isomorphic as algebras by showing that they have isomorphic
filtrations. This is done by double induction: on the algebra degree i and on the
filtration degree i− k.

As a first example, we will consider the Serre spectral sequence for fibrations.

Theorem 2.0.15 Let G be an abelian group and F → E → B be a fibration
with B path-connected. Moreover, let this fibering be orientable in the sense that
π1(B) acts trivially on H∗(F ;G). Then there is a spectral sequence converging to
H∗(E;G) with

E2
p,q
∼= Hp(B;Hq(F ;G)).

In particular, we will be interested in a relative version of this spectral sequence.
Let E ′ ⊂ E be a subspace such that (p|E ′) : E ′ → B is also a fibration and let
F ′ = F ∩ E ′. Then there is a spectral sequence converging to H∗(E,E

′;G) with
E2
p,q
∼= Hp(B;Hq(F, F

′)).

Remark: There is an analogous cohomological version of this spectral sequence
with E2-term Ep,q

2
∼= Hp(B;Hq(F ;G)) converging to H∗(E;G).
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2.1 The Eilenberg-Moore spectral sequence

Now, we want to consider the Eilenberg-Moore spectral sequence. As a prepara-
tion, we have to discuss the Tor functor.

Let R be a commuative ring and let A,B be R-algebras. In order to calculate
TorRn (A,B), one chooses a resolution · · · → F1 → F0 → A → 0 of A by free
(right) R-modules and then tensors this over R with B. Dropping the final term
A ⊗R B, one gets a chain complex · · · → F1 ⊗R B → F0 ⊗R B → 0 whose
nth homology group is TorRn (A,B). Of course, this notation is only justified if
TorRn (A,B) does only depend on A and B and not on the resolution we choose.
This is guaranteed by the following

Lemma 2.1.1 For any two free resolutions F, F ′ of A there are canonical iso-
morphisms Hn(F ⊗B) ∼= Hn(F

′ ⊗B).

Sketch of the proof: The key point is that for free resolutions F, F ′ of abelian
groups H,H ′ every homomorphism α : H → H ′ can be extended to a chain
map from F to F ′ and that there is only one such chain map up to homotopy.
What follows is quite simple. If the maps αn form the chain map from F to F ′,
then the maps αn ⊗ id form the chain map (again unique up to homotopy) from
F ⊗B to F ′ ⊗B. Passing to homology, this chain map induces homomorphisms
α∗ : Hn(F ⊗ B) → Hn(F

′ ⊗ B). Another important property of chain maps

is that for a composition H
α→ H ′ β→ H ′′ the induced homomorphisms satisfy

(βα)∗ = β∗α∗. In particular, if α is an isomorphism with inverse β and H = H ′′,
then α∗ is an isomorphism. In our special case of α being the identity map, we
thus get a canonical isomorphism id∗ : Hn(F ⊗ B) ∼= Hn(F

′ ⊗ B). (One may
have a look at [9] for the required facts about chain maps.)

�

Remark: If the resolution can be chosen in the category of graded R-modules,
tensoring with B stays within this category and there is therefore an induced
grading of TorRn (A,B) as a direct sum of its qth homogenous subgroups
TorRn,q(A,B).

Now, we want to explain a multiplication on TorR∗ (A,B) in order to understand it
as a graded R-algebra. That is, we search for a map TorRi (A,B)⊗Torrj(A,B)→
TorRi+j(A,B). Let P be a free resolution of A. Then we have as a first step

TorRi (A,B)⊗ TorRj (A,B) = Hi(P ⊗B)⊗Hj(P ⊗B)→ Hi+j(P ⊗B ⊗ P ⊗B)

by mapping c⊗ c′, where c, c′ are cycles in P ⊗B, to c⊗ c′ ∈ P ⊗B ⊗ P ⊗B.
Evidently, we have Hi+j(P ⊗ B ⊗ P ⊗ B) ∼= Hi+j(P ⊗ P ⊗ B ⊗ B) and the
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multiplication on B induces a map

Hi+j(P ⊗ P ⊗B ⊗B)→ Hi+j(P ⊗ P ⊗B).

Thus, the essential point in the second step is a map from P ⊗P to P or another
resolution P ′ of A. In our applications, we will have a map P ⊗P → P inducing
a map on homology and finally a map TorRi (A,B)⊗Torrj(A,B)→ TorRi+j(A,B).
The general case follows from the Comparison Theorem (see for example [26], p.
35) which supplies a chain map P ⊗P → P ′ that is unique up to chain homotopy
equivalence.

Definition 2.1.2 We call a spectral sequence a first-quadrant spectral sequence
if its entries are not trivial only for p, q ≥ 0.

Theorem 2.1.3 Let G be a topological group and suppose that X is a right
G-space and Y is a left G-space such that the projection Y → Y/G is a
principal bundle. Then there is a first-quadrant spectral sequence with E2

pq =

TorH∗(G;k)
p,q (H∗(X; k), H∗(Y ; k)) converging to H∗(X ×G Y ; k).

A proof may be found in [10], section 3.1.

We will use this spectral sequence in the context of the universal bundle G →
EG → BG: Let Y = EG and X = ∗, G acting trivially on ∗. By definition,
EG → EG/G = BG is a principal bundle. Moreover, EG ×G ∗ = EG × ∗/ ∼∼=
EG/G = BG with (x, ∗) ∼ (y, ∗) ⇔ y = g(x). Evidently, this is an easy special
case of the situation described in the theorem.

Proposition 2.1.4 Let G be a connected topological group. Then there is a
spectral sequence of coalgebras with E2 ∼= TorH∗(G;k)(k, k) and converging to
H∗(BG; k) as a coalgebra.

Have a look at [19], pp. 267,268 for the proof.

The following theorem goes back to Borel, who actually proved it without using
spectral sequences.

Theorem 2.1.5 If G is a connected topological group with H∗(G; k) ∼=
Λ(x1, x2, . . . ) as an algebra over k, where deg xi is odd for all i, then H∗(BG; k) ∼=
k[y∗1, y

∗
2, . . . ] as algebras with deg y∗i = deg xi + 1.

Proof: We prove this theorem by use of the above proposition. That is, we
first calculate H∗(BG; k). To do so, we have to resolve k over H∗(G; k) ∼=
Λ(x1, x2, . . . ).
In order to do so, we first have to discuss how to understand k as a Λ(x1, x2, . . . )-
module. Since k is concentrated in degree zero and the module structure of a

24



Chapter 2. Spectral sequences

graded module M over a graded ring R has to fulfill RiMj ⊂ Mi+j, we have no
choice but to demand that Λ0(x1, x2, . . . ) ∼= k acts on k by multiplication and
Λi(x1, x2, . . . ) acts trivially for i ≥ 1. Let ε : Λ(x1, x2, . . . ) → k denote this
action.
Let us now put for simplicity R := Λ(x1, x2, . . . ) and consider the bar complex
of R and k. It is defined as Bn(R, k) = R⊗k R̄⊗k · · · ⊗k R̄⊗k k with n factors R̄
which the cokernel of the k-module homomorphism k → R sending 1 7→ 1. Thus,
we have in fact R̄ ∼= (R)≥1.
The differential d : Bn → Bn−1 is defined as d =

∑n
i=0 di where

d0(r0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a) = r0r1 ⊗ r̄2 ⊗ · · · ⊗ r̄n ⊗ a,

di(r0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a) =
n−1∑
i=1

(−1)ir0 ⊗ · · · ⊗ r̄ir̄i+1 ⊗ · · · ⊗ a,

dn(r0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a) = (−1)nr0 ⊗ r̄1 ⊗ · · · ⊗ r̄n−1 ⊗ ε(rn)a.

As a first step, we show that didj = dj−1di for i ≤ j − 1 and then d2 = 0 by use
of it.
Let i < j − 1:

didj(r0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a) = di(r0 ⊗ · · · ⊗ r̄j r̄j+1 ⊗ · · · ⊗ a)
= r0 ⊗ · · · ⊗ r̄ir̄i+1 ⊗ · · · ⊗ r̄j r̄j+1 ⊗ · · · ⊗ a

and

dj−1di(r0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a) = dj−1(r0 ⊗ · · · ⊗ r̄ir̄i+1 ⊗ · · · ⊗ a)
= r0 ⊗ · · · ⊗ r̄ir̄i+1 ⊗ · · · ⊗ r̄j r̄j+1 ⊗ · · · ⊗ a,

where the last equation holds since r̄j goes to the (j − 1)st slot when r̄i and r̄i+1

are drawn together. A similar effect will occur when we now consider the case
for i = j − 1:

didj(r0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a) = di(r0 ⊗ · · · ⊗ r̄j r̄j+1 ⊗ · · · ⊗ a)
= r0 ⊗ · · · ⊗ r̄ir̄j r̄j+1 ⊗ · · · ⊗ a
= dj−1(r0 ⊗ · · · ⊗ r̄ir̄i+1 ⊗ · · · ⊗ a)
= dj−1di(r0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a).

Finally:

d2 = d(
n+1∑
j=0

(−1)jdj) =
n∑
i=0

n+1∑
j=0

(−1)i+jdidj

(∗)
=

∑
i≤j−1≤n

(−1)i+jdj−1di +
∑
j≤i≤n

(−1)i+jdidj

= −
∑
i≤k≤n

(−1)i+kdkdi +
∑
j≤i≤n

(−1)i+jdidj = 0,
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where equation (∗) uses didj = dj−1di for i ≤ j − 1. Thus, the bar complex with
differential d defined as above is indeed a chain complex.
Now we claim the Bn(R, k) is a resolution of k over R, that is we claim the
following sequence is exact:

. . . d // R⊗ R̄⊗ · · · ⊗ R̄⊗ k d // . . . d // R⊗ R̄⊗ k d // R⊗ k ε // k // 0 .

We prove this by proving that idB∗ is nullhomotopic. That is, we show that
s : Bn → Bn+1,

s(r0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a) =

{
1⊗ r̄0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a deg r0 > 0

0 deg r0 = 0

and s(a) = 1⊗ a fulfills ds+ sd = id.
As a first step, let us consider d ◦ s:

d ◦ s(r0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a) = d(1⊗ r̄0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a)
= r0 ⊗ r̄1 ⊗ . . . r̄n ⊗ a

+
n−1∑
i=0

(−1)i+11⊗ r̄0 ⊗ · · · ⊗ r̄ir̄i+1 ⊗ · · · ⊗ a

+(−1)n+11⊗ r̄0 ⊗ r̄1 ⊗ · · · ⊗ r̄n−1 ⊗ ε(rn)a

Secondly, consider s ◦ d:

s ◦ d(r0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a) = s(r0r1 ⊗ r̄2 ⊗ · · · ⊗ r̄n ⊗ a)

+s(
n−1∑
i=1

(−1)ir0 ⊗ · · · ⊗ r̄ir̄i+1 ⊗ · · · ⊗ a)

+s((−1)nr0 ⊗ r̄1 ⊗ · · · ⊗ r̄n−1 ⊗ ε(rn)a)
= 1⊗ r̄0r̄1 ⊗ r̄2 ⊗ · · · ⊗ r̄n ⊗ a

+
n−1∑
i=1

(−1)i1⊗ r̄0 ⊗ · · · ⊗ r̄ir̄i+1 ⊗ · · · ⊗ a

+(−1)n1⊗ r̄0 ⊗ r̄1 ⊗ · · · ⊗ r̄n−1 ⊗ ε(rn)a

Evidently, the last terms in both equations sum up to zero. Moreover, by com-
parison of the middle terms we see that they sum up to zero as well (except for
one summand) due to opposite signs. The only summand left in the first equation
is the one for i = 0. However, this one and the first term in the second equation
also sum up to zero. Thus,

(d ◦ s+ s ◦ d)(r0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a) = r0 ⊗ r̄1 ⊗ · · · ⊗ r̄n ⊗ a

that is ds + sd =id for n ≥ 1. At the bottom of the resolution, we have
d ◦ s(a) = d(1⊗ a) = a and s ◦ d(a) = s(0) = 0. Thus, ds+ sd =id as we wanted
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to show.

