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Introduction

This diploma thesis investigates an attempt to show that the Brown-Peterson
spectrum BP has a strictly commutative multiplication. More precisely, it
proves that BP is not the localization of a Thom spectrum M (f) associated to a
second and thus an infinite loop map. If it was this would imply an F..-structure
and hence a strictly commutative multiplication on BP.

The result is due to Priddy but is unfortunately unpublished. L. G. Lewis
mentions it in his Ph. D. thesis and gives a short description of the proof (see
[14], p.145). Its details will be explained here.

Cause of this thesis was a paper of Birgit Richter where she proves that BP
cannot be a Thom spectrum associated to n-fold loop maps to BSF for certain
n > 2 by use of Dyer-Lashof operations (see [23], section 7).

Spectra, as they will be presented here, are a sequence of topological spaces
with additional structure. They play an important role in stable homotopy
theory where we say a phenomenon is stable, if it occurs in any sufficiently large
dimension and in essentially the same way independent of dimension (compare
2)).

In particular, the Brown-Peterson spectrum BP is of interest in the context of
calculating stable homotopy groups of spheres. The best tool to calculate these
groups is presently the Adams-Novikov spectral sequence with use of the Thom
spectrum MU. Unfortunately, MU is rather difficult to handle since 7, (MU) is
a polynomial algebra with generators whose degree increases linearly. Instead,
one considers localizations of MU and this is the great entrance of BP: The
p-localization of MU splits into copies of BP and fortunately, m.(BP) is a
polynomial algebra with generators whose degree increases exponentially.
Knowing that BP is of relevance when considering such an important problem
as stable homotopy groups of spheres, one naturally asks what kind of structure
there is on BP. Definitely, one would like to have a commutative multiplication
on it. However, when it comes to spectra, multiplication very often is only
homotopy-commutative. Nevertheless, there are theorems giving conditions for
a Thom spectrum to be strictly commutative and saying that the localization of
a spectrum inherits the striclty commutative structure. Thus, since B P arises in
the p-localization of the Thom spectrum MU it is obvious to try to understand



BP as the localization of a Thom spectrum satisfying the conditions of these
theorems and thereby prove that BP is strictly commutative. However, this
attempt fails and this thesis will explain why.

The most important chapter - besides the last one of course - is the one about
spectra. The theory of spectra forms the background of the question that will be
discussed. However, the theory of spectra is very complex. There are different
models of spectra and the first encounter might be a little bit confusing. For
a better understanding, I tried to present the required facts as homogenous as
possible. Disappointingly, we need some deep theorems I can only state but not
give any details as this would require too much theory.

The other chapters essentially deliver technical tools needed for the proof.
Mainly, these tools are the Eilenberg-Moore spectral sequence (chapter (2)) and
secondary cohomology operations (chapter (4)).

Finally, in chapter (5) I prove that BP is not the localization of a Thom
spectrum M (f) associated to a two-fold loop map following the outline in [14]
and filling in the details.

My greatest thanks go to Professor Birgit Richter, who always was very patient
and helpful.

Moreover, I thank Konrad Waldorf for being the best colleague I could wish for
and Fridolin Roth for many helpful discussions and for sharing all books with
me.
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Chapter 1

Spectra

There are several models of spectra. We will give a definition in the sense of a
sequential spectrum because this bears two advantages: Firstly, it is the easiest
approach to the complex theory of spectra and secondly, there are nice sequential
models of the spectra we need. Naturally, there are also disadvantages which
will be explained later. Our notation and nomenclature follows mainly Adams’
presentation in [2] and Switzer’s in [25].

Definition 1.0.1 A spectrum E is a sequence of pointed topological spaces E,
together with basepoint-preserving maps X E, =S AN E,, — FE,.1.

Definition 1.0.2 We call a spectrum E a CW -spectrum if E,, is a CW -complex
with basepoint for all n and each map X E, — E,.1 is an homeomorphism from
YE, to a subcomplex of Fp.1.

Example 1.0.3 An easy but important example is the sphere spectrum S with
YSt =~ St Tt is a ‘natural’ case of the suspension spectrum XX where we
start with an arbitrary pointed space X and define E, = ¥"X.

Example 1.0.4 A further class of examples are Q-spectra. A Q-spectrum is a
sequence of CW complexes Ey, Es, ... together with homotopy equivalences E, —
QF, 1 for all n. This is a spectrum in the above sense because of the adjoint
relation XX, Y] = [X, QY].

Example 1.0.5 Let E be a spectrum and X a CW complex. Then E N X is a

spectrum with (EAX), = E,ANX and the obvious maps L(E,ANX) = LE,ANX —
Ev A X.

The spectrum defined in the last example will be of some importance as it will
be needed for the definition of the E-homology of a C'W-complex X.
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Chapter 1. Spectra

1.1 Maps between spectra

An obvious attempt of defining a map between spectra would be to define it on
space level and demand that it commutes with the maps ¥ F,, — E, ;. However,
this would be too strict and there are cases in which we do not find enough maps
like this to do what we want (see for example [2], pp.141,142). Thus, we will
call them function and then present a more appropriate notion of a map between
spectra.

Definition 1.1.1 A function f : E — F between spectra (of degree 0) is a
sequence of maps f, : E, — F, such that the following diagram is strictly com-

mutative for each n

Zf"L
YE, —— Enn

T

YF, — Fopa.

Definition 1.1.2 Let E be a CW -spectrum. A supspectrum E' C E is called
cofinal if for each n and each finite subcomplexr K C FE, there is an m such that
Y™K maps into B, .. That is, each cell in each E, is sent to E' after enough
SUSPENSIONS.

With this we can now actually define a map between spectra.

Definition 1.1.3 Let E be a CW -spectrum and F a spectrum. Take all cofinal
subspectra E' C E and all functions f' : E' — F. We say that two functions
f' E' ' CF and f": E" — F are equivalent if there is a cofinal subspectrum E"
contained in E' and E" such that the restrictions of f' and f" to E" coincide.
We call an equivalence class of such functions a map from E to F and it is
represented by a pair (E', f').

Naturally, we want to compose maps. Let E,F be CW-spectra and G a
spectrum. Then define the composition of maps £ — F, F' — G by composition
of representatives. Obviously, for this purpose we need to know that for each
function £ — F and a cofinal subspectrum F’ C F there exists a cofinal
subspectrum E’ C E such that £’ is mapped into F’. Moreover, we need that if
E’ is a cofinal subspectrum of F and E” is a cofinal subspectrum of E’, then E”
is in fact a cofinal subspectrum of E. Both statements are of course true (see
2], p.143).

Finally, we explain what we mean by homotopic maps of spectra.

Definition 1.1.4 Let I be the union of the unit intervall and a disjoint base-
point. Two maps of spectra fo, f1 + E — F are homotopic if there is a homotopy



Chapter 1. Spectra

h:ENIT — F with hoig= fo,hoi, = fi, whereas ig, i, : E — E AN IT are the
maps induced by the inclusions of 0 and 1 into It. We write [E, F] for the set
of homotopy classes of maps from E to F.

In the following, we will work in the stable homotopy category of spectra as
Adams defines it. That is, the objects of our category are CW-spectra and
its morphisms are homotopy classes of maps. This restriction is not too strict,
since every spectrum is weakly equivalent to a C'W-spectrum (see [2], p.157, for
example).

1.2 Smash product of spectra

In order to explain a multiplicative structure on a spectrum FE we need a
smash product £ A E. However, the construction of the smash product of two
CW-spectra is rather complicated. We will therefore only present the idea of
the construction.

As a first attempt, we would want E A F' to be thing to which E, A F), tends as
n and m go to infinity. This idea leads to the following construction of the now
called naive smash product which goes back to J. M. Boardman.

Let A be some ordered set isomorphic to N as ordered set and let B C A be
a subset. We define a monotonic function 3 : A — N by saying that 3(a) is
the number of elements b € B with b < a. In particular we have a : A — N
corresponding to A C A. We then suppose that A is the union of two subsets
B,C with BN C = () and 3,7 being the corresponding functions. Evidently,
B(a) +v(a) = a(a) for all a € A. We define the naive smash product E Apc F
by
(E Apc Flata) = Esa) N Fya)-

In order to define the maps of this product spectrum, we regard S! as R! com-
pactified by adding a point at infinity, which becomes the base point. This allows
us to define a map of degree —1 from S* to S* by ¢ — —t.

Lete € Eﬂ(a), fe Fw(a),t est and ( : Sl/\Eg(a) — Eﬂ(a)+1777 : Sl/\F,y(a) — Fw(a)—&-l
be the appropriate maps from E and F.