We now want to calculate the Tor-term by use of this resolution.
Note that

Λ(x1, x2, . . . ) ∼= Λ(x1)⊗k Λ(x2)⊗k . . .

as algebras. Moreover, it is Tor
Λ(xi)
∗ (k, k)⊗Tor

Λ(xj)
∗ (k, k) ∼= Tor

Λ(xi)⊗Λ(xj)
∗ (k, k) as

coalgebras (see [19], p. 247). This allows us to calculate the Tor-term via

TorΛ(x1,x2,... )
∗ (k, k) ∼= lim−→

n⊗
i=1

TorΛ(xi)
∗ (k, k).

We have
TorΛ(xi)

∗ (k, k) = H∗(k ⊗Λ(xi) B∗(Λ(xi), k)).

Therefore, consider

k ⊗Λ(xi) Bn(Λ(xi), k) = k ⊗Λ(xi) Λ(xi)⊗k Λ̄(xi)⊗k · · · ⊗k Λ̄(xi)⊗k k
∼= Λ̄(xi)⊗k · · · ⊗k Λ̄(xi) (n times)

where Λ̄(xi) is the vector space generated by xi and so Λ̄(xi)⊗k · · · ⊗k Λ̄(xi) has
dimension one over k generated by xi ⊗ · · · ⊗ xi.
Because of our module structure and x2 = 0, the differential id⊗d becomes zero
and thus

TorΛ(xi)
∗ (k, k) ∼= Λ̄(xi)⊗k · · · ⊗k Λ̄(xi).

Let us now consider the multiplicative structure on TorΛ(xi)(k, k). The bar resolu-
tion comes in fact with a product, the so called shuffle product (see for example
[26], p.181), where a (p, q)-shuffle of integers p, q ≥ 0 is a permutation σ of
the set {1, 2, . . . , p + q} of integers such that σ(1) < σ(2) < · · · < σ(p) and
σ(p+ 1) < · · · < σ(p+ q).
Before we explain the shuffle product on B∗(Λ(xi), k), note that the latter has a
bidegree, i.e. there is a generator yi of bidegree (|xi|, 1) or total degree |xi|+ 1.
Now define γm(yi) := yi ⊗ · · · ⊗ yi (m times) and the shuffle product ∗ on
B∗(Λ(xi), k) as ∗ : Bp ⊗Bq → Bp+q,

γp(yi) ∗ γq(yi) =
∑

(p,q)−shuffles σ

(−1)s(σ)γp+q(yi),

where s(σ) is a sum over degxi+1 (see [19], p.247) which we do not have to know
in detail since all xi have odd degree and thus, s(σ) is always even. Consequently

γp(yi) ∗ γq(yi) =

(
p+ q

q

)
γp+q(yi),

where
(
p+q
q

)
is the number of (p, q)-shuffles. Thus, Tor

Λ(xi)
∗ (k, k) ∼= Γ(yi), |yi| =

|xi| + 1, as this is exactly the product structure on a divided power algebra.
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Chapter 2. Spectral sequences

Moreover, this is an isomorphism of Hopf algebras, since the comultiplication of
the bar resolution is given by

∆(γk(yi)) =
k∑
j=0

γj(yi)⊗ γk−j(yi)

where γ0(yi) = 1.
Finally,

TorΛ(x1,x2,... )
∗ (k, k) ∼= lim−→

n⊗
i=1

Γ(yi) ∼= Γ(y1, y2, . . . )

That is, E2
p,q
∼= Γ(y1, y2, . . . ) with |yi| = |xi| + 1 where p corresponds to the

external and q to the internal grading.

-

6

k

x1

x2

x3

. . .

x1x2

. . .

x1x2x3

. . .

|x1|

|x2|

|x1|+ |x2|

|x3|

|x1|+ |x2|+ |x3|

. . .

(0, 0) 1 2 3 . . .

q

p

Where there is no entry we mean of course zero.
We see that every element of totalE2 is of even degree (recall that all xi are of
odd degree!). Since all differentials dr : Epq → Ep−r,q+r−1 decrease total degree
by one, all differentials must be zero. That is, the spectral sequence collapses
at E2 and E2 ∼= E∞. By lemma (2.0.14), the spectral sequence converges to
total(E∞

∗,∗)
∼= Γ(y1, y2, . . . ) with |yi| = |xi|+ 1.

This gives H∗(BG; k) = Γ(y1, y2, . . . ). Since all elements of H∗(BG; k) lie in even
dimension, we have

H∗(BG; k) ∼= H∗(BG; k)dual ∼= Γ(y1, y2, . . . )
dual
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as algebras. In order to finish our proof, we have to prove that the dual of the coal-
gebra Γ(y1, y2, . . . ) is the polynomial algebra k[y∗1, y

∗
2, . . . ] with y∗i dual to yi and

|y∗i | = |yi|. However, this is due to the fact that they are dual as Hopf algebras.
(The finite case is dicussed in the appendix, section (6.2). For infinitely many
generators consider the colimits of the algebras on finitely many generators).

�

In the later proof, we want to apply our theorems on the Eilenberg-Moore spectral
sequence to loop spaces. However, they are only valid for topological groups.
Thus, we will now do a little excursion into the simplicial world in order to see
how we can understand a loop space as a group.
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Chapter 3

The Kan loop group

Definition 3.0.6 Let ∆ be the category of finite ordinal numbers with order-
preserving maps between them. That is, the objects consist of elements [n], n ≥ 0,
where [n] is a totally ordered set with n+1 elements, and the morphisms θ : [n]→
[m] satisfy θ(i) ≥ θ(j) for i > j.

Important examples of morphisms are the so called faces δi and degeneracies σj:
For 0 ≤ i, j ≤ n, δi : [n− 1]→ [n] is an injection missing i and σj : [n+ 1]→ [n]
is a surjection sending both j and j + 1 to j.

Definition 3.0.7 A simplicial object B in a category C is a contravariant functor
B : ∆→ C or a covariant functor B : ∆op → C. A covariant functor ∆→ C is
called cosimplicial object in C.

Our main examples are simplicial objects in the category of sets, i.e. simplicial
sets, and simplicial objects in the category of groups, i.e. simplicial groups.

There is another description of simplicial objects, which is equivalent to the above
definition (see for example [7], p.4) but more concrete. To understand it, one has
to know the following:

Theorem 3.0.8 For any morphism θ : [n]→ [m] there is a unique decomposition

θ = δi1δi2 . . . δirσj1σj2 . . . σjs

such that i1 ≤ i2 ≤ · · · ≤ ir and j1 ≤ j2 ≤ · · · ≤ js with m = n − s + r. (If the
set of indices is empty, then θ is the identity.)

(See [17], p. 453.)

Proposition 3.0.9 A simplicial object B is a set of objects Bn, n ≥ 0 in C
together with a set of morphisms di : Bn → Bn−1, sj : Bn → Bn+1, 0 ≤ i, j ≤ n
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Chapter 3. The Kan loop group

for all n ≥ 0, satisfying the following formulas

didj = dj−1di for i < j,

sisj = sj+1si for i ≤ j,

djsj =


sj−1di for i < j,

idBn for i = j, i = j + 1,

sjdi−1 for i > j + 1.

Here, Bn = B([n]), di = δ∗i and sj = σ∗j . The elements of Bn are called n-
simplices of B.

The most important example of a cosimplicial object is the following:

Example 3.0.10 Let T denote the category of topological spaces. There is a
standard covariant functor ∆→ T , [n] 7→ |∆n| where

|∆n| = {(t0, . . . , tn) ∈ Rn+1|
n∑
i=0

ti = 1, ti ≥ 0} ⊂ Rn+1

is the topological standard n-simplex with subspace topology.

Definition 3.0.11 For any topological space X, the singular set Sing(X) is the
simplicial set given by [n] 7→ {f : |∆n| → X| f is continuous}. In the case
of pointed topological spaces we require f(∗) = f(|∆0|) = x0, where x0 is the
basepoint.

Remark: For a pointed space X, Sing(X) is reduced, that is the set of
zero-simplices consists of a single element: Sing(X)0 = {f : |∆0| → x0}.

Sing( ) is a functor from the category of topological spaces to the category of
simplicial sets. Conversely, there is a functor from simplicial sets to topological
spaces which is called geometric realization.

Definition 3.0.12 Let A be a simplicial set. Its geometric realization is defined
as the space

|A| =
⊔
n≥0

An × |∆n|/ ∼

where ∼ is generated by (a, θ∗(t)) = (θ∗(a), t) for any a ∈ An, t ∈ |∆m| and any
θ : [m]→ [n] in ∆. (Recall that |∆n| is cosimplicial!).

Remark: We call an element a ∈ An degenerate if there is some a′ ∈ An−1

such that a = sj(a
′) for some j. The geometric realization of A is then, as a

CW -complex, a union of cells, which are in bijection with the non-degenerate
simplices. The face operators tell us how these cells are glued together. (See [17],
p. 455.)
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Example 3.0.13 |Sing(X)| ' X.

Proposition 3.0.14 There is a bijection

homtop(|A|, X) ∼= homsimpl(A, SingX)

which is natural in simplicial sets A and topological spaces X. That is, the real-
ization and the singular functor are adjoint.

(See for example [7], p.7.)

Definition 3.0.15 We define the standard n-simplex in the category of simplicial
sets as ∆n = hom∆( , [n]).

Obviously, our notation gives the impression that the geometric realization of the
n-simplex in the category of simplicial sets is the topological standard n-simplex
and this is of course true ([7], p. 8).

∆n contains subcomplexes ∂∆n, called the boundary, and Λn
k , called the kth horn:

Definition 3.0.16 ∂∆n is the smallest subcomplex of ∆n containing all faces
δj(ιn), 0 ≤ j ≤ n of the standard simplex ιn = 1n ∈ hom∆([n], [n]). The j-
simplices of ∂∆n are

∂∆n[j] =


∆n[j] if 0 ≤ j ≤ n− 1,

iterated degeneracies of elements of

∆n[k], 0 ≤ k ≤ n− 1, if j ≥ n.

We write ∂∆0 = ∅ where ∅ is the ’unique’ simplicial set which consists of the
empty set in each degree.
The kth horn Λn

k , n ≥ 1 is the subcomplex of ∆n which is generated by all faces
dj(ιn) except for the kth face dk(ιn). For example, one could represent Λ2

1 by the
picture

2 2

Λ2
1 = ⊂ = ∆2

0 // 1

VV-----------

0

HH�����������
// 1

VV-----------

As an easy example of ∂∆n, we want now define the simplicial one-sphere as
S. = ∆1/∂∆1. To do so, we have to understand ∂∆1 in order to see that this
quotient is again a simplicial set. From the definition we have

∂∆1[0] = ∆1[0] and

∂∆1[j] = {iterated degeneracies of elements of ∆1[0]} for j ≥ 1.
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The latter means that we lift all elements of ∆1[0] to higher degrees by applying
the maps si to them. However, if we later consider the geometric realization of
∂∆1, these simplices are irrelevant since the geometric realization only sees non-
degenerate elements.
Hence, let us have a look at ∆1[0] = hom∆([0], [1]). Obviously, we have only two
maps

1

0 // 0

1

0

@@�������
0

and none of them is a degeneracy.
If we now define the quotient ∆1/∂∆1 levelwise, that is (∆1/∂∆1)[j] =
∆1[j]/∂∆1[j], we get again a simplicial set.

However, to see that our definition S1. = ∆1/∂∆1 makes sense we have to check
that |S.| = S1. A first step to see this is knowing, that a left adjoint functor
preserves colimits ([26], p.55). We already saw in (3.0.14), that | | is left adjoint
and a quotient can be considered as colimit of the inclusion. Thus, we need
to know |∆1| and |∂∆1|. In particular, we have to check that the geometric
realization of the simplicial boundary is the topological boundary!
Let us consider ∆1. We already explained how the 0-simplices look like. The
1-simplices (hom∆([1], [1])) are the following:

1 // 1

0 // 0

1 // 1

0

@@�������
0

1

��=
==

==
==

1

0 // 0

The last one is a degeneracy and the middle one is degenerate as image of a
0-simplex. All higher simplices ∆1[n], n ≥ 2 are represented by non-injective
maps and thus degenerate. Hence, by definition of the geometric realization and
the following remark, we have |∆1| = .
We already explained that ∂∆1 only consists of 0-simplices. More precisely, it
consists of two 0-simplices i.e. two simplicial points. By definition of the realiza-
tion, we trivially get |∂∆1| = · · . Hence, |S1.| = |∆1|/|∂∆1| = m= S1.

Definition 3.0.17 A Kan complex is a simplicial set A such that the canonical
map A → ∗ is a Kan fibration. That is, for every k and for every commutative
diagram of simplicial set homomorphisms

Λn
k

//

ik
��

A

��
∆n // ∗
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there is a map θ : ∆n → A making the diagram commute. Here, ik is of course
the inclusion Λn

k ⊂ ∆n.

Lemma 3.0.18 For each space X, the map Sing(X)→ ∗ is a Kan fibration and
thus Sing(X) is always a Kan complex.

(See [7], p. 11.)

Definition 3.0.19 Let A,B be simplicial sets. We then define Map (A,B)n =
homsimpl(A × ∆n, Y ) and take face and degeneracy maps to be induced by the
standard maps between the ∆n. This makes Map (A,B) again a simplicial set.

With this we define the simplicial loop space ΩsimplA = Map (S., A).

For topological spaces, we define Map (X,Y ) to be the simplicial set with n-
simplices the continous functions X × |∆n| → Y and face and degeneracy maps
induced by the standard maps between the ∆n.

Lemma 3.0.20 With the above definitions, proposition (3.0.14) extends to a nat-
ural isomorphism of simplicial mapping spaces

Map (|A|, X) ∼= Map (A, Sing(X))

for a simplicial set A and a topological space X. Moreover, the geometric realiza-
tion of a simplicial mapping space is natural isomorphic to a topological mapping
space.

(See [11], pp. 7,8.)

Theorem 3.0.21 Let A be a reduced Kan complex. Then there is a simplicial
group GA such that GA ' ΩsimplA is a weak equivalence (in the sense that we
get an isomorphism on homotopy) which is natural in A.

GA is called the loop group of A for obvious reasons. Since the construction
goes back to Kan, it is often called Kan loop group. Its construction is can be
found in [7], section V.5, together with the proof of theorem. The main point of
this theorem is that the loop space of a reduced Kan complex can be regarded
as a group. Moreover, the geometric realization of a simplicial group is in fact
a topological group: Because of |GA| × |GA| ∼= |GA × GA| ([7], p. 9), we get a
continuous map (| | is a functor!) |GA| × |GA| → |GA|.
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As we said above, Sing(X) is a reduced Kan complex for any topological space
X. Thus, ΩSimplSing(X) is weakly equivalent to a simplicial group (depending
on X). Lemma (3.0.20) guarantees

|ΩsimplSing(X)| = |Map (S1., Sing(X))|
lm.(3.0.20)∼= |Map (| S1.|, X)|
∼= homtop(S1, X) = ΩX.

On homology this gives

H∗(ΩX) ∼= H∗(|ΩsimplSing(X)|)
thm(3.0.21)∼= H∗(|GSing(X)|).

Hence, the homology of ΩX is isomorphic to the homology of a topological group.
If we later apply our theorems on the Eilenberg-Moore spectral sequence to ΩX,
we will actually replace ΩX by the topological group |GSing(X)|, calculate their
homology and then take advantage of the above isomorphism.
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Cohomology Operations

In general, cohomology operations are a tool that gives information about a space
X. Let us say we want to show that two spaces are of a different homotopy type.
One possibility would be to compare their cohomology groups and show that
they differ in some degree. Here, primary cohomology operations come into play:
They are maps of a certain degree on the singular cohomology groups of a space
X. However, it may happen that a composition of such maps is zero and thus
fail to give further information about the underlying space. In this case, one can
construct new operations - secondary cohomology operations - which rescue some
of the information the primary operations lost.

4.1 Primary Operations

Definition 4.1.1 Let Hn( ; π) and Hq( ;G) be the singular cohomology functors
from the category of topological pairs and continous maps to the category of sets
and fundtions, with n and q positive.
For n, q > 0, a primary cohomology operation θ of type (π, n,G, q) is a natural
transformation from Hn( ;π) to Hq( ;G).

Thus, for any pair (X, Y ) we have a function

θ(X, Y ) : Hn(X, Y ; π) −→ Hq(X, Y ;G)

and for any map of pairs f : (X, Y )→ (W,Z), we have

θ(X, Y ) ◦ f ∗ = f ∗ ◦ θ(W,Z)

where f ∗ is the map induced on cohomology.

Consequences of naturalitiy
• θ(X, Y ) is a pointed map of pointed sets.
As each Hn(X, Y ; π) is an abelian group, it has a distinguished zero element,
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namely Hn(∗ ; π) which we understand as an element in Hn(X,Y ; π) via p∗ :
Hn(∗; π)→ Hn(X, Y ; π) induced from p : (X, Y )→ ∗. It follows from naturality
that θ is as asserted.
• θ(X,X) is the zero map for q < n.
Starting with a CW pair, we observe that the q-th cohomology of the pair maps
monomorphically into the q-th cohomology of the q-skeleton of the pair. As the
n-th cohomology of the q-skeleton is zero, θ has to be the zero map by naturality.
For arbitrary pairs, this follows by use of the CW approximation theorem.

Definition 4.1.2 Let θn : n ≥ 1 be a sequence of cohomology operations of type
(π, n,G, n + i) for a fixed positive integer i. We call such a sequence a stable
cohomology operation of degree i provided the following diagram commutes for
each pair (X, Y ) and each n ≥ 1:

Hn(Y ; π) δ //

θn(Y )
��

Hn+1(X, Y ;G)

θn+1(X,Y )
��

Hn+i(Y ; π)
δ // Hn+i+1(X, Y ;G)

We call the individual θn the components of a stable operation.

4.1.1 Steenrod Operations

In the following, we will discuss an important example of primary cohomology
operations: Steenrod operations. They are definded on cohomology with Z/pZ-
coefficients and are named Steenrod squares for p = 2 and reduced powers for p
odd. While the reduced powers will turn up in a theorem we will need later, the
Steenrod squares will only serve to explain the secondary operations.
Unfortunately, the contstruction of these operations is quite lengthy. Hence, we
will only present their properties. A nice reference for the construction is [9],
section 4.L.

Proposition 4.1.3 There is a stable operation Sqi having components of type
(Z/2Z, n,Z/2Z, n+ i). That is, we have maps

Sqi : Hn(X, Y ; Z/2Z) −→ Hn+i(X, Y ; Z/2Z)

which commute with the connecting homomorphism.

Properties
(1) Sq0 =id
(2) If n < i, then Sqi is the zero map.
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(3) If n = i, then Sqn is the cup product Sqnx = x2.
(4) Cartan formula: On cup products, Sqi satisfies the equation

Sqi(x ∪ y) =
∑
i=j+k

Sqjx ∪ Sqky

(5) Adem relations: If 0 < a < 2b, then

SqaSqb =
∑(

b− 1− t
a− 2t

)
Sqa+b−tSqt

with non-zero summands only for 0 ≤ t ≤ a/2.

Lemma 4.1.4 For each i, Sqi commutes with (unreduced) suspension. That is,
the following diagram commutes:

H̃n(X; Z/2Z)
Σ //

Sqi

��

H̃n+1(ΣX; Z/2Z)

Sqi

��
H̃n+i(X; Z/2Z)

Σ // Hn+i+1(ΣX; Z/2Z)

Proposition 4.1.5 There are stable operations, called reduced powers of type
(Z/pZ, n,Z/pZ, n+ 2i(p− 1)) for p an odd prime:

P i : Hn(X, Y ; Z/pZ) −→ Hn+2i(p−1)(X, Y ; Z/pZ).

In addition, there is the Bockstein homomorphism

β : Hn(X, Y ; Z/pZ) −→ Hn+1(X, Y ; Z/pZ)

obtained from the coefficient sequence

0→ Z/pZ ∗p−→ Z/p2Z −→ Z/pZ→ 0.

The Bockstein operation is not stable. However, the signed Bockstein B = (−1)nβ
for β defined on Hn(X,Y ; Z/p) is a stable operation.

Properties
(1) P0 =id
(2) If n = 2i, then P ix = xp for any cohomology class x of dimension n.
(3) If n < 2i, then P ix = 0 for any cohomology class x of dimension n.
(4) Cartan Formula: P i(x∪ y) =

∑
j+k=iPjx∪Pky and, for the unsigned Bock-

stein, β(x · y) = βx · y + (−1)|x|x · βy. This gives in particular βxp = 0.
(5) Adem relations:
If a < pb, then

PaPb =
∑

(−1)a+t
(

(p− 1)(b− t)− 1

a− pt

)
Pa+b−tP t
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with non-zero summands only for integers t satisfying 0 ≤ t ≤ a/p.
If a ≤ pb, then

PaβPb =
∑

(−1)a+t
(

(p− 1)(b− t)
a− pt

)
βPa+b−tP t

+
∑

(−1)a+t−1

(
(p− 1)(b− t)− 1

a− pt− 1

)
Pa+b−tβP t.

Moreover, β2 = 0.

The Steenrod Algebra

The Steenrod operations modulo Adem relations form an algebra, the Steenrod
algebra Ap. It has the nice property that for every space X and every prime
p, H∗(X; Z/p) is a module over Ap.

Definition 4.1.6 The Steenrod algebra A2 is defined to be the algebra over Z/2
that is the quotient of the algebra of polynomials in the noncommuting variables
Sq1, Sq2, . . . by the twosided ideal generated by the Adem relations. Similarly, the
Steenrod algebra Ap for odd primes is defined to be the algebra over Z/p formed
by polynomials in the noncommuting variables β, P 1, P 2, . . . modulo the Adem
relations.
The Steenrod algebra is a graded algebra , the elements of degree k being those
that map Hn(X; Z/p) to Hn+k(X; Z/p) for all n.

As the next proposition shows us, A2 is generated as an algebra by the elements
Sq2k

, while Ap for p odd is generated by β and elements Ppk
.

Proposition 4.1.7 If i is not a power of 2, there is a relation
Sqi =

∑
0<j<i ajSq

i−jSqj with coefficients aj ∈ Z/2. Similarly, if i is not a power

of p, there is a relation P i =
∑

0<j<i ajP
i−jP j with a ∈ Z/p. These operations

are called decomposable.

Example 4.1.8 Sq5 = Sq1Sq4 and Sq6 = Sq2Sq4 + Sq5Sq1.