If a € B then (E Apc F)a)y+1 = Ep)+1 N Fya) and we define

Ta(a) - SA (E ABc F)Oé(a) - (E IAY:te; F)a(a)+l
by Ta@)(EAeN f) = Caay(t N e) A .

If a € C then (E Apc F)a@+1 = Esw) N Fya+1 and ma is defined by
Ta@) (A e A f) = e Ay (=1t A f).



Chapter 1. Spectra

The smash product we have so far constructed is natural with respect to functions,
but if B or C'is finite, we will get problems with maps. Moreover, we get a naive
smash product E Agc F for each partition A = B U C, some of them being
commutative, some associative. So which partition shall we choose if we want
our smash product to have all these nice properties? In fact, we will not choose
a particular partition, but pick all the possible spectra E Agc F' and put them
together in a construction called telescope.

Definition 1.2.1 Given a sequence X = {--- foy X, ELN a1 foty ...} of
maps, we define its telescope TX to be the space

TX = (U(Xn x [n,n + 1])) / ~
where (x,n+1) € X, X [n,n+ 1] ~ (fu(x),n+1) € X1 X [n+1,n+2].

To define the telescope T'E of a spectrum F, let us regard again S™ as R compact-
ified by adding a point at infinity that becomes the basepoint. The isomorphism
R™ x R™ = R™*" then gives an isomorphism S™ A S™ = S™" which should be
kept in mind during the following definition. Let

TE, = ((\n/ S AE ATV (n\_/ S"TAE A i+ 1]+)> [~

where A A
t,e,i] € S" ' AE;A[I]T ~[t,e, i) € S"TPAE;Afiyi+1]F

and
[t,C(sAe), (i+1)] € S IAE A A[i+1]T ~ [s,t e, (i+1)] € SIAS"TIAE A, i4+1] T

Thereby, g . Sl A EZ — Ei+1'

Finally, one can construct E'A F as a kind of "two-dimensional telescope’. This
construction is similar to the one above, though more complicated and longer.
The interested reader may take a look at [2], (/I1.4). As promised, this smash
product stands in close relation to the naive smash product discussed before.

Lemma 1.2.2 eqpc : E Agpc F — E N F is a homotopy equivalence if any one
of the following is satisfied:

1. B and C are both infinite
2. B has d elements and ¥ E, = E,. forr > d

3. C has d elements and X F, = F,.1 forr >d

10



Chapter 1. Spectra

The smash product E A F' has the following properties:

Theorem 1.2.3 (a) XAY is a covariant functor of two variables with arguments
and values in our stable homotopy category.
(b) There are natural homotopy equivalences (natural in the above category)
a=a(E,F,G) : (ENF)NG— EN(FAG)
r=7(E,F) : ENF—FAE

I=lI(FE) : SNE—FE

r=r(E) : ENS—FE
with S being the sphere spectrum.
A proof may be found in [2], IIL.4, or [25], chapter 13.

The construction of the smash product we presented so far is rather long and
intricate. In addition, we constructed it in our stable homotopy category where
we only have homotopy classes maps. Naturally, we would like to have a product
on a category of spectra where we have maps as morphisms. Unfortunately, we
do not have this for sequential spectra. However, as we said in the beginning,
there are other models of spectra with more structure. Some of them do have a
strictly commutative (smash) product.

1.3 Spectra and (Co-)homology theories

What makes spectra so special is that one gets a (co-)homology theory out of
each spectrum, and each (co-)homology theory can be represented by a spectrum.

Definition 1.3.1 We define the homotopy groups of a spectrum E to be m;(E) =
li_r)n7rz-+n(En) where the direct limit is computed using the composition

7Tz‘+n(En) - 7Ti—|—n+1(2En) - 7Tz‘+n+1(En+1)-

In the case of the suspension spectrum of a space X, the homotopy groups of the
spectrum are the same as the stable homotopy groups of X.

Proposition 1.3.2 Let E be a CW -spectrum and X a CW -complex. The groups
E,(X)=m(EANX)=[S",ENX]
form a reduced homology theory, called E-homology of X. Moreover, the groups
E"(X) = [2™X,X"E],

where X is the suspension spectrum of X defined in example (1.0.3), form a
reduced cohomology theory, called E-cohomology of X. For f : (X, z0) — (Y, yo)
we take E,(f) = (1A f). and E™(f) = (2°°f)* respectively. Both theories satisfy
the wedge axiom.

11



Chapter 1. Spectra

An explicit proof can be found in [25]. We want to concentrate on the extension
of this definition on a category of spectra.

Definition 1.3.3 Let f : E — F be a map of CW -spectra. To begin with, we
define CE := ENI where I is given the basepoint 0. We then define the mapping
cone FUy CE as the spectrum with (F Uy CE),, = F, Up (E) A1) where (E', f')
represents f.

Remark: F Uy CE is well-defined. If (E”, f”) is another representative, then
the mutual cofinal supspectrum E” of E/ and E” extends to a mutual cofinal
subspectrum {F,, Upw (E!" A1)} of {F,,Up (E), A1)} and {F, Upr (EAT)}. Thus,
the last two are equivalent.

Definition 1.3.4 For any map of CW -spectra f : E — F we call the sequence
(%) : E BE NNy Us CE and any sequence equivalent to it a cofiber sequence.

A sequence that is equivalent to (%) is a sequence G S.gK for which there
15 a homotopy commutative diagram

G—1-g—" oK

b, b

E—1>F—1-FU;CE

with o, 3, being homotopy equivalences.
Proposition 1.3.5 Let E, F' be CW -spectra. Then
E,.(F)=[S",EAF] and E"(F) = [F,X"E] respectively

form a homology theory and cohomology theory respectively in the following sense:
(1) E.(F) is a covariant functor of two variables E, F and with values in the
category of (abelian) groups. E*(F) is a functor between the same categories
which 1s covariant in E and contravariant in F.

(2) If F LG % Hisa cofiber sequence (of CW -spectra) and E is a CW -
spectrum, then

Eo(F) L~ E,(F) -2~ E,(H) and E"(F)<'— E"(F)<*— E"(H)
are exact.
(3) There are natural isomorphisms E,(F) = E,(XSF) = E,1(S" A F),

E"(F) & E"(SF).

Remark: Statement (2) is equivalent to the usual exactness axiom (compare
definition (6.1.1)) of an reduced homology theory.

12



Chapter 1. Spectra

Sketch of the proof: (Compare [2].)

(1) Follows by definition.

(2) We restrict to here to the homology case since this is the one that requires a
little bit of work. For the cohomology case see [2], p. 155.

Clearly, if we show that [W,FE] L (W, F] —=~ (W, F Uy CE] is exact for
E N F—sFU # CE then the homology case will be a corollary of this.

Let g be an element in [W, F'] such that io g ~ 0. We have to show that g ~ fol
for some [ € [W, E]. To see this, consider the following diagram:

-t -F'~FU,CE vE—Losp
QT hT kT TEQ
W W cw SW —% v

The maps in the lower row are the obvious ones and the map h exists because of
to g~ 0. The only non-obvious map is definitely /' Uy CE — X E. This follows

from the fact that we can extend the cofibre sequence F i FU s CE
to the right by adding another mapping cone:

E—'-F—~FU;CE—~(FU;CE)U; CF .

Moreover, we have to know that this last spectrum is equivalent to Y Uy CX)/Y

and that this one is in fact X .X.

Recall now that we wanted to show that g ~ f ol for some [ € [W, E]. The map

k:YXW — XX comes from a map [ € [W, X]: k = XI. Then the last square on

the right tells us that X(f ol) ~ Xg and thus g = f ol.

(3) The cohomology case is obvious. In the case of homology we need

that X — S' A X is an equivalence of degree one (see for example [2]).

This gives E,(X) = [S",E AN X] ¢ [S""LEAS'A X] = E,1(2X).
O

Example 1.3.6 (Eilenberg-MacLane spectrum) Let G be an abelian group.
Then the Eilenberg-MacLane spectrum HG is a Q-spectrum with spaces HG,, =
K(G,n) and maps K(G,n) — QK(G,n +1).

It 1s

G n=0

0 otherwise

T (HG) = {

and the corresponding homology theory on a C'W -complex is ordinary singular

homology: HG;(X) = H;(X; G).