4.2 Secondary Operations

The presentation here mainly follows the one in [8].

Let C0
θ−→ C1

ϕ−→ C2 be a pair of composable maps with C2 being simply
connected.
Given a spaceX, let Sθ(X) denote the set of homotopy classes of maps ε : X → C0

such that the composition θ ◦ ε is null-homotopic,

Sθ(X) = {[ε]| ε : X → C0, θ ◦ ε ∼ ∗}.

40



Chapter 4. Cohomology Operations

Moreover, let TΩϕ(X) denote the quotient

TΩϕ(X) = [X,ΩC2]/imΩϕ#,

where Ωϕ# : [X,ΩC1] → [X,ΩC2] is given by Ωϕ#(g) = Ωϕ ◦ g. We need here
the simply connectivity of C2: If C2 is simply connected, then ΩC2 is connected
and TΩϕ(X) is well defined.
For illustration, one may consider the following diagram.

X
ε // C0

θ // C1
ϕ // C2

ΩC1

OO

Ωϕ // ΩC2

OO

X

g

aaDDDDDDDD Ωϕ#(g)

==zzzzzzzz

We write JgK to denote the image of g : X → ΩC2 in TΩϕ(X).
For f : Y → X we have

f# : Sθ(X)→ Sθ(Y ) given by f#([ε]) = [ε ◦ f ]

and
f# : TΩϕ(X)→ TΩϕ(Y ) given by f#(JgK]]) = Jg ◦ fK.

Definition 4.2.1 A secondary cohomology operation Θ is a natural transforma-
tion of the functors Sθ and TΩϕ. That is, for each f : X → Y , the following
diagram commutes:

Sθ(X)
f#

//

Θ
��

Sθ(Y )

Θ
��

TΩϕ(X)
f#

// TΩϕ(Y )

For a space X, Sθ(X) is a set and TΩϕ(X) is a group. If X is a point, Θ is the
zero map for TΩϕ(∗) = 0. Since we work with homotopy classes of maps, we have
Θ(ε) = 0 for any ε : X → C0 which is null-homotopic. Thus, Θ is automatically
a map of pointed sets.
In the case where both θ and Ωϕ are zero maps, our definition will agree with a
primary cohomology operation if C0 and C2 are Eilenberg-MacLane spaces.

As the submodule used to form the quotient TΩϕ(X) is of some importance and
will be referred to later on, we give it a name.

Definition 4.2.2 We call imΩϕ#, Ωϕ# : [X,ΩC1] → [X,ΩC2], the indetermi-
nacy of Θ and write it as Ind(Θ, X) = imΩϕ#. Note that for f : Y → X, we
have f#Ind(Θ, X) ⊂ Ind(Θ, Y ).
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As we said above, secondary operations become especially important when pri-
mary operations fail. As the Adem relations give rise to a lot of null-compositions
of primary operations, this will often be the case. Thus, we will explain in the
following how to construct secondary compositions for nullhomotopic composi-
tions.

4.2.1 Operations associated to nullhomotopic composi-
tions

Definition 4.2.3 We write the adjoint of f : I × X → Y as f \ : X →
Y I , f \(x)(t) = f(t, x).

Example 4.2.4 It is PX = {w : I → X| w(0) = ∗}. Given a contracting
homotopy H : I ×X → Y , we have H\ : X → PY, H\(x)(s) = H(s, x).

Definition 4.2.5 The direction reversal map τ of the unit interval is given by
τ(t) = 1 − t. When τ is used to reverse direction in homotopies, we write
Hτ (t, x) = H(τ(t), x).

Definition 4.2.6 Given a map f : B −→ B0 we construct the fiber square

Wf
p2 //

p1

��

PB0

e

��
B

f // B0

with pi being the projection on the ith component and e the evaluation on 1. Wf

is called homotopy fiber of f and its elements are pairs (b, w) ∈ B × PB0 such
that f(b) = w(1).

Let A
α−→ B

β−→ C be a pair of composable maps and H a contracting homotopy
from ∗ to βα. We will call this a sequence with homotopy and denote it by
(β, α,H). With this data we get two new maps.

Definition 4.2.7 (Lifting of α) We obtain a map ᾱ : A → Wβ from pull-back
data of the following diagram:

A

α

��

A

βα

��

A

H\

��
B

β // C P0C
e0oo

Wβ

p1

``AAAAAAAA p2

<<zzzzzzzz
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Assertion: ᾱ(a) = (α(a), H( , a)). To prove that (α(a), H( , a)) is in Wβ, we have
to check that β(α(a)) = H(1, a). Since H is a contracting homotopy from ∗ to
βα, this is quite obvious.

Definition 4.2.8 (Colifting of β) The map β̃ : Wα → ΩC is obtained from
pull-back data of the following diagram

Wα

p1

||yy
yy

yy
yy

y
p2

""EE
EE

EE
EE

A
α //

H\
τ

��

B

β

��

P0B
e0oo

P0β

��
P1C

e1 // C P0C
e0oo

ΩC

i1

bbFFFFFFFF i0

<<xxxxxxxx

Assertion: β̃(a, w)(s) =

{
βw(2s) 0 ≤ s ≤ 1/2,

H(2− 2s, a) 1/2 ≤ s ≤ 1.

Recall that ΩC = {(w1, w0) ∈ P1C × P0C| e1(w1) = w(1) = w(0) = e0(wo)}.
Thus, to prove that β̃(a, w) ∈ ΩC, we have to check that β̃(a, w)(1) = β̃(a, w)(0).
This is quite easy: β̃(a, w)(1) = H(0, a) = ∗ = βw(0) = β̃(a, w)(0). Moreover, it
is β̃(a, w)(1/2) = βw(1) = β(α(a)) = H(1, a).

Definition 4.2.9 (Secondary compositions) Given three composable maps

A
α−→ B

β−→ C
γ−→ D and contracting homotopies H from ∗ to βα, K from ∗

to γβ, we can construct a secondary composition

γ̃ ◦ ᾱ : A −→ Wβ −→ ΩD

through the homotopy fiber.
From the formulas above we get by composition:

(γ̃ ◦ ᾱ)(a)(s) = {γH,Kτα} =

{
γH(2s, a) 0 ≤ s ≤ 1/2,

K(2− 2s, α(a)) 1/2 ≤ s ≤ 1.

Obviously, (γ̃ ◦ ᾱ)(a)(1/2) = γH(1, a) = (γ ◦ β ◦ α)(a) = K(a, α(a)).

Definition 4.2.10 Let H1, H2 be contracting homotopies for the composition βα.
We measure their difference by δ(H1, H2) : A −→ ΩC given by

δ(H1, H2) = {H1, H2τ}\ =

{
H1(2s, a) 0 ≤ s ≤ 1/2,

H2(2− 2s, a) 1/2 ≤ s ≤ 1.
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Definition 4.2.11 Two sequences with homotopy, (β, α,H) and (β′, α′, H ′) are
homotopic provided there are homotopies L from α to α′ and M from β to β′,
such that

δ(H ′, {H, βL,Mα′}) : A −→ ΩC

is nullhomotopic.

Proposition 4.2.12 Given pairs of maps A
α,α′−→ B

β,β′−→ C
γ,γ′−→ D and contract-

ing homotopies to form four sequences with homotopy (β, α,H), (γ, β,K),
(β′, α′, H ′), (γ′, β′, K ′) and given homotopies L from α to α′, M from β to β′ and
N from γ to γ′ such that

δ1 = δ(H ′, {H,Mα, β′L}) : A→ ΩC

and

δ2 = δ(K ′, {K,Nβ, γ′M}) : B → ΩD

are nullhomotopic, then the secondary compositions are homotopic: γ̃◦ᾱ ' γ̃′◦ᾱ′.

Proof: Recall the explicit formula for γ̃ ◦ ᾱ in definition 1.2.6. Together with
definition 1.2.7 we obtain

γ̃ ◦ ᾱ = δ(γH,Kα) = {γH,Kτα}\ =

{
γH(2s, a) 0 ≤ s ≤ 1/2

Kα(2− 2s, a) 1/2 ≤ s ≤ 1

and

γ̃′ ◦ ᾱ′ = δ(γ′H ′, K ′α′) = {γ′H ′, K ′
τα

′}\ =

{
γ′H ′(2s, a) 0 ≤ s ≤ 1/2

K ′α′(2− 2s, a) 1/2 ≤ s ≤ 1
.

respectively.
Saying that δ1 and δ2 are nullhomotopic means that the sequences (β, α,H) and
(β′, α′, H ′) and (γ, β,K) and (γ′, β′, K ′) respectively are homotopic.
Thus, if we think of a homotopy H between f, g : X → Y as a square

X

f

��

X

g

��

H //

Y Y

,
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then the required homotopies can be deduced from the following schematic dia-
gram:

A

Kα

��

A

Kα′

��

A

K′α′

��
D

γβL
D

γMα′

D
Nβ′α′

D

A

γH

OO

A

γH′

OO

A

γ′H′

OO

�

We will now come back to secondary cohomology operations and explain the
promised example based on secondary compositions.

Assume there is a contracting homotopoy H for the composable pair C0
θ→ C1

ϕ→
C2. Then with ε : X → C0 representing an element in Sθ(X), we have a set of
secondary compositions {ϕ̃ ◦ ε̄ | ε̄ : X → Wθ is a lift of ε}. Applying proposi-
tion 1.2.1 to H ′ = {H,Mα, β′L} and K ′ = {K,Nβ, γ′M}, it follows that these
secondary compositions are invariants of the homotopy class of the sequence
with homotopy (ϕ, θ,H). That is, we get a well-defined natural transformation
Θ : Sθ( )→ TΩϕ( ) given by

Θ([ε]) = [[ϕ̃ ◦ ε̄]]

for each homotopy class of (ϕ, θ,H).

Example 4.2.13 Consider the following spaces and maps for an arbitrary, but
fixed integer n ≥ 1:

C0 = K(Z/2Z, n),

C1 = K(Z/2Z, n+ 1)×K(Z/2Z, n+ 2),

C2 = K(Z/2Z, n+ 4),

θ : C0 −→ C1 representing

(
Sq1

Sq2

)
,

ϕ : C1 −→ C2 representing (Sq3, Sq2).

From the Adem relations, we know that Sq2Sq2 = Sq3Sq1, thus Sq3Sq1 +
Sq2Sq2 = 0 over Z/2Z. This gives [ϕ][θ] = 0. Because of the representation
theorem (1.3.10), we then have for a space X that

Sθ = {[ε] | ε : X → C0, ε ◦ θ = 0} = {x ∈ Hn(X; Z/2Z) | Sq1(x) = 0 = Sq2(x)}.
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Since ΩK(G, n+ 1) = K(G, n), we have

TΩϕ(X) = Hn+3(X; Z/2Z)/Sq3Hn(X; Z/2Z) + Sq2Hn+1(X; Z/2Z),

which becomes quite obvious by regarding the following diagram.

X
ε // K(Z/2Z, n) θ // K(Z/2Z, n+ 1)×K(Z/2Z, n+ 2)

ϕ // K(Z/2Z, n+ 4)

K(Z/2Z, n)×K(Z/2Z, n+ 1)

OO

Ωϕ // K(Z/2Z, n+ 3)

OO

X

kkVVVVVVVVVVVVVVV

66nnnnnnnnn

4.3 Factorization of primary operations by sec-

ondary operations

One main point in the later proof will be the factorization of a certain Steenrod
operation by secondary operations. The idea of this factorization goes back to
Adams’ factorization of the Steenrod square Sqi for p = 2 in [1]. A few years
later, Liulevicius proved the factorization in question of the cyclic reduced power
Ppn

, for n ≥ 0 and p odd in his Ph. D. thesis (see [16]). We will therefore not be
able to give a proof of this factorization, but only state the theorem and explain
the operations involved.