We see here that we get a homology and cohomology theory respectively out of
each spectrum. So what about the way back? Do we find for each (co-)homology

13



Chapter 1. Spectra

theory a spectrum that represents it? Satisfactorily, the answer is 'yes’ though
this way is not that easy. In the case of cohomology, it follows from Brown’s
representability theorem which we will present in the following. In the case
of homology however, things are again a little bit more complicated. (See for
example [2], pp. 199,200)

Definition 1.3.7 A contravariant functor ' on PW', the category of pointed
CW -complezes and homotopy classes of basepoint preserving maps, fulfills the
Mayer-Vietoris Axiom, if for any CW -triad (X; Ay, Ag), that is X = A; U As,
and for any x; € F(Ay),x9 € F(As) with

ZT(.CEl) = Z;(ZL’Q) € F(Al ﬂAQ),ij . Al N AQ — Aj,j = 1,27
there is a y € F(X) with
iy (y) = 21 € F(A1),i5(y) = w2 € F(Ay),i;: A; —> X, j =1,2.

Definition 1.3.8 Let PS be the category of pointed sets and functions preserving
basepoints and let F' : PW' — PS8 be a contravariant functor satisfying the Wedge
aziom (defined in (6.1.2)) and the Mayer-Vietoris axiom. An element u € F(Y)
is called n-universal if

T, : [S9, s0; Y, y0] — F(S?)

s an isomorphism for ¢ < n and an epimorphism for ¢ = n. We call u universal
if it is n-universal for all n > 0.

Theorem 1.3.9 (Brown’s theorem) If F' : PW' — PS is a contravariant
functor as above, then there is a classifying space (Y, y0) € PW' and an universal
element uw € F(Y') such that T, : [—;Y,yo| — F, T,[f] = f*(u) € F(X) for any
f (X, z9) — (Y,y0), is a natural equivalence.

A proof may be found in [25], chapter 9, for example. The main work lies in
constructing appropriate (Y, yo) and u € F(Y).

As a special case, we get the analogon to example (1.3.6).

Theorem 1.3.10 Let X be a CW-complex. There are natural bijections T
(X, K(G,n)] — H"(X;G) for all n > 0 with G being any abelian group. Such
T is given as follows: Let o be a certain distinguished class in H"(K(G,n); G).
Then for each class x € H"(X; G), there exists a map f: X — K(G,n), unique
up to homotopy, such that f*(a) = x. Thus, T([f]) = f*(a).

Such a class a € H"(K(G,n); G) is called a fundamental class. The proof of the
theorem (see [9], Section 4.3) yields an explicit fundamental class, namely the
element of H"(K(G,n);G) = Hom(H,(K(G,n);Z),G) given by the inverse of
the Hurewicz isomorphism G = 7, (K (G,n)) — H,(K(G,n);Z).

14



Chapter 1. Spectra

1.4 Ringspectra

Definition 1.4.1 A ring spectrum is a CW -spectrum E with product i : EANE —
and unit v : S° — E such that the following diagrams commute up to homotopy:

L/\idE

EANEAE™EEAE SOAEBLE pAEYEY B Ao

Jias M s \iu /

ENE E E

1 18 homotopy-commutative if the diagram

also commutes up to homotopy.

We see here that we so far only get commutativity up to homotopy. Naturally,
we are also interested in strict commutativity. In the case of sequential spectra,
the smash product is commutative only up to homotopy, so how could the above
diagram be strictly commutative? Moreover, in the case of a different model
of spectra which has a strictly commutative smash product and thus a chance
to have a strictly commutative multiplication this turns out very hard to prove.
In most cases, it is in fact easier to prove that there is an action of an operad
on the spectrum in question that then induces commutativity. Therefore, we
will now introduce operads and explain shortly how they induce a commutative
multiplicative structure on a spectrum.

Definition 1.4.2 An operad O is a collection of spaces {O(k)}i>o together with
an element 1 € O(1) and maps

v:O(k) x O(j1) x -+ x O(jx) — O(jr + -+ + ji)

for each choice of k, ji, ...,k > 0 such that
(a) for each k and each s € O(k),v(1,s) = s and y(s,1,...,1) = s, and

15



Chapter 1. Spectra

(b) the following diagram commutes for all choices of k,j1, ..., i, i11, - -+ k-
k jim . k
. . x . .
mm@j@%wnmwv —O(k) x [[ Olim1 + -+ + imj,.)
m=1 n=1 m=1

@WXHO%OXHQM) v

m=1

7X1l

O(]l R +]k) X O(in X X O(Zk']k)

Y

O(in + -+ + igj,)

Moreover, if Sy is the symmetric group of k elements, for each k there is a right
action p of Sy such that for each o € Sy and 1, € S;, the following diagrams
commute:

O(k) x [T O(js) 0 (j) ~<— 22— o) (1.1)
leT T“/k,j(fl(l) ,,,,, jo,l(m
O(k) x [T OG:) O(k) x TTOs 1)
O(k) x TTO(j;) —= O(j) (1.2)
1XHT~LT Tﬁ@"'@m

O(k) x [1O(;) —=0O())

Definition 1.4.3 Let O be a operad and let Y be a space. An action of O on'Y
consists of a map 0 : O(k) x Y* —Y for each k > 0 such that

(a) 0(1,y) =y for ally €Y,

(b) the following diagram commutes for all k,jy,...,jx > 0:

k k
O(k) x (H O(jm)) X Yirttie —= O(k) x H(O(jm) X YIm)
m=1 m=1
ileG
X1 O(k) x Y*
le
O(jy + -+ + ji) x Yt i 0 Yy

(¢) and 6 : O(k) x Y* — Y factors through O(k) xs, Y* = O(k) x Y*/ ~,
with (1(c),y) ~ (¢, 7(y)) for 7 € Sg,c € O(k),y € Y* and Sy, acts on Y* in the
obvious way.

16



Chapter 1. Spectra

Example 1.4.4 For any space Y, the collection {Map(Y*,Y)}r>o together with
the compact-open topology and its usual multivariable composition builds an op-
erad, called the endomorphism operad, and we will denote it End(Y). Obviously,
End(Y) acts on'Y in the described way.

Definition 1.4.5 An E., operad is an operad O for which each space O(k) is
weakly equivalent to a point.

Remark: There are other definitions of an F., operad (e.g. O is E, if Sy acts
freely on O(k)), but this is the most useful one for us here.

An important fact about F..-spaces is the following one:

Theorem 1.4.6 LetY be a topological space. Then'Y is weakly equivalent to an
infinite loop space if and only if Y has a grouplike action of an E., operad.

(See [20].)

Moreover, a space with an action of an FE., operad inherits structure from
this action. In particular, the action of O(2) induces a multiplication on Y:
O2) x Y? — Y,(¢,y1,y2) — u(y1,92). This multiplication is unique up to
homotopy, since O(2) is weakly equivalent to a point and thus path-connected.
In fact, it is homotopy-associative and -commutative.

Associativity:
Consider
0(2) x 0(2) x O(1) x Y3 L 03) x Y* -5 v,
(Ca C, 17 Y1, Y2, y3) — u(ﬂ(yla y2)y3)
and

02) x 0(1) x 0(2) x Y* L 03) x v* Ly,

(67 17 G, Y1, Y2, y3) — N(yla M(y% yS))

Since O(3) is weakly equivalent to a point, it is path-connected. That is, y(c, ¢, 1)
and y(c, 1, ¢) are homotopic and thus, p(px 1) and p(1x ) are homotopic as well.

Commutativity:
Follows immediately from Definition (1.4.3), (¢), if O(2) is path-connected.

The action of an operad on a spectrum E can be explained in the same way
as for a space, if E¥ denotes the k-fold smash product. However, we get again
commutativity only up to homotopy. Fortunately, there is a theorem telling us
that an E-spectrum has a strictly commutative multiplication which may be
found in [6]. Obviously, this does not make sense for sequential spectra. We
definitely need other models of spectra here, for example symmetric spectra (see
[12]) or spectra as 'S-modules’ like they are explained in (see [6]).
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Chapter 1. Spectra

1.5 Localization of a spectrum

1.5.1 Localization via Moore spectra

Theorem 1.5.1 (Moore spectrum) For every abelian group A, there exists a
spectrum M (A) with the following properties:

i)mi(M(A)) =0,i<0

i)mo(M(A)) = A = Ho(M(A))

iii) Hy(M(A)) = 0,5 # 0

M(A) is called Moore-spectrum and is unique up to equivalence.

Definition 1.5.2 Let A be a subring of Q and M(A) the corresponding Moore-
spectrum. We define the A-localization of E by Ex = E N M(A) for every
spectrum E.

Especially: E,) = Ez, ) with Zy) = {"|m,n € Z,p |/n} C Q denoting the p-local
integers.

The following proposition states that F4 does indeed behave like a localization.

Proposition 1.5.3 Let E be a spectrum and let A be a subring of the rational
numbers Q. Then there is a map of spectra j : E — E4 and for every spectrum
X there is an isomorphism

Eif(X)Z2E(X)® A

such that j, : E.(X) — Ea,(X) is given by j.(z) =2 ® 1.
Moreover, if E is a ringspectrum then ER is a ringspectrum and J : E — ER is
a map of ringspectra.