Theorem 4.3.1 Let p be an odd prime. There exist stable secondary cohomol-
ogy operations Ψi,R,Γγ, elements ak,i, bk, ck,γ of positive grading in the Steenrod
Algebra A over the field Z/pZ and a scalar 0 6= νk ∈ Z/pZ such that

k∑
i=1

ak,iΨi + bkR+
∑
γ

ck,γΓγ = {vkPp
k+1}

for all integers k ≥ 0, modulo total indeterminacy.

These operations are as follows:
R is defined on Sθ(X) = {x ∈ Hm(x; Z/pZ) | β(x) = 0 = P1(x)} and R(x) is an
element of

TΩϕ(X) = Hm+4(p−1)(X; Z/pZ)/P2Hm(X; Z/pZ)+(1/2βP1−P1β)Hm+2p−3(X; Z/pZ)

with θ representing
(
β
P1

)
and ϕ representing (P2, 1/2βP1 − P1β).

For k > 0,Ψk is defined on Sθ′ = {x ∈ Hm(X; Z/pZ) | β(x) = 0 = Ppi
(x), i =

0, 1, . . . , k} and Ψk(x) lies in

TΩϕ′(X) = Hm+2pk(p−1)(X; Z/pZ)/Ppk

Hm(X; Z/pZ)+
k∑
i=0

ϑiH
m+2(pk−pi)(p−1)−1(X; Z/pZ),
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where ϑi are elements of the Steenrod algebra A and θ′ and ϕ′ represent(
β

(Ppk − Pp0 , . . . ,Ppk − Ppk)

)
and (Ppk

, (Pp0 , . . . ,Ppk

)).

The only thing we need to know about the operations Γγ is that they are of odd
degree.
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Chapter 5

The Brown-Peterson spectrum

5.1 Thom spectra

We now construct a so called Thom spectrum M(f) for each map
f : X → BF where the latter is defined as the telescope of the sequence
{· · · → BFn → BFn+1 → . . . } and BFn is the classifying space for (Sn, ∗)-
fibrations.

Our presentation relates to the one of Rudyak in [24].

Definition 5.1.1 Given a diagram η1
φ1←− ξ

φ2−→ of morphisms over B =
base(ξ) = base(ηi), i = 1, 2, we define its double mapping cylinder over B to
be the bundle

DCyl(φ1, φ2) := ξ × [0, 2] ∪ψ (η1 t η2),

where ψ : (ξ × {0}) t (ξ × {2}) = ξ t ξ φ1tφ2−→ η1 t η2.

With this we define the homotopy smash product ξ∧h η of two sectioned bundles
(ξ, sξ), (η, sη) as a certain double mapping cylinder. Its construction can be found
in [24], pp. 188,189. It is rather complicated and provides not much insight, so
we omit it here.

Definition 5.1.2 Let BFn be the classifying space for (Sn, ∗)-fibrations and γnF
the universal object over it. Let θ be the trivial (S1, ∗)-fibration over a point and
ρnF : γnF∧hθ → γn+1

F the classifying morphism for γnF∧hθ. We set rnF = base(ρnF) :
base(γnF ∧h θ) → base(γn+1

F ) and define BF to be the telescope of the sequence

{· · · → BFn
rn
F−→ BFn+1 → . . . }.

By definition of the telescope, we have an inclusion BFn ∼= BFn×{n} ⊂ BFn×
[n, n+ 1]→ BF .
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Definition 5.1.3 Let α be a (S, ∗)-fibration p : Y → X. A section of α is a
map s : X → Y with p ◦ s = idX . We define the Thom space of α by setting
T (α) := Y/s(X) and T (α) := ∗ if X = ∅.

Let BFn be the telescope of the finite sequence {BF1
r1−→ · · · rn−1−→ BFn}. We can

regard BFn as a CW -subcomplex of BF and by doing so we have a CW -filtration
{BFn} of BF . Since we identify x ∈ BFi in the telescope with its image ri(x),
we have BFn ' BFn and there is an universal object γnF over BFn.

Definition 5.1.4 Let X be a CW -complex and f : X → BF . Moreover, let Xn
f

be the maximal CW -subcomplex which is contained in f−1(BFn). This obviously
gives a CW -filtration of X with f(Xn

f ) ⊂ BFn. We define fn : Xn
f → BFn by

setting fn(x) = f(x).

X
f // BF

Xn
f

OO

fn // BFn

OO

By definition (6.4.3), there is an induced fibration f ∗nγ
n
F over Xn

f which will be

denoted by ζn. If in : Xn
f → Xn+1

f is the inclusion and ζn+1 the induced fibration

over Xn+1
f , then clearly i∗nζ

n+1 = ζn ⊕ θ. Together with the maps sn : ΣT (ζn) =
T (ζn ⊕ θ)→ T (ζn+1) we get the Thom spectrum M(f) = {T (ζn), sn}.

Remark: There is a similar construction for a CW -filtration of X with f(Xn) ⊂
BFn. However, the homotopy type of the Thom spectrum does not depend on
the choice of filtration (see [24], IV.5.13).

Example 5.1.5 The unitary group U(n) acts on Sn since unitary endomor-
phisms preserve the norm. Therefore, it is U(n) ⊂ Fn which induces a map
f : BU → BF and thus MU = M(f).

For a more clear construction of MU have a look at the appendix, section (6.5.3).

Theorem 5.1.6 The homotopy groups of the spectrum MU are given by
π∗(MU) = Z[x1, x2, . . . ] with |xi| = 2i and its homology is given by π∗(MU) =
Z[b1, b2, . . . ], |bi| = 2i.

(See for example [25], pp. 230,231 and p. 399.)

Remark: The ring Z[b1, b2, . . . ] with |bi| = 2i is also known as Lazardring from
formal group law theory.

We now introduce the Thom isomorphism corresponding to a map X → BF
which is an important ingredient to our proof.
Recall that a fibration F → E → B is orientable, if π1(B) acts trivially on
H∗(F ;G).
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Theorem 5.1.7 Let α = {p : Y → X} be an orientable (Sn, ∗)-fibration and X
path-connected, then there are Thom isomorphisms

φG : Hi(X;G)
∼=→ H̃i+n(T (α);G) and φG : H i(X;G)

∼=→ H̃ i+n(T (α);G)

Proof: (Compare [24].) To prove the isomorphism on homology, we consider the
Serre spectral sequence for the relative fibration (Y, s(X))→ X. It is

E2
p,q
∼= Hp(X;Hq(Sn, ∗;G)) ∼=

{
Hp(X;G) q = n,

0 otherwise.

As there is only one row with nonzero entries (q = n), all differentials dr are
zero for r ≥ 2. Thus, E2

p,q = E∞
p,q. As this spectral sequence converges to

H∗(Y, s(X);G) ∼= H̃∗(T (α);G) we have

Hp(X;G) ∼= E2
p,n
∼= E∞

p,n
∼= H̃p+n(T (α);G).

The isomorphism on cohomology follows analogously with the cohomology Serre
spectral sequence.

�

Definition 5.1.8 Let X be a CW -complex. We say that a map α = {f : X →
BF} is regular if f(X(n−2)) ⊂ BFn for every n.
Given a regular map as above we define fn : X(n−2) → BFn via fn(x) = f(x) for
every x ∈ X(n−2) and set

αn := f ∗nγ
n
F

With this we can write M(f) = {T (αn)}. We call α orientable if αn is for every
n ≥ 2.

Remark: We will later use an equivalent characterization of orientability.
For connected X, we have in fact that π0(M(f)) = Z if α is orientable and
π0(M(f)) = Z/2Z if α is not (see proposition 5.24 in [24], pp. 262,263). More-
over, orientability is equivalent to the existence of a lift of f : X → BF to BSF
which is the classifying space for all spherical fibrations of degree 1:

BSF

��
X

f //

;;x
x

x
x

x
BF

We know this from complex vector bundles where orientability is equivalent to
the existence of a lift to BSU :

BSU

��
X

f //

<<x
x

x
x

BU
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Theorem 5.1.9 Let X be a CW -complex and α = {f : X → BF}. Addition-
ally, let G be an abelian group and suppose that α is orientable. Then there are
isomorphisms

ΦG : Hi(X;G)
∼=−→ H̃i(M(f);G) and ΦG : H i(X;G)

∼=−→ H̃ i(M(f);G).

Proof: (See [24].) ΦG can be constructed as

Hi(X;G) = Hi(X
(N−2);G)

thm(5.1.7)∼= H̃i+N(T (αN);G) = H̃i(M(f);G),

where i << N . The cohomology version is analogous.
�

Remark: There is a version of theorem (5.1.7) for a generalized (co-)homology
coming from a spectrum E (see [13]) which of course implies a generalized version
of theorem (5.1.9). In fact, we will later use this theorem for a homology theory
coming from an Eilenberg-MacLane spectrum.

5.2 The Brown-Peterson spectrum

We said that π∗(MU) = MU∗ ∼= Z[x1, x2, . . . ] with |xi| = 2i. In particular, it is
isomorphic to the complex cobordism ring ΩU

∗ .

Theorem 5.2.1 ΩU
∗
∼= Z[x2, x4, x6, . . . ] and x2k may be taken to be the class

[CP k] if k = p− 1 for some prime p.

(See for example [25], chapter 12.)

If we localize the spectrum MU at a prime p we can find a unique map of
ringspectra ε : MU(p) → MU(p), such that ε2 = ε and ε∗ : MU(p)∗ → MU(p)∗ is
given by

ε∗[CP n] =

{
[CP n] if n = pt − 1 for some integer t,

0 otherwise.

The existence of this idempotent needs of course to be proven (see for example
[13]) and in fact, all this goes back to a famous theorem of Quillen in [21].
The image of a multiplicative idempotent in MU∗( )(p) is a natural direct sum-
mand and so gives rise to a multiplicative generalized (co-)homology theory:
For any spectrum E, we define BP∗(E) ∼= im ε∗ and BP ∗ ∼= im ε∗ with
ε∗ : MU(p)∗(E) → MU(p)∗(E) and ε∗ : MU∗

(p)(E) → MU∗
(p)(E) respectively.

The representing spectrum is called Brown-Peterson spectrum and denoted BP .

Theorem 5.2.2 The Brown-Peterson spectrum BP is a homotopy-commutative
and -associative ringspectrum with H∗(BP ) ∼= Z(p)[l1, l2, . . . ], where |li| = 2(pi −
1), and H∗(BP ; Fp) = Ap/(β) with Ap being the Steenrod Algebra and β the
Bockstein homomorphism.
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The multiplication on BP is induced by the composition

BP ∧BP →MU(p) ∧MU(p)
µMU−→MU(p)

ε−→ BP.

The grading of the generators of H∗(BP ) is of course due to the definition of ε.
A detailed proof of this theorem may be found in [24], pp. 413-415.

The question of interest is if BP posseses a strictly commutative model. In fact,
this question has not been answered yet though there were many attempts. One
attempt was to detect BP as the p-localization of the Thom spectrum M(f),
associated to some map f : X → BF . We will now explain this - unfortunately
unsuccessful - attempt in detail.

5.3 BP as a multiplicative Thom spectrum

So far, we introduced the classifying space BF and constructed a Thom spectrum
M(f) for each map f : X → BF .

Remark: BF is weakly equivalent to an infinite loop space.
Boardman and Vogt showed in [4], that F is an E∞-space and that every
classifying space of an E∞-space is again an E∞-space. As we said before, a
space is E∞ if and only if it is weakly equivalent to an infinite loop space.