The proof can be found in [13], pp. 168,169.

It will be of some importance if there is a strictly commutative ring structure on
E() provided there is one on E. Luckily, the answer is yes. However, we have to
make a detour in order to see this. There is another way to define a localization of
spectra, the Bousfield localization. It may be regarded as a generalization of the
localization discussed above since in certain cases these localizations are equal.
Moreover, Bousfield localizations of strictly commutative ringspectra are again
strictly commutative which makes this detour worth while.

1.5.2 Bousfield localization
Let E, be a homology theory and E its representing spectrum.

Definition 1.5.4 We call a spectrum F E.-acyclic if E,(F) =0 and a spectrum
G E.-local if [F,G] =0 for each E.-acyclic spectrum F.

18



Chapter 1. Spectra

Definition 1.5.5 A map f: F — G of spectra is an E,-equivalence if it induces
an isomorphism in E,-homology.

Definition 1.5.6 An E,-localization functor is a covariant functor on the stable
homotopy category Ly : ST — ST together with a natural transformation n
from the identity functor to Lg such that ngp : F — Lg(F) is the terminal E,-
equivalence from F, that is ng is an E.-equivalence and for any E.-equivalence
f:F — G there is a unique v : G — Lg(F) such that rf = ng:

F—t -q

N

B(F)

Bousfield proved in [5] that there is a localization functor Lg : ST — ST for
every spectrum F.

Definition 1.5.7 We call a spectrum E n-connected if m;(E) =0 for i <n and
connected if it is (—1)-connected.

The following proposition is the first step to see that E(;) is a strictly commutative
ringspectrum if F is one:

Proposition 1.5.8 Let E, F' be connective spectra and E, the homology theory
corresponding to E such that at least one element of E, has infinite order. More-
over, let J be a set of primes such that for each i E; is uniquely p-divisible for
eachp & J. Zyy = {=|m,n € Z,p |/n¥p € J} is the localization of Z on J. Then
Lp(F) ~ M(Zy)) NF.

The proof can be found in [5].

Example 1.5.9 The p-localization M (Zy)) N E corresponds to the HZy, -
localization with HZ ) being the Eilenberg-MacLane spectrum for Zy.

The second step is knowing that Bousfield localizations of E..-ringspectra are
again E,,. This follows from theorem 2.2 in [6], chapter VIII.
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Chapter 2

Spectral sequences

The ideas presented in this chapter are mainly taken from a so far unfinished
book of Hatcher whose first chapters are available on the internet (see [10]).

Definition 2.0.10 (a) Let R be a ring. A differential bigraded R-module of
homological and cohomological type respectively is a collection of R-modules { EP7}
or {Ey},p,q € Z, together with an R-linear map d, : EP1 — EPTTIT gnd
d": Epy — Ep_ygir_1 Tespectively satisfying d* = 0. We call d a differential.

(b) A spectral sequence is a collection of differential bigraded R-modules { EY*, d, }
and {EL,,d"} respectively, v € N, such that || d, ||= (r,1—7),|| d" ||= (=r,r—1)
and

E:j—l = H*(E:*adr)a E:jl = H*(Er

FT ) dT‘)
Since we will later need a certain spectral sequence of homology type, we will
now confine ourselves to the homological case.

One may think of the E"-term as a page with lots of dots and arrows. The dots
stand for the entry E7 and the arrows are of course our differentials. Once a dot
is hit by an arrow, it will mapped to zero on the next page. Thus, when working
with spectral sequences, we are mainly concerned with when the entries go to
zero. Hopefully, we find a page from that on all the pages look the same, that is
E* = E51 = ... = E™ for some s € Z. We say then that the spectral sequence
collapses. Unfortunately, it is not enough for a spectral sequence to collapse.

Definition 2.0.11 Let R be a ring and C an R-modul. A filtration F.C is a
ascending/descending sequence of submodules

PO CcFKRCCRCC---CFECC---CC and
.. FC Cc FyC C F1C C---CC respetively.

21



Chapter 2. Spectral sequences

Definition 2.0.12 Let F.C be a filtration of C'. Then the associated graded object
18

o F,C/F,_1C (ascending)
r,C =
g F,.C/F,1C (descending)

Definition 2.0.13 A spectral sequence {E%,} converges to H if
(1.) H possesses a filtration and
(2.) groH = ©p1g—nEys for this filtration.

Later, we will mainly be considering free graded algebras and fortunately, there is
a general statement concerning convergence of spectral sequences involving such
algebras.

Lemma 2.0.14 If there is a spectral sequence converging to H, as an algebra
and the E*>-term is a free, graded-commutative, bigraded algebra, then H, is a

free, graded commutative algebra isomorphic to total(EZ,), where (total(E, .))" =

@p—}—q:n Ep7q :

Remark: There is a dual statement for free cocommutative coalgebras.

A detailed proof may be found in [19], p.25. It is not difficult, but a little bit
lengthy. Essentially, one defines a filtration on total(EZS,) by assigning to each
generator and thus to each element a weight. Then, one shows that total(E£7,)
and H, are isomorphic as algebras by showing that they have isomorphic
filtrations. This is done by double induction: on the algebra degree ¢ and on the
filtration degree i — k.

As a first example, we will consider the Serre spectral sequence for fibrations.

Theorem 2.0.15 Let G be an abelian group and FF — E — B be a fibration
with B path-connected. Moreover, let this fibering be orientable in the sense that
m(B) acts trivially on H.(F; G). Then there is a spectral sequence converging to
H.(E;G) with

By 2= Hy(B; Hy(F; G)).

In particular, we will be interested in a relative version of this spectral sequence.
Let E' C FE be a subspace such that (p|E’) : E' — B is also a fibration and let
F'= F N E'. Then there is a spectral sequence converging to H,(E, E’; G) with
Equ = H,(B; H,(F, F")).

Remark: There is an analogous cohomological version of this spectral sequence
with E%-term ED? = HP(B; HI(F;G)) converging to H*(E; Q).
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2.1 The Eilenberg-Moore spectral sequence

Now, we want to consider the Eilenberg-Moore spectral sequence. As a prepara-
tion, we have to discuss the Tor functor.

Let R be a commuative ring and let A, B be R-algebras. In order to calculate
Tor®(A, B), one chooses a resolution --- — Fy — Fy — A — 0 of A by free
(right) R-modules and then tensors this over R with B. Dropping the final term
A ®pr B, one gets a chain complex --- — F} g B — Fy ®zr B — 0 whose
n'" homology group is Tor®(A, B). Of course, this notation is only justified if
Tor®(A, B) does only depend on A and B and not on the resolution we choose.
This is guaranteed by the following

Lemma 2.1.1 For any two free resolutions F, F' of A there are canonical iso-
morphisms H,(F ® B) =2 H,(F' ® B).

Sketch of the proof: The key point is that for free resolutions F, F’ of abelian
groups H, H' every homomorphism « : H — H’ can be extended to a chain
map from F to F’ and that there is only one such chain map up to homotopy.
What follows is quite simple. If the maps «,, form the chain map from F' to F”,
then the maps «,, ® id form the chain map (again unique up to homotopy) from
F® B to I" ® B. Passing to homology, this chain map induces homomorphisms
a, : Hy(F ® B) — H,(F' ® B). Another important property of chain maps

is that for a composition H - H’ 2 H" the induced homomorphisms satisfy
(Ba)s = Biv. In particular, if a is an isomorphism with inverse f and H = H”,
then «, is an isomorphism. In our special case of a being the identity map, we
thus get a canonical isomorphism id, : H,(F ® B) = H,(F' ® B). (One may
have a look at [9] for the required facts about chain maps.)

0

Remark: If the resolution can be chosen in the category of graded R-modules,
tensoring with B stays within this category and there is therefore an induced
grading of Tor®(A,B) as a direct sum of its ¢'h homogenous subgroups
Tor[, (A, B).

Now, we want to explain a multiplication on Tor®(A, B) in order to understand it
as a graded R-algebra. That is, we search for a map Tor(4, B) ® Tor(A, B) —

Torfij(A7 B). Let P be a free resolution of A. Then we have as a first step
Tor['(A, B) ® Torf (A, B) = H;(P ® B) ® H;(P ® B) — H;;;(P® B® P ® B)

by mapping ¢ ® ¢, where ¢, are cyclesin PR B,toc®d € PR B P® B.
Evidently, we have H; (P ® B®@ P® B) = H;;(P ® P ® B ® B) and the
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Chapter 2. Spectral sequences

multiplication on B induces a map
H j(P®P® B® B) — Hi,;(P® P® B).