Knowing this we can now consider loop maps f : X → BF and state the following
theorem which actually is a corollary of theorem 7.1 in [15], which is far more
general.

Theorem 5.3.1 Let X = Ω∞Y and f : X → BF be an infinite loop map. Then
the associated Thom spectrum M(f) is a E∞-ringspectrum.

Thus, if we could show that M(f) localizes to BP for some prime p, p 6= 2,
BP would be an E∞-ringspectrum as we explained in (1.5.2) and thus strictly
commutative. However, we will prove that M(f) does not even localize to BP if
f is only a 2-fold loop map.

Proposition 5.3.2 Let X = Ω2Y and f : X → BF be a 2-fold loop map. Then
the associated Thom spectrum M(f) does not localize to BP for any prime p 6= 2.

Outline of the proof:
We will prove this proposition by contradiction. That is, we will assume that BP
is indeed the localization of the Thom spectrum associated to a 2-fold loop map
X = Ω2Y → BF . By use of the Thom isomorphism and the Eilenberg-Moore
spectral sequence we will then show that this implies H∗(Y ; Fp) = Fp[y1, y2, . . . ]
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with |yi| = 2pi. However, theorem (4.3.1) on the factorization of secondary
cohomology operations tells us, that in this case we would have yp1 = 0 which
obviously cannot be true since y1 is a generator in a torsionfree polynomial ring.

Before we start with the actual proof, we collect some helpful tools that will help
later on.

Lemma 5.3.3 If H∗(X; Z(p)) ∼= H∗(BP ), then X = Ω2Y is connected and we
can assume that ΩY is connected without loss of generality.

Remark: We need this in order to apply the theorems of chapter 2 which were
valid only for connected topological groups.

Proof: Since we know for any space Z that H0(Z;R) = ⊕π0(Z)R, we see that
Ω2Y is actually arcwise connected (and thus connected) as H0(Ω

2Y ; Z(p)) =
H0(X; Z(p)) ∼= Z(p). We can assume ΩY to be connected because if it was not,
we would get Ω(ΩY ) = Ω(Yj) for ΩY = tiYi and the basepoint lying in Yj.

�

Lemma 5.3.4 H∗(BΩ2Y ) ∼= H∗(ΩY ) and H∗(BΩY ) ∼= H∗(Y ).

Proof: Consider the path-loop fibration ΩY → PY → Y and its corresponding
long homotopy sequence:

· · · → πn(PY )→ πn(Y )→ πn−1(ΩY )→ πn−1(PY )→ . . .

As PY is contractible, we have πi(PY ) = 0 for all i and thus πn(Y ) ∼= πn−1(ΩY ),
for all n.
Now consider the universal bundle G → EG → BG for ΩY . Again, we have a
long homotopy sequence:

· · · → πn(EΩY )→ πn(BΩY )→ πn−1(ΩY )→ πn−1(EΩY )→ . . .

As EΩY is as well contractible, it is πn(BΩY ) ∼= πn−1(ΩY ), for all n. This
finally gives π∗(BΩY ) ∼= π∗(Y ). By replacing ΩY by Ω2Y and Y by ΩY we get
as well π∗(BΩ2Y ) ∼= π∗(ΩY ).
We want now apply Whitehead’s theorem in order to prove the desired isomor-
phism on homology. This theorem states, that if there is a map between arcwise
connected spaces of the homotopy type of a CW -complex and the induced map
on homotopy is an isomorphism, so is the induced map on homology. Thus, we
have to show that BΩY, Y and BΩ2Y,ΩY respectively are arcwise connected
(i.e. π0 = ∗). In the case of the classifying spaces this is obvious. In the case of
Y and ΩY we can assume them to be arcwise connected with a similar argument
as above. If they were not the loop space on them would be the loop space
on the path-component of the basepoint so we can restrict to this component.
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�

Proof of (5.3.2): Suppose M(f) localizes to BP for any prime p 6= 2. Then
π0(M(f)(p)) = Z(p) and thus f : X → BF is orientable. Therefore, we can apply
the HZ(p)-Thom isomorphism which gives

HZ(p)∗(X) = H∗(X; Z(p)) ∼= HZ(p)∗(M(f)) = H∗(BP ) = Z(p)[l1, l2, ...]

with |li| = 2pi − 2.

As we want to use the Eilenberg-Moore spectral sequence in the following, we
have to change the coefficients of our homology. The Eilenberg-Moore spectral
sequence was only constructed for coefficients in a field, thus we exchange
Z(p)-coefficients for Fp-coefficients. We have to do this exchange of coefficients
anyway, as we want to use secondary cohomology operations later on and these
were only defined for cohomology with Fp-coefficients.
As H∗(X; Z(p)) is a free polynomial algebra and the exchange of coefficients does
not affect the generators, we get H∗(X,Fp) = Fp[l1, l2, . . . ].

By use of the Eilenberg-Moore spectral sequence, we want to show that
H∗(Y ; Fp) = Fp[y1, y2, . . . ] with |yk| = 2pk. As a first step, we apply proposition
(2.1.5) on X = Ω2Y in order to calculate H∗(BΩ2Y ; Fp) ∼= H∗(ΩY ; Fp).

Calculation of H∗(ΩY )
Understanding ΩY as BΩ2Y = BX, we use proposition (2.1.4) in order to
calculate H∗(ΩY ).

For this purpose, we first have to determine E2
∗∗
∼= Tor

H∗(X;Fp)
∗∗ (Fp,Fp).

Recall that H∗(X; Fp) ∼= H∗(BP ; Fp) = Fp[l1, l2, . . . ] with |li| = 2(pi − 1). For

simplification, we first calculate Tor
Fp[l1,...,lk]
∗ (Fp,Fp) with li graded as above. The

generalisation to infinitely many generators will follow afterwards.
Since Fp[l1, . . . , lk] and Fp are graded, we can choose our resolution in the
category of graded Fp[l1, . . . , lk]-modules. (We need here that this category has
enough free objects. Fortunately, this is true.) Thus, there will be an induced

grading of Tor
Fp[l1,...,lk]
n (Fp,Fp).

One main point is how we understand Fp as Fp[l1, . . . , lk]-module. The
module structure of a graded module M over a graded ring A has to fulfill
the rule AiMj ⊂ Mi+j. In our case, Fp only lives in degree zero. That is,
we have no choice but to demand that (Fp[l1, . . . , lk])0 = Fp acts on Fp by
multiplication and elements of higher degree go to zero. Moreover, this makes
sense in a more intuitive way as we can understand Fp as Fp[l1, . . . , lk]/(l1, . . . , lk).

Let us define R := Fp[l1, . . . , lk] and I := (l1, . . . , lk) in order to keep things a little
bit clearer. Then let l : Rk → R be the linear form given by l(r1, . . . , rk) =

∑
liri.
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This gives rise to a complex K(l) = (Λ∗
RR

k, dl), called the Koszul complex, where
Λ∗
RR

k denotes the graded exterior algebra over Rk. The map dl : Λn+1
R Rk → Λn

RR
k

is given by

dl(v0 ⊗ · · · ⊗ vn) =
n∑
i=0

(−1)il(vi)v0 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vn,

where vi ∈ Rk. Obviously, we have dl = l for n = 0. To see that K(l) is indeed
a complex, we have to check that d2

l = 0. We do an example first in order to
understand what is going on.
Let n = 2, then:

d2
l (v0 ⊗ v1 ⊗ v2) = dl(l(v0)v1 ⊗ v2 − l(v1)v0 ⊗ v2 + l(v2)v0 ⊗ v1)

= l(v0)dl(v1 ⊗ v2)− l(v1)dl(v0 ⊗ v2) + l(v2)dl(v0 ⊗ v1)

= l(v0)l(v1)v2 − l(v0)l(v2)v1 − (l(v1)l(v0)v2 − l(v1)l(v2)v0)

+l(v2)l(v0)v1 − l(v2)l(v1)v0

= 0

since R is commutative. We see that when applying dl the second time, the
positions are changed. In the first summand for example, v1 goes to the 0th
position and v2 to the first, because v0 is missing. This causes opposite signs and
thus the terms add up to zero. Hence:

d2
l (v0 ⊗ · · · ⊗ vn) = dl(

n∑
i=0

(−1)il(vi)v0 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vn)

=
n∑
i=0

(−1)il(vi)dl(v0 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vn)

=
n∑
i=0

(−1)il(vi)(
i−1∑
j=0

(−1)jl(vj)v0 ⊗ · · · ⊗ v̂j ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vn

+
n∑

j=i+1

(−1)j−1l(vj)v0 ⊗ · · · ⊗ v̂j ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vn)

= 0

We claim now, that K(l) is a resolution of R/I ∼= Fp over R. This means, the
following sequence is exact:

· · · → Λn+1
R Rk dl−→ Λn

RR
k dl−→ · · · dl−→ Λ1

RR
k l−→ R→ R/I → 0

This is equivalent to Hn(K(l)) = 0 if n > 0 and H0(K(l)) = R/(l1, . . . , lk). We
proof this by induction on k.
If k = 1, then I = (l1) and K(l) = K(l1) is the complex

0→ R
l1−→ R→ 0.
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Multiplication with l1 is injective, thus Hn(K(l1)) = 0 for n > 0 and H0(K(l1)) =
R/l1R = R/I.
Suppose now thatK(l) is a resolution as stated for k−1. Consider the length-one-
complex K(lk) and the exact sequence of complexes 0→ K0 → K(lk)→ K1 → 0
which looks like this:

degree 0

��

0

��

0

��

0

��

0

��
1 0

��

// 0

��

// R
id //

·lk
��

R

·0
��

// 0

��
0 0

��

// R
id //

��

R
·0 //

��

0

��

// 0

��
0 0 0 0 0

Tensoring over R with the Koszul complex K = K(l1, . . . , lk−1) maintains exact-
ness. Moreover, the middle term is K(lk)⊗RK = K(l). The short exact sequence
0→ K0⊗K → K(l)→ K1⊗K → 0 gives rise to a long exact homology sequence:

· · · → Hn+1(K1 ⊗R K)
δ−→ Hn(K0 ⊗R K)→ Hn(K(l))→ Hn(K1 ⊗R K)

δ−→ . . .

By application of the Künneth formula, this gives

· · · → R⊗R Hn(K)
δ−→ R⊗R Hn(K)→ Hn(K(l))→ R⊗R Hn−1(K)

δ−→ . . .

Thus, δ is simply multiplication by lk because Hn(K(l)) = Hn(K(lk) ⊗R K) =
R/lkR ⊗R Hn(K) (again by use of the Künneth formula). The exactness of the
above sequence is equivalent to the exactness of the following short sequence:

0→ Coker(Hn(K)
lk−→ Hn(K))→ Hn(K(l))→ Ker(Hn−1(K)

lk−→ Hn−1(K))→ 0

The inductive hypothesis is Hn(K) = 0 for n > 0 and H0(K) =
R/(l1R + · · ·+ lk−1R), thus Hn(K(l)) = 0 for n > 1.

For n = 1, H1(K(l)) = Ker(H0(K)
lk−→ H0(K)). As this multiplication is

injective, we have H1(K(l)) = 0.

For n = 0, H0(K(l)) = Coker(H0(K)
lk−→ H0(K)) = R/I as we wanted to show.

So far we have that K(l) is a free resolution of R/I over R. In order to calculate
TorR∗ (R/I,R/I), we have to determine the homology of (Λ∗

R(Rk)⊗RR/I, dl⊗ 1).
By definition, the image of l is in I, thus dl⊗1 = 0 because of the module structure
of R/I over R. Therefore, TorR∗ (R/I,R/I) = Λ∗

R(Rk) ⊗R R/I = Λ∗
R/I((R/I)

k).