Thus, the essential point in the second step is a map from P® P to P or another
resolution P’ of A. In our applications, we will have a map P ® P — P inducing
a map on homology and finally a map Tor/*(A, B) ® Tor}(A, B) — Torfij (A, B).
The general case follows from the Comparison Theorem (see for example [26], p.
35) which supplies a chain map P® P — P’ that is unique up to chain homotopy
equivalence.

Definition 2.1.2 We call a spectral sequence a first-quadrant spectral sequence
if its entries are not trivial only for p,q > 0.

Theorem 2.1.3 Let G be a topological group and suppose that X 1is a right
G-space and Y is a left G-space such that the projection Y — Y/G is a
principal bundle. Then there is a first-quadrant spectral sequence with qu =

Torﬁ;(G‘k)(H*(X; k), H.(Y;k)) converging to H,(X xqY; k).
A proof may be found in [10], section 3.1.

We will use this spectral sequence in the context of the universal bundle G —
EG — BG: Let Y = EG and X = %, G acting trivially on *. By definition,
EG — EG/G = BG is a principal bundle. Moreover, EG X¢ * = EG X %/ ~=
EG/G = BG with (z,%) ~ (y,*) < y = g(z). Evidently, this is an easy special
case of the situation described in the theorem.

Proposition 2.1.4 Let G be a connected topological group. Then there is a
spectral sequence of coalgebras with E? = Tor™(@R)(k k) and converging to
H.(BG; k) as a coalgebra.

Have a look at [19], pp. 267,268 for the proof.

The following theorem goes back to Borel, who actually proved it without using
spectral sequences.

Theorem 2.1.5 If G is a connected topological group with H.(G;k)
A(xq,x9,...) as an algebra over k, where deg x; is odd for all i, then H*(BG; k)
klyt,vs,...] as algebras with degy! = degx; + 1.

111

Proof: We prove this theorem by use of the above proposition. That is, we
first calculate H.(BG;k). To do so, we have to resolve k over H.(G;k) =
A(.flfl, To, ... )

In order to do so, we first have to discuss how to understand k as a A(zy, xa,. .. )-
module. Since k is concentrated in degree zero and the module structure of a
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graded module M over a graded ring R has to fulfill R;M; C M;,;, we have no
choice but to demand that A%(zy,zs,...) = k acts on k by multiplication and
Ai(xy, w9, ...) acts trivially for 4 > 1. Let € : A(zy,29,...) — k denote this
action.

Let us now put for simplicity R := A(xy,25,...) and consider the bar complex
of R and k. Tt is defined as B, (R, k) = R®y, R®y -+ ®p R & k with n factors R
which the cokernel of the k-module homomorphism k£ — R sending 1 +— 1. Thus,
we have in fact R 2 (R)>;.

The differential d : B,, — B, is defined as d = )", d; where

do(ro @71 Q-+ R@7, Qa) = 1Tori Q- QT, D a,
n—1

G @M@ @M ®a) = Y ()1 Onfin®-- @,
=1

do(ro®@T @+ @Tp®a) = (=1)"r@M & @y Q€(ry)a.

As a first step, we show that d;d; = d;_1d; for 7 < j — 1 and then d?* = 0 by use
of it.

Leti<j—1:
didj(r0®f1®--~®17n®a) = di(T0®"'®f]’fj+1®"'®a)
= QT Q@  QFTj1® - Qa
and
dj_ldi(r0®f1®...®q7n®a) = dj—l(r0®"'®7:i7:z‘+1®"'®CL)

= 7"0®"'®Fiﬁ+1®"'®ijj+1®"'®@,

where the last equation holds since 7; goes to the (j — 1)t slot when 7; and ;4
are drawn together. A similar effect will occur when we now consider the case
fori=7—1:
didj(ro@Mm Q- @7, ®a) = di(rg®@ - @T;Tj11 @ ®a)
= T0® - QTTT Q- Qa
di1(ro® -+ @FiFiyy @ -+ ® a)
= dji1di(r0 @7 ®---QT, a).

Finally:

SH
[
|
S
—~
5
—_
~
<.
&
~—
I
T
—_
.
+
S,
S
S

7=0 =0 7=0
& (—1)"d;jadi + Y (—1)dd
i<j—1<n j<i<n
= = Y (-)Tdedi+ Y (-1)Pdid; =0,
i<k<n j<i<n
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where equation (x) uses d;d; = d;_1d; for i < j — 1. Thus, the bar complex with
differential d defined as above is indeed a chain complex.

Now we claim the B, (R, k) is a resolution of k over R, that is we claim the
following sequence is exact:

—>RQR®---@R®k—"> —">RoRok—>R®k—>k—=0.
We prove this by proving that idg, is nullhomotopic. That is, we show that

s: B, — B4,

1R -7, ®a degryg>0

S(ro®rM:---Qr, Xa) =
(ro ! ) {O deg ro =0

and s(a) = 1 ® a fulfills ds + sd = id.
As a first step, let us consider d o s:
dos(ro@mM®@ @M, ®a) = dlRFHOM Q- T, ®a)

n—1
+ (D)@ R R QT ® - ®a
=0

HED)"M QRN Q- @1 @ e(rn)a
Secondly, consider s o d:

s0d(ro@mM®@ - @7, ®a) = s(regri @M@ -7, a)
n—1
+sO) (D)@ @FFi @ - @ a)
=1
+5((=1)"ro @71 ® -+ - @ Ty @ €(ry)a)
= 1QrmMenmn®- - -r, a

n—1

+Y (-D)1@R[® - @FFn ® - Qa
i=1

+(-D)"L®@F)Q@T Q@+ Q@ Tyt Q €(ry)a

Evidently, the last terms in both equations sum up to zero. Moreover, by com-
parison of the middle terms we see that they sum up to zero as well (except for
one summand) due to opposite signs. The only summand left in the first equation
is the one for ¢ = 0. However, this one and the first term in the second equation
also sum up to zero. Thus,

(dos+s0d)(ro@T® RTRa)=TgRTM Q- QT Ra

that is ds + sd =id for n > 1. At the bottom of the resolution, we have
dos(a) =d(1®a)=aand sod(a) = s(0) =0. Thus, ds + sd =id as we wanted
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to show.

We now want to calculate the Tor-term by use of this resolution.
Note that
A(l’l,l'Q, Ce ) = A(.Tl) ®k A(I‘Q) ®k e

as algebras. Moreover, it is Tor> " (k, k) ®Tor*A(I'j)(k, k) = Tori\(“mA(mj)(k, k) as

coalgebras (see [19], p. 247). This allows us to calculate the Tor-term via
Tor (12 (e, k) 22 lim (X) Tor ™) (k, k).
i=1

We have
TOI'*A(xi)<k7 ]{7) = H, (k QA () B*(A<ZE@), k>>

Therefore, consider

k @@y Ba(Axi), k) = k@) AMz:) @k Axi) @ - @ Azi) @k b

> A7) ®p -+ @ A(x;) (n times)

where A(z;) is the vector space generated by x; and so A(x;) ®y, - - - @, A(z;) has
dimension one over k generated by z; ® - -+ ® x;.
Because of our module structure and x? = 0, the differential id®d becomes zero
and thus

Tor @) (k k) = A(z;) @ - - - @r M)
Let us now consider the multiplicative structure on Tor®®)(k, k). The bar resolu-
tion comes in fact with a product, the so called shuffle product (see for example
[26], p.181), where a (p, ¢)-shuffle of integers p,q > 0 is a permutation o of
the set {1,2,...,p + ¢} of integers such that o(1) < ¢(2) < --- < o(p) and
ocp+1)<---<alp+q).
Before we explain the shuffle product on B,(A(x;), k), note that the latter has a
bidegree, i.e. there is a generator y; of bidegree (|z;|, 1) or total degree |z;| + 1.

Now define v,,(y;) = v ® --- ® y; (m times) and the shuffle product * on
B, (A(x;), k) as % : B, ® By — By,

W) ) = D> (1) D),

(p,q)—shuffles o

where s(0) is a sum over degz; + 1 (see [19], p.247) which we do not have to know
in detail since all z; have odd degree and thus, s(o) is always even. Consequently

Vo (i) * Vq(yi) = <p ;r q) Vora(¥i),

where (p”qu) is the number of (p, ¢)-shuffles. Thus, Tori\(xi)(k,k:) > Dy, |yl =
|z;| + 1, as this is exactly the product structure on a divided power algebra.

27



Chapter 2. Spectral sequences

Moreover, this is an isomorphism of Hopf algebras, since the comultiplication of
the bar resolution is given by

k

Are(i) =D 75 i) @ 1 (i)

J=0

where vo(y;) = 1.
Finally,

Tor}t2)(k k) = lim Q) T(y:) = T(y1, v, - - )
i=1
That is, E;, = T'(y1,v2,...) with |y;| = |z;| + 1 where p corresponds to the
external and ¢ to the internal grading.

A
q
|x1| + |5’72‘ + ‘ 53’ T1T2X3
|$3| T3
|z1| + |22 T1To
|5L“2| T2
|1 1
(0,0) 1 2 3 P

Where there is no entry we mean of course zero.

We see that every element of totalE? is of even degree (recall that all x; are of
odd degree!). Since all differentials d" : E,; — E,_, ,+,—1 decrease total degree
by one, all differentials must be zero. That is, the spectral sequence collapses
at E? and E? = E*~. By lemma (2.0.14), the spectral sequence converges to
total(EZ,) = Ty, ya, - - ) with |y;| = |z + 1.

This gives H.(BG; k) = I'(y1, ya,...). Since all elements of H,(BG; k) lie in even
dimension, we have

H*(BG; k) = H.(BG; k)™ = T(y;,ys, ... )"
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as algebras. In order to finish our proof, we have to prove that the dual of the coal-
gebra I'(y1, 2, . . . ) is the polynomial algebra k[y;, v5, . ..] with y dual to y; and
ly¥| = |y:|. However, this is due to the fact that they are dual as Hopf algebras.
(The finite case is dicussed in the appendix, section (6.2). For infinitely many
generators consider the colimits of the algebras on finitely many generators).

O

In the later proof, we want to apply our theorems on the Eilenberg-Moore spectral
sequence to loop spaces. However, they are only valid for topological groups.
Thus, we will now do a little excursion into the simplicial world in order to see
how we can understand a loop space as a group.
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Chapter 3

The Kan loop group

Definition 3.0.6 Let A be the category of finite ordinal numbers with order-
preserving maps between them. That is, the objects consist of elements [n],n > 0,
where [n] is a totally ordered set with n+1 elements, and the morphisms 6 : [n] —
[m] satisfy 6(i) > 6(j) fori > j.

Important examples of morphisms are the so called faces ¢; and degeneracies o;:
For 0 <i,j <mn, d; : [n — 1] — [n] is an injection missing ¢ and o; : [n + 1] — [n]
is a surjection sending both 5 and 5 + 1 to j.

Definition 3.0.7 A simplicial object B in a category C is a contravariant functor
B : A — C or a covariant functor B : A’ — C. A covariant functor A — C is
called cosimplicial object in C.

Our main examples are simplicial objects in the category of sets, i.e. simplicial
sets, and simplicial objects in the category of groups, i.e. simplicial groups.

There is another description of simplicial objects, which is equivalent to the above
definition (see for example [7], p.4) but more concrete. To understand it, one has
to know the following:

Theorem 3.0.8 For any morphism 0 : [n] — [m] there is a unique decomposition
0 = 52-152-2 [N 61‘,,.0-]‘10-]'2 <0y

such that iy < iy < -+ <, and j; < jo < -+ < js withm =n —s+r. (If the
set of indices is empty, then 6 is the identity.)

(See [17], p. 453.)

Proposition 3.0.9 A simplicial object B is a set of objects B,,n > 0 in C
together with a set of morphisms d; : B,, — By_1,5; : B, — By41,0 < 0,7 < n
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for all n > 0, satisfying the following formulas
didj = dj—ldi fO’f’i < j,

sisj = Sjp18; fori < g,
sj—1d;  fori < j,

djs; = Qidg, fori=ji=7j+1,
sidi—1  fori>j+1.

Here, B, = B([n]),d; = 7 and s; = o7.

7. The elements of B, are called n-
simplices of B.

The most important example of a cosimplicial object is the following;:

Example 3.0.10 Let 7 denote the category of topological spaces. There is a
standard covariant functor A — T [n] — |A"| where

A" ={(to, ..., ta) €R™|D t; =1,t; > 0} C R

=0
15 the topological standard n-simplex with subspace topology.

Definition 3.0.11 For any topological space X, the singular set Sing(X) is the
simplicial set given by [n] — {f : |A"| — X| f is continuous}. In the case
of pointed topological spaces we require f(x) = f(|A°]) = zg, where xq is the
basepoint.

Remark: For a pointed space X, Sing(X) is reduced, that is the set of
zero-simplices consists of a single element: Sing(X)o = {f : |A°] — x¢}.

Sing( ) is a functor from the category of topological spaces to the category of
simplicial sets. Conversely, there is a functor from simplicial sets to topological
spaces which is called geometric realization.

Definition 3.0.12 Let A be a simplicial set. Its geometric realization is defined
as the space
Al =] An x |Am)/ ~
n>0
where ~ is generated by (a,0.(t)) = (6*(a),t) for any a € A,,t € |A™| and any
0 :[m] — [n] in A. (Recall that |A"| is cosimplicial!).

Remark: We call an element a € A, degenerate if there is some o' € A,_;
such that a = s;j(a’) for some j. The geometric realization of A is then, as a
CW-complex, a union of cells, which are in bijection with the non-degenerate
simplices. The face operators tell us how these cells are glued together. (See [17],
p. 455.)
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Example 3.0.13 [Sing(X)| ~ X.
Proposition 3.0.14 There is a bijection
homyey(|A|, X) = homgimp (A, SingX)

which is natural in simplicial sets A and topological spaces X. That is, the real-
1zation and the singular functor are adjoint.

(See for example [7], p.7.)

Definition 3.0.15 We define the standard n-simplex in the category of simplicial
sets as A™ = homa( , [n]).

Obviously, our notation gives the impression that the geometric realization of the
n-simplex in the category of simplicial sets is the topological standard n-simplex
and this is of course true ([7], p. 8).

A™ contains subcomplexes A", called the boundary, and A}, called the k*h horn:

Definition 3.0.16 0A"™ is the smallest subcomplex of A™ containing all faces
3;(tn),0 < 5 < n of the standard simplex v, = 1, € homa([n],[n]). The j-
simplices of OA™ are

A"[j] if0<j<n-1,
OA"[j] = « iterated degeneracies of elements of
A"E,0<k<n-—1, if 1> n.

We write OAY = 0 where () is the ‘unique’ simplicial set which consists of the
empty set in each degree.

The k*h horn A},n > 1 is the subcomplex of A™ which is generated by all faces
d;j(tn) except for the k'h face dy(i,). For example, one could represent A2 by the

picture
2 2
A% — \ C /\ — A2
1 0——1

0

As an easy example of JA™, we want now define the simplicial one-sphere as
S. = A'/OA'. To do so, we have to understand JA! in order to see that this
quotient is again a simplicial set. From the definition we have

OA'0] = A'[0] and

OA'[j] = {iterated degeneracies of elements of A'[0]} for j > 1.
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The latter means that we lift all elements of A'[0] to higher degrees by applying
the maps s; to them. However, if we later consider the geometric realization of
OA', these simplices are irrelevant since the geometric realization only sees non-
degenerate elements.
Hence, let us have a look at A[0] = homa([0], [1]). Obviously, we have only two
maps

1 1

/

0——=0 0 0

and none of them is a degeneracy.
If we now define the quotient A'/OA! levelwise, that is (A!'/OAY)[j] =
Alj]/OAYj], we get again a simplicial set.

However, to see that our definition S!'. = A!/JA! makes sense we have to check
that |[S.] = S!. A first step to see this is knowing, that a left adjoint functor
preserves colimits ([26], p.55). We already saw in (3.0.14), that | | is left adjoint
and a quotient can be considered as colimit of the inclusion. Thus, we need
to know |A!| and |9A!|. In particular, we have to check that the geometric
realization of the simplicial boundary is the topological boundary!

Let us consider Al. We already explained how the O-simplices look like. The
I-simplices (homa([1], [1])) are the following:

1——1 1—1 1 1

/ N\

0——=0 0 0 0——=0

The last one is a degeneracy and the middle one is degenerate as image of a
O-simplex. All higher simplices Al[n],n > 2 are represented by non-injective
maps and thus degenerate. Hence, by definition of the geometric realization and
the following remark, we have |Al| = —— .

We already explained that OA® only consists of O-simplices. More precisely, it
consists of two 0-simplices i.e. two simplicial points. By definition of the realiza-
tion, we trivially get |0A!| = - -. Hence, |S'.| = |Al/|0A| = O = St.

Definition 3.0.17 A Kan complex is a simplicial set A such that the canonical
map A — % is a Kan fibration. That is, for every k and for every commutative
diagram of simplicial set homomorphisms

-

An——
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there is a map 0 : A" — A making the diagram commute. Here, i) is of course
the inclusion A} C A™.

Lemma 3.0.18 For each space X, the map Sing(X) — * is a Kan fibration and
thus Sing(X) is always a Kan complex.

(See [7], p. 11.)

Definition 3.0.19 Let A, B be simplicial sets. We then define Map (A, B), =
homsimpi(A x A™Y) and take face and degeneracy maps to be induced by the
standard maps between the A™. This makes Map (A, B) again a simplicial set.

With this we define the simplicial loop space Q¥™P'A = Map (S., A).

For topological spaces, we define Map (X,Y) to be the simplicial set with n-
simplices the continous functions X x |A"| — Y and face and degeneracy maps
induced by the standard maps between the A”.

Lemma 3.0.20 With the above definitions, proposition (3.0.14) extends to a nat-
ural isomorphism of simplicial mapping spaces

Map (JA], X) = Map (A, Sing(X))

for a simplicial set A and a topological space X. Moreover, the geometric realiza-
tion of a simplicial mapping space is natural isomorphic to a topological mapping
space.

(See [11], pp. 7,8.)

Theorem 3.0.21 Let A be a reduced Kan complex. Then there is a simplicial
group GA such that GA ~ Q¥™P A is a weak equivalence (in the sense that we
get an isomorphism on homotopy) which is natural in A.

GA is called the loop group of A for obvious reasons. Since the construction
goes back to Kan, it is often called Kan loop group. Its construction is can be
found in [7], section V.5, together with the proof of theorem. The main point of
this theorem is that the loop space of a reduced Kan complex can be regarded
as a group. Moreover, the geometric realization of a simplicial group is in fact
a topological group: Because of |GA| x |GA| = |GA x GA| ([7], p.- 9), we get a
continuous map (| | is a functor!) |GA| x |GA| — |GA|.
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As we said above, Sing(X) is a reduced Kan complex for any topological space
X. Thus, Q% Sing(X) is weakly equivalent to a simplicial group (depending
on X). Lemma (3.0.20) guarantees

20)
) |Map (] S".|, X)|
= homtop(Sl, X) =0X.
On homology this gives

thm(3.0.21)

H,(QX) = H.(Q"" Sing(X))) = H.(GSing(X))).

Hence, the homology of 2.X is isomorphic to the homology of a topological group.
If we later apply our theorems on the Eilenberg-Moore spectral sequence to 2.X,
we will actually replace QX by the topological group |GSing(X)|, calculate their
homology and then take advantage of the above isomorphism.
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Cohomology Operations

In general, cohomology operations are a tool that gives information about a space
X. Let us say we want to show that two spaces are of a different homotopy type.
One possibility would be to compare their cohomology groups and show that
they differ in some degree. Here, primary cohomology operations come into play:
They are maps of a certain degree on the singular cohomology groups of a space
X. However, it may happen that a composition of such maps is zero and thus
fail to give further information about the underlying space. In this case, one can
construct new operations - secondary cohomology operations - which rescue some
of the information the primary operations lost.

4.1 Primary Operations

Definition 4.1.1 Let H"( ;m) and HY( ;G) be the singular cohomology functors
from the category of topological pairs and continous maps to the category of sets
and fundtions, with n and q positive.

For n,q > 0, a primary cohomology operation 6 of type (m,n,G,q) is a natural
transformation from H"( ;m) to HI( ;G).

Thus, for any pair (X,Y’) we have a function
0(X,Y): H'(X,Y;n) — HY(X,Y; Q)
and for any map of pairs f: (X,Y) — (W, Z), we have
O(X,Y)o f*= f*o00(W,2)
where f* is the map induced on cohomology.

Consequences of naturalitiy
e 9(X,Y) is a pointed map of pointed sets.
As each H"(X,Y;m) is an abelian group, it has a distinguished zero element,
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namely H"(x ;7) which we understand as an element in H"(X,Y;7) via p, :
H"(x;7) — H™"(X,Y;m) induced from p: (X,Y) — *. It follows from naturality
that 6 is as asserted.

e (X, X) is the zero map for ¢ < n.

Starting with a C'W pair, we observe that the ¢-th cohomology of the pair maps
monomorphically into the ¢-th cohomology of the g-skeleton of the pair. As the
n-th cohomology of the ¢g-skeleton is zero, 6 has to be the zero map by naturality.
For arbitrary pairs, this follows by use of the C'W approximation theorem.

Definition 4.1.2 Let 6,, : n > 1 be a sequence of cohomology operations of type
(m,n,G,n + 1) for a fized positive integer i. We call such a sequence a stable
cohomology operation of degree i provided the following diagram commutes for
each pair (X,Y) and each n > 1:

H™(Y;7) —2= H"(X,Y:G)
an(Y)l l9n+1(X,Y)
Hn-i—i(y; 71') 4‘1 Hn+i+1<X, Y; G)

We call the individual 6,, the components of a stable operation.

4.1.1 Steenrod Operations

In the following, we will discuss an important example of primary cohomology
operations: Steenrod operations. They are definded on cohomology with Z/pZ-
coefficients and are named Steenrod squares for p = 2 and reduced powers for p
odd. While the reduced powers will turn up in a theorem we will need later, the
Steenrod squares will only serve to explain the secondary operations.
Unfortunately, the contstruction of these operations is quite lengthy. Hence, we
will only present their properties. A nice reference for the construction is [9],
section 4.L.

Proposition 4.1.3 There is a stable operation Sq' having components of type
(Z)2Z,n,Z/27Z,n + i). That is, we have maps

Sq': HY(X,Y;Z)27) — H""(X,Y;7/27)
which commute with the connecting homomorphism.

Properties
(1) S¢° =id
(2) If n < 4, then Sq' is the zero map.
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(3) If n =4, then Sq¢" is the cup product S¢"x = x°.

(4) Cartan formula: On cup products, Sq* satisfies the equation
Sq'(xUy) = Z S¢?x U Sqky
i=j+k

(5) Adem relations: If 0 < a < 2b, then

b—1—t _
Sanqb:Z( W o )Sqa+b tSqt

with non-zero summands only for 0 <t < a/2.

Lemma 4.1.4 For each i, Sq' commutes with (unreduced) suspension. That is,
the following diagram commutes:

P

H™(X:;7/27) H"\(©X;7./27)

Sqii lSqi

H™(X;7,/27) —=> H™ " (SX; Z,/27)

Proposition 4.1.5 There are stable operations, called reduced powers of type
(Z)pZ,n,Z)pZ,n + 2i(p — 1)) for p an odd prime:

P HY(X,Y;Z/pZ) — H"20-V(X Y, Z/pZ).
In addition, there is the Bockstein homomorphism
8 H"(X,Y;Z/pZ) — H"Y(X,Y;Z/pZ)
obtained from the coefficient sequence
0— Z/pZ -2 7./p*7 — Z)pZ — 0.

The Bockstein operation is not stable. However, the signed Bockstein B = (—1)"(3
for 8 defined on H"(X,Y;Z/p) is a stable operation.

Properties

(1) P° =id

(2) If n = 2, then P’z = 2P for any cohomology class = of dimension n.

(3) If n < 24, then P’x = 0 for any cohomology class x of dimension n.

(4) Cartan Formula: P'(zUy) = >, ., P/a UP"y and, for the unsigned Bock-
stein, B(z - y) = Bz -y + (—1)¥lz - By. This gives in particular Bz? = 0.

(5) Adem relations:

If a < pb, then

A e (b L P

a—pt
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with non-zero summands only for integers ¢ satisfying 0 <t < a/p.
If a < pb, then

pegpr — Z(_l)a—i—t ((p _al_)(;t_ t)) Fpetb-tpt

b S (07 D0 Dy

a—pt—1

Moreover, 3? = 0.

The Steenrod Algebra

The Steenrod operations modulo Adem relations form an algebra, the Steenrod
algebra A,. It has the nice property that for every space X and every prime
p, H*(X;Z/p) is a module over A,,.

Definition 4.1.6 The Steenrod algebra As is defined to be the algebra over Z/2
that is the quotient of the algebra of polynomaials in the noncommuting variables
Sq', Sq?, ... by the twosided ideal generated by the Adem relations. Similarly, the
Steenrod algebra A, for odd primes is defined to be the algebra over Z/p formed
by polynomials in the noncommuting variables 3, P*, P?, ... modulo the Adem
relations.

The Steenrod algebra is a graded algebra , the elements of degree k being those
that map H™(X;Z/p) to H" k(X ;Z/p) for all n.