Moreover, (R/I)k = (Fp)k ∼= I/I2 by counting generators. Hence,
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TorR∗ (R/I,R/I) ∼= Λ∗
R/I(I/I

2) = Λ∗
Fp

(l1, . . . , lk).
Our last task here is to check that the canonical product on the Tor-groups is iden-
tical to the exterior algebra product. Hence, consider f : K(l) ⊗R K(l) → K(l)
where (K(l) ⊗R K(l))n = ⊕p+q=nK(l)p ⊗R K(l)q. This is in fact a homomor-
phism of complexes lifting the muliplication on R/I such that each fn is the
multiplication in the exterior algebra. Since all differentials are zero, one sees
very easily by having a look on the product formula of the Tor-term (section
(2.1)) that both products correspond.

The ideas presented so far do hold of course in a more general context, too.
In fact, the presentation was guided by the general proof of Loday in [17] (pp.
103-105) and supplemented by details.

We now have to generalize the above result to infinitely many generators. Con-

sider the direct system · · · → Rk j−→ Rk+1 → . . . with j being the inclusion
(r1, . . . , rk) 7→ (r1, . . . , rk, 0) and its direct limit R∞. Then the following is a
direct system

. . .

j∗

��

. . .

j∗

��

. . . . . .

j∗

��

. . .

j∗

��
. . . // Λn+1

R Rk
dl(k) //

j∗

��

Λn
RR

k
dl(k) //

j∗

��

. . .
dl(k) // Λ0

RR
k = R //

��

R/I //

��

0

. . . // Λn+1
R Rk+1

dl(k+1)//

j∗

��

Λn
RR

k+1
dl(k+1)//

j∗

��

. . .
dl(k+1)// Λ0

RR
k+1 = R //

��

R/I //

��

0

. . . . . . . . . . . . . . .

with direct limit

. . . // Λn+1
R R∞ dl(∞) // Λn

RR
∞ dl(∞) // . . .

dl(∞) // Λ0
RR

∞ = R // R/I // 0

Thereby, l(k) is the linear form belonging to (l1, . . . , lk) and l(∞) the one be-
longing to (l1, l2, . . . ) with |li| = 2pi − 2. The latter is well-defined since the
elements of the direct limit R∞ do only have finitely many non-zero components.
By (6.3.2), this direct limit is a resolution of R/I = Fp[l1, l2, . . . ]/(l1, l2, . . . ) = Fp.
If we tensor with R/I and drop the last term, the above (without the last terms)
is still a direct system with direct limit

. . . // Λn+1
R R∞ ⊗R R/I

dl(∞)⊗1
// Λn

RR
∞ ⊗R R/I

dl(∞)⊗1
// . . .

dl(∞)⊗1
// Λ0

RR
∞ ⊗R R/I // 0

The homology groups of this complex are TorR∗ (R/I,R/I). By (6.3.2), the ho-
mology of the direct limit is the direct limit of the homology of the underlying
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direct system. Thus we finally get:

TorFp[l1,l2,... ]
∗ (Fp,Fp) = lim−→Λ∗

Fp
(l1, . . . , lk) = Λ∗

Fp
(l1, l2, . . . )

Tor
Fp[l1,l2,... ]
n (Fp,Fp) = Λn

Fp
(l1, l2, . . . ) has an internal grading because of the grad-

ing of the li. Thus, E2
∗∗
∼= Λ∗∗

Fp
(l1, l2, . . . ), that is, the E2-page looks like this:

-

6

Z(p)

l1

l2

l3

. . .

l1l2

. . .

l1l2l3

. . .

2p− 2

2p2 − 2

2(p+ p2)− 4

2p3 − 2

2(p+ p2 + p3)− 6

. . .

(0, 0) 1 2 3 . . .

q

p

Where there is no entry we mean of course 0.
Let us consider the related maps d2 : E2

p,q → E2
p−2,q+1. It is obvious, that they

either start in zero or go to zero. The same holds for all other differentials. To
see this, consider the total degree (p + q) of elements. In the first column, the
total degree equals 2pi − 1 for some i. In the second one, it equals 2(pi + pj)− 2
and in the third 2(pi + pj + pk) − 3. In general, the total degree equals
2(
∑∞

i=1 aip
i) − #{ai 6= 0}, ai ∈ {0, 1}. The differentials have total degree −1.

Hence, if we can show, that there exist no elements whose total degree differs
by 1, then all differentials must be zero. If the total degree of two elements
differs by 1, then one of them has to be even and one odd. Thus, the number of
ai 6= 0 must differ by an odd amount, at least one. However, this means that the
total degrees differ by at least one pi-summand which is obviously larger than 1.
Consequently, all differentials are zero and the spectral sequence collapses in E2,
that is E2 = E∞.
By lemma (2.0.14), our spectral sequence converges to total(E∞

∗,∗)
∼=

ΛFp(z1, z2, . . . ) with |zi| = 2pi − 1.
Thus, H∗(ΩY ; Fp) ∼= ΛFp(z1, z2, . . . ), |zi| = 2pi − 1. Applying theorem (2.1.5) on
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ΩY then gives H∗(BΩY ; Fp) ∼= H∗(Y ; Fp) ∼= Fp[y1, y2, . . . ] with |yk| = 2pk as
wanted.

Finally, we now take advantage of cohomology operations in order to produce
a contradiction: On the one hand, we have Pp(y1) = yp1 due to |y1| = 2p and
yp1 6= 0 since y1 is a generator in the torsion free polynomial ring Fp[y1, y2, . . . ].
On the other hand, the factorization of Pp by secondary cohomology operations
tells us that Pp(y1) = ν−1

0 (b0R +
∑

γ c0,γΓγ). However, the operations Γγ are
of odd degree. Thus, Γγ = 0 since our polynomial algebra only lives in even
degree. Moreover, the operation R is of degree 4(p − 1). As 2pi + 4(p − 1) 6=
2pj for all i, j and p 6= 2, it is zero as well. Consequently, Pp(y1) = 0.  

�

Final words

We proved that BP is not the localization of a Thom spectrum associated to
a 2-fold loop map and thus cannot be understood as a Thom spectrum in this
way. So, what does this tell us concerning our question if there is a strictly
commutative product structure on BP? Unfortunately, this does not tell us very
much. For example, the above proof would hold as well for BP 〈1〉 which is the
spectrum representing BP 〈1〉∗ = Z(p)[l1], |l1| = 2p−2, since the degree of this first
generator was exactly what caused the contradiction. However, it is known that
BP 〈1〉 does have a strictly commutative product structure (see[3]). Moreover, the
proof obviously holds for every BP 〈n〉 representing BP 〈n〉∗ = Zp[l1, . . . , ln], |li| =
2(pi − 1), but we do not yet know if they possess a strictly commutative model.
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Appendix

6.1 Axioms for a reduced homology theory

Definition 6.1.1 Let PT ′ be the category of pointed topological spaces and homo-
topy classes of basepoint preserving maps. We denote by Σ the (reduced) suspen-
sion functor defined by Σ(X, x0) = (ΣX, ∗) and Σ[f ] = [1S1∧f ] for (X, x0) ∈ PT ′.
A reduced homology theory h̃∗ on PT ′ is a collection of covariant functors h̃n
from PT ′ to the category of (abelian) groups and natural equivalences σn : h̃n →
h̃n+1 ◦ Σ satisfying the exactness axiom:
For every pointed pair (X,A, x0) with inclusions i : (A, x0) ↪→ (X, x0) and
j : (X, x0) ↪→ (X ∪i CA, ∗) the sequence

h̃n(A, x0)
i∗−→ h̃n(X, x0)

j∗−→ h̃n(X ∪i CA, ∗)

is exact.
By saying that σn is a natural equivalence, we mean that the diagram

h̃n(X)
σn //

��

h̃n+1(ΣX)

��

h̃n(Y )
σn // h̃n+1(ΣY )

commutes.

Many of the readers might know about reduced singular homology and its nice
property of being zero on any single point {x}. This follows for every re-
duced homology theory from the exactness axiom by considering the inclusions
i : ({x}, x) → ({x}, x), and j : ({x}, x) → ({x} ∪i C ′{x}, ∗), where C ′ is the
reduced cone: Both inclusions are in fact the identity and the sequence

h̃({x}) id→ h̃({x}) id→ h̃({x})
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is exact only if h̃({x}, x) = 0 (compare [25], p.110).

There is another axiom which will be of some importance.

Definition 6.1.2 (Wedge axiom) A reduced homology theory satisfies the
wedge axiom, if for every collection (Xα, xα)α∈A of pointed spaces the inclusions
iα : Xα →

∨
β∈AXβ induce an isomorphism

iα∗ : ⊕α∈Ah̃n(Xα)→ h̃n(
∨
α∈A

Xα)

for all n.

The dual notion of a reduced homology theory is a reduced cohomology theory.
Its axioms are essentially the same except for it being a contravariant functor,
that is all the arrows involved go in the opposite direction.

6.2 Hopf algebras

Definition 6.2.1 A bialgebra over k is an k-algebra H with product ×, together
with algebra homomorphisms ∆ and ε making H into a coalgebra. We call H
Hopf algebra if in addition there is a k-module homomorphism s : H → H such
that the following diagrams commute:

H ⊗H s⊗idH // H ⊗H
×

��
H

∆

OO

ε // k // H

H ⊗H idH⊗s // H ⊗H
×

��
H

∆

OO

ε // k // H

The homomorphism s is called antipode and evidently reminds a little bit of an
inversion.

The easiest example of a Hopf algebra is the polynomial algebra R[α]. Its
coproduct must be given by ∆(α) = α⊗ 1 + 1⊗ α since there are no elements of
lower - but nonzero - degree than α.
Further examples are exterior and divided power algebras.

An important fact about Hopf algebra is the relationship between the (co-
)product structure of a graded Hopf algebra A∗ and its graded dual A∗ with
Ak = Hom(Ak, R): The coproduct of A∗ determines the product of A∗ and vice
versa.
In the case of a divided power algebra the coproduct fulfills ∆(γk(α)) =∑

i γi(α) ⊗ γk−i(α). Thus, ∆ij takes γi+j(α) to γi(α) ⊗ γj(α). So if xi is a
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generator of A∗ that is dual to γi(α) then xixj = xi+j which is the product for-
mula in a polynomial algebra.
Conversely, the coproduct in a polynomial algebra R[x] fulfills ∆(xn) = (x ⊗
1 + 1 ⊗ x)n =

∑
i

(
n
i

)
xi ⊗ xn−i if x. So if αi is dual to xi, the product in the

dual algebra has to fulfill αiαn−i =
(
n
i

)
αn which is exactly the multiplication in

a divided power algebra.
Thus, ΓR(α) and R[x] are dual to each other as Hopf-algebras.

6.3 Direct limits of chain complexes

Definition 6.3.1 Let R be a ring and C∗[n] a chain complex of R-modules for
each n. A direct system of chain complexes (C∗[n], f∗[n]) is a sequence of chain
maps

C∗[0]
f∗[0] // C∗[1]

f∗[1] // C∗[2]
f∗[2] // . . .

Its direct limit is a chain complex of R-modules lim−→(C∗[n], f∗[n]) together with

maps φn : C∗[n]→ lim−→(C∗[n], f∗[n]) such that φn+1 ◦ f∗[n] = φn which fulfills the
following universal property:
For each chain complex C ′

∗ together with chain maps ψn : C∗[n] → C ′
∗ sat-

isfying ψn+1 ◦ f∗[n] = ψn for all n ≥ 0, there exists a unique chain map
ψ : lim−→(C∗[n], f∗[n])→ C ′

∗ such that ψ ◦ φn = ψn for all n ≥ 0.