As the next proposition shows us, A, is generated as an algebra by the elements
Sq*", while A, for p odd is generated by 3 and elements pr,

Proposition 4.1.7 Ifi is not a power of 2, there is a relation

Sq = 0c;<i ;8¢ Sq with coefficients a; € Z/2. Similarly, if i is not a power
of p, there is a relation P* = > o< a; P P7 with a € Z/p. These operations
are called decomposable.

Example 4.1.8 S¢° = Sq¢'Sq* and Sq° = S¢*>Sq* + Sq¢°Sq*.

4.2 Secondary Operations

The presentation here mainly follows the one in [§].

Let C)y R Cy, - C, be a pair of composable maps with C, being simply
connected.

Given a space X, let Sp(X) denote the set of homotopy classes of mapse : X —
such that the composition 6 o € is null-homotopic,

So(X) ={[e]| €: X — Cpy, Ooe€~ x}.
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Moreover, let Tq,(X) denote the quotient
TQSD(X) = [X, QCQ]/Z?TLQQD#,

where Qo @ [X,QC] — [X,QC,] is given by Qgx(g) = Qp o g. We need here
the simply connectivity of Cy: If () is simply connected, then €2C} is connected
and T, (X) is well defined.

For illustration, one may consider the following diagram.

X —=C, >0, Ld Cl
e i O,
\\9\ A{#(g)

X

We write [g] to denote the image of g : X — QC5 in T, (X).
For f:Y — X we have

f# 1 Sp(X) — Sp(Y) given by f#([e]) = [e o f]

and

J7 1 Top(X) — Tou(Y) given by f#([g]]]) = [g o f].

Definition 4.2.1 A secondary cohomology operation © is a natural transforma-
tion of the functors Sy and Ta,. That is, for each f : X — Y, the following
diagram commutes:

So(X) — 5y(v)
o

Top(X) = Tou(Y)

For a space X, Sp(X) is a set and Tq,(X) is a group. If X is a point, O is the
zero map for To, (%) = 0. Since we work with homotopy classes of maps, we have
©(e) = 0 for any € : X — Cj which is null-homotopic. Thus, © is automatically
a map of pointed sets.

In the case where both 6 and Q2 are zero maps, our definition will agree with a
primary cohomology operation if Cj and C5 are Eilenberg-MacLane spaces.

As the submodule used to form the quotient Tq,(X) is of some importance and
will be referred to later on, we give it a name.

Definition 4.2.2 We call imQey, Qpy @ [X,QC] — [X,QCy), the indetermi-
nacy of © and write it as Ind(0, X) = imQe,. Note that for f Y — X, we
have f#Ind(©,X) C Ind(0,Y).
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As we said above, secondary operations become especially important when pri-
mary operations fail. As the Adem relations give rise to a lot of null-compositions
of primary operations, this will often be the case. Thus, we will explain in the
following how to construct secondary compositions for nullhomotopic composi-
tions.

4.2.1 Operations associated to nullhomotopic composi-
tions

Definition 4.2.3 We write the adjoint of f : I x X — Y as f* : X —
Y fia)(t) = f(t ).

Example 4.2.4 [t is PX = {w : I — X| w(0) = *}. Given a contracting
homotopy H : I x X —Y |, we have H* : X — PY, H%z)(s) = H(s,x).

Definition 4.2.5 The direction reversal map T of the unit interval is given by
7(t) = 1 —t. When 7 is used to reverse direction in homotopies, we write

H.(t,x) = H(7(t), z).
Definition 4.2.6 Given a map f: B — By we construct the fiber square

W; 2~ PB,

pll f l

B——— By

with p; being the projection on the ith component and e the evaluation on 1. Wy
is called homotopy fiber of f and its elements are pairs (b,w) € B X PBy such
that f(b) = w(1).

Let A B Chea pair of composable maps and H a contracting homotopy
from x to fa. We will call this a sequence with homotopy and denote it by
(6, , H). With this data we get two new maps.

Definition 4.2.7 (Lifting of o) We obtain a map & : A — Wy from pull-back
data of the following diagram:

A A

A
al \Lﬁa th
B—~C

R P,C

N A

W
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Assertion: a(a) = (a(a), H( ,a)). To prove that (a(a), H( ,a)) is in Wjs, we have
to check that f(a(a)) = H(1,a). Since H is a contracting homotopy from * to
Ba, this is quite obvious.

Definition 4.2.8 (Colifting of 3) The map B W, — QC is obtained from
pull-back data of the following diagram

\/

Bw(2s) 0<s<1/2,
H(2—-2s,a) 1/2<s<1.
Recall that QC = {(wi,wy) € PiC x PC| er(wy) = w(l) = w(0) = eo(w,)}.
Thus, to prove that ﬁ(a w) € QC, we have to check that 5(a,w)(1) = B(a, w)(0).
This is quite easy: §(a,w)(1) = H(0,a) = * = fw(0) = B(a, w)(0). Moreover, it

is §(a,w)(1/2) = fuw(l) = Ba(a)) = H(1,a).

Assertion: 3(a,w)(s) =

Definition 4.2.9 (Secondary compositions) Given three composable maps

A B L0 D and contracting homotopies H from x to fa, K from x
to v, we can construct a secondary composition

yoa:A— Wz — QD

through the homotopy fiber.
From the formulas above we get by composition:

. B ) vH(2s,a) 0<s<1/2,
(Yoa)a)(s) = {(H, Kra} = {K(z —2s,a(a)) 1/2<s< 1.
Obviously, (3o @)(a)(1/2) =~vH(1,a) = (yo foa)(a) = K(a,a(a)).

Definition 4.2.10 Let Hy, Hy be contracting homotopies for the composition Ba.
We measure their difference by 6(Hy, Hay) : A — QC' given by

Hi(2s,a) 0<s<1/2,

H, H,) = {H, H, \' =
O(Hy, Hy) = {Hy, Hyr} {HQ(Z—Qs,a) 1/2<s< 1.
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Definition 4.2.11 Two sequences with homotopy, (B,a, H) and (§',o/, H') are
homotopic provided there are homotopies L from « to o and M from [ to (3,
such that

6(H'.{H,BL,Md'}): A — QC

18 nullhomotopic.

Proposition 4.2.12 Given pairs of maps A =% B 28 ¢ 2 D and contract-

ing homotopies to form four sequences with homotopy (5, c, H), (v, 3, K),
(8, H"), (v, 0, K') and given homotopies L from « to o/, M from [ to ' and
N from v to~" such that

0 =0(H ,{H,Ma,B'L}): A — QC

and

8y = 8(K' {K,N3,vM}): B— QD

are nullhomotopic, then the secondary compositions are homotopic: Yo =~ 7

Proof: Recall the explicit formula for 4 o & in definition 1.2.6. Together with
definition 1.2.7 we obtain

vH(2s,a) 0<s<1/2

Joa=0(vH,Ka) = {yH, K,a}" =
Yoa=100 o) =1 o) {Koz(?—Qs,a) 1/2<s<1

'H'(2s, a) 0<s<1/2
Yod =6 /H/,K/O/ — ’H’,K’o/ b g ) =2 = )
7 G )=t ) {K’O/(2—25,a) 1/2<s<1

respectively.

Saying that §; and 0, are nullhomotopic means that the sequences (3, «, H) and
(0',a',H") and (v, 3, K) and (v, 3, K') respectively are homotopic.

Thus, if we think of a homotopy H between f,g: X — Y as a square

X——————X ,
f A g
Y Y
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then the required homotopies can be deduced from the following schematic dia-
gram:

A A A

Ka Ko Ko/
D YBL D yMo/ NB'a D

~H vH' v H'
A A A

O

We will now come back to secondary cohomology operations and explain the
promised example based on secondary compositions.

Assume there is a contracting homotopoy H for the composable pair C 2, c, 5
Cy. Then with € : X — Cj representing an element in Sy(X), we have a set of
secondary compositions {p o€ | € : X — Wjy is a lift of e}. Applying proposi-
tion 1.2.1 to H' = {H, Ma,('L} and K’ = {K, N3,7v'M}, it follows that these
secondary compositions are invariants of the homotopy class of the sequence
with homotopy (¢, 0, H). That is, we get a well-defined natural transformation
© : Sy( ) — Ta,( ) given by

O([e]) = [[¢ o €]
for each homotopy class of (¢, 0, H).

Example 4.2.13 Consider the following spaces and maps for an arbitrary, but
fixed integer n > 1:

Co = K(Z/2Z,n),
C, = K(Z/)2Zn+1)x K(Z/2Z,n+2),
Cy = K(Z/2Z,n+4),

. Sqt
0:Cy — (] representing sq2)

¢w:0; — Oy representing (Sq¢®, S¢