C∗[n]

f∗[n]

��

φn

%%LLLLLLLLLLLLLLLLLLLLLLL

ψn

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

lim−→(C∗[n], f∗[n])
∃!ψ //______ C ′

∗

C∗[n+ 1]

φn+1

99rrrrrrrrrrrrrrrrrrrrrrr

ψn+1

44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

If (C∗[n], f∗[n]) is a direct system of chain complexes, then the m-th R-chain
module of its direct limit is equal to the direct limit lim−→(Cm[n]) of the direct

system of R-modules (Cm[n], fm[n]). With this, we can state the following lemma
saying that the direct limit exchanges with homology.

Lemma 6.3.2 Let (C∗[n], f∗[n]) be a direct system of chain complexes over R.
Then the map

lim−→Hm(C∗[n])→ Hm(lim−→C∗[n])

is bijective for all m ∈ Z.
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The proof of this lemma, needs the following one:

Lemma 6.3.3 Let R be a ring and Mn, Nn, Pn R-modules for all n. We call
a short sequence of direct systems of R-modules exact, if for each n ≥ 0 the
corresponding sequence of R-modules is exact. For each short exact sequence of
direct systems

0→ (Mn, fn)→ (Nn, gn)→ (Pn, hn)→ 0

we get an induced short sequence of R-modules

0→ lim−→(Mn, fn)→ lim−→(Nn, gn)→ lim−→(Pn, hn)→ 0

that is again exact.

Both proofs may be found in [18] (p. 114 and p. 118). The exactness in lemma
(6.3.3) is proven by really looking at elements. This is not difficult but a little bit
technical. Lemma (6.3.2) is proven by a sharp look at the following short exact
sequences

0→ Bm[n]
im[n]−→ Zm[n]

pm[n]−→ Hm(C∗[n])→ 0,

0→ Zm[n]
jm[n]−→ Cm[n]

cm[n]−→ Bm−1[n]→ 0,

0→ Bm[n]
km[n]−→ Cm[n] −→ coker(km[n])→ 0,

where Bm[n] denotes the image of cm+1[n] : Cm+1[n]→ Cm[n] and Zm[n] denotes
the kernel of cm[n] : Cm[n]→ Cm−1[n], and use of lemma (6.3.3).

6.4 Bundles and fibrations

In the following, all maps are assumed to be continous.

Our (very short) presentation restricts to complex vector bundles, since they are
the ones we need for the concrete construction of MU . The constructions we
make hold as well for real vector bundles of course.

Definition 6.4.1 A complex vector bundle ξ of dimension n over a space B
is a bundle over B such that each point b ∈ B has a neighborhood U and a
homeomorphism hU : p−1(U) → U × Cn such that p1 ◦ hU = p|p−1(U) where p1

denotes projection onto the first factor U .

Example 6.4.2 The easiest example is the trivial vector bundle over X with
total space E = X ×Cn and p : E → X being the projection onto the first factor.
The trivial vector bundle for n = 1 is called trivial line bundle.
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Definition 6.4.3 If p : E → B is a (complex) vector bundle ξ over B and
f : X → B is continuous, then the induced bundle f ∗(ξ) over X is the one with
total space f ∗(E) = {(x, e) ∈ X × E : f(x) = p(e)} and projection onto the first
component. In other words, f ∗(E) is the pullback of f and p.

f ∗(E) //

��

E

p

��
X

f // B

Definition 6.4.4 Let ξ1 and ξ2 be (complex) vector bundles of dimensions n1

and n2 over spaces X1 and X2 with total spaces E1 and E2. Then their external
sum ξ1 × ξ2 is a bundle of dimension n1 + n2 over X1 × X2 given by the map
p1 × p2 : E1 × E2 → X1 ×X2.
When X1 = X2 = X, the Whitney sum ξ1⊕ ξ2 is the bundle over X induced from
ξ1 × ξ2 by the diagonal map ∆ : X → X ×X.

∆∗(X ×X)

��

// E1 × E2

p1×p2
��

X
∆ // X ×X

Proposition 6.4.5 Let ξ1, ξ2 be complex vector bundles over X1, X2 respectively,
then there is a natural homeomorphism

T (ξ1 × ξ2)
∼=−→ T (ξ1) ∧ T (ξ2)

Proof: (See [25].) We know that Dn × Dm ∼= Dn+m. The fibre of ξ1 × ξ2
(see (6.4.4)) over (x, y) ∈ X × Y is ξ1x × ξ2y and we have a homeomorphism
D(ξ1)x × D(ξ2)y ∼= D(ξ1 × ξ2)(x,y) for all (x, y). This gives a homeomorphism
D(ξ1)×D(ξ2) ∼= D(ξ1 × ξ2) so that D(ξ1)× S(ξ2) ∪ S(ξ1)×D(ξ2) is mapped onto
S(ξ1 × ξ2). Thus

T (ξ1)× T (ξ2) = D(ξ1)/S(ξ1) ∧ D(ξ2)/S(ξ2)

∼=
D(ξ1)/S(ξ1)× D(ξ2)/S(ξ2)

D(ξ1)× S(ξ2) ∪ S(ξ1)× D(ξ2)

∼=
D(ξ1)× D(ξ2)

D(ξ1)× S(ξ2) ∪ S(ξ1)× D(ξ2)
∼= D(ξ1 × ξ2)/S(ξ1 × ξ2) = T (ξ1 × ξ2)

�

Corollary 6.4.6 If the complex vector bundle ξ is isomorphic to the Whitney
sum ξ′ ⊕ ε, where ε denotes the trivial line bundle, then T (ξ) = Σ2T (ξ′).
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Proof: (Compare [25].) We have T (ε) = D2/S1 = S2. We can regard ξ′ ⊕ ε over
X as ξ′ × ε over X ×X. Hence, with proposition (6.4.5) we get

T (ξ′ ⊕ ε) = T (ξ′ × ε) ∼= T (ξ′) ∧ T (ε) ∼= T (ξ′) ∧ S2 ∼= Σ2T (ξ′).

�
Let us turn to fibrations now.

Definition 6.4.7 A fibration is a bundle p : E → B that satisfies the following
homotopy lifting property:
For every map F : X × I → B and every g : X → E with p ◦ g(x) = F (x, 0),
there exists G : X × I → E with G(x, 0) = g(x) and p ◦G = F :

X
g //

i0

��

E

p

��
X × I

∃G

<<y
y

y
y

y
y

F // B

where i0 maps x ∈ X onto (x, 0) ∈ X × I.

Definition 6.4.8 Let p : E → B be a bundle. A section is a map s : B → E
such that p ◦ s = idB. A pair (ξ, sξ) consisting of a bundle ξ and a corresponding
section sξ is called a sectioned bundle.

Definition 6.4.9 Given two sectioned bundles (ξ, sξ), (η, sη), a sectioned bun-
dle morphism is bundle morphism φ : ξ → η which respects the sections, i.e.
φ|total(ξ) ◦ sξ = sη ◦ φ|base(ξ).

Definition 6.4.10 A sectioned fibration is a sectioned bundle (ξ, sξ) such that ξ
is a fibration and ŝξ : idbase(ξ) ⊂ ξ is a cofibration over the basespace of ξ.

Definition 6.4.11 A (F, ∗)-fibration is a sectioned fibration (ξ, sξ) such that
(Fx, sξ(x)) is homotopy equivalent to (F, ∗) with respect to basepoints for every
x ∈ base(ξ).
A (F, ∗)-morphism is a sectioned bundle morphism φ = (g, f) : (ξ, sξ) → (η, sη)
such that g respects fibers and sections with respect to f , that is

g|Fx : Fx → Ff(x) and g|Fx : (Fx, sξ(x))→ (Ff(x), sη(f(x)),

are (pointed) homotopy equivalences for every x ∈ base(ξ).

Definition 6.4.12 A universal (F, ∗)-fibration is an (F, ∗)-fibration γF = {pF :
EF → BF} with the following properties:
(1) Every (F, ∗)-fibration over a CW -space X is equivalent to a fibration f ∗γF

for some f : X → BF .
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(2) Let f, g : X → BF be two maps of a CW -space X. Then the (F, ∗)-fibrations
f ∗γF and f ∗γF are equivalent if and only if f ' g.
The basespace BF of a universal (F, ∗)-fibration is called a classifying space
for (F, ∗)-fibrations. If an (F, ∗)-fibration ξ is equivalent to f ∗γF for some
f : base(ξ) → BF , we say that f classifies ξ or that f is a classifying map
for ξ.
A classifying morphism for an (F, ∗)-fibration ξ is any (F, ∗)-morphism φ : ξ →
γF .

6.5 The Thom spectrum MU

The construction we present here is mainly guided by Ravenel’s exposition in
[22].

Definition 6.5.1 (Thom space) Given a complex vector bundle ξ = {p : E →
B} with a Hermitian metric, the disk bundle D(ξ) consists of all vectors v ∈ E
with |v| ≤ 1 and the sphere bundle S(ξ) consists of all vectors v ∈ E with |v| = 1.
We define the Thom space T (ξ) to be the quotient D(ξ)/S(ξ).
A map f : X → B leads to a map T (f) : T (f ∗(ξ))→ T (ξ) called the Thomifica-
tion of f .

Remark: It can be shown that the homeomorphism type of the Thom space is
independent of the choice of metric.

Theorem 6.5.2 Let BU(n) be the classifying space for the unitary group that is
πk(BU(n)) = πk−1U(n). There is a unique n-dimensional complex vector bundle
γC
n over it which is universal in the sense that any n-dimensional complex vector

bundle over a paracompact space X is induced by a map X → BU(n) and two
such bundles over X are isomorphic if and only if they are induced by homotopic
maps. We call γC

n the universal (n-dimensional complex vector) bundle.

(See for example [25], pp. 202,203.)

That is we have the following one-to-one correspondence:

{homotopy classes of maps f : X → BU(n)}
l

{n-dim. complex vector bundles over X}

It can be shown, that BU(n) is the union of the Grassmanian GC
n,k under in-

clusions maps i : GC
n,k → GC

n,k+1 which are induced by the standard inclusion of

Cn+k → Cn+k+1 and send an n-dimensional subspace of Cn+k to the correspond-
ing one in Cn+k+1.
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On GC
n,k we define a map j : GC

n,k → GC
n+1,k which is induced by the standard

inclusion of Cn+k into Cn+k+1 and sends an n-dimensional subspace x of Cn+k to
the (n+ 1)-dimensional subspace of Cn+k+1 spanned by x and a fixed vector not
lying in Cn+k. Then j∗(γC

n+1,k) = γC
n,k ⊕ ε, where ε denotes the trivial complex

line bundle.

Definition 6.5.3 Let BU(n) be the the classifiying space for the unitary group
U(n) and γC

n the universal bundle over it.
MU , the Thom spectrum for the unitary group, is defined by

MU2n = T (γC
n ) and MU2n+1 = ΣMU2n.

The map ΣMU2n →MU2n+1 is the obvious one. In order to get a map

Σ2T (γC
n ) = ΣMU2n+1 →MU2n+2 = T (γC

n+1).

we consider the map j : BU(n) → BU(n + 1) with j∗(γC
n+1) = γn ⊕ ε. The

Thomification of j is by corollary (6.4.6) the desired map:

T (j) : T (j∗(γC
n+1)) = Σ2T (γC

n )→ T (γC
n+1)
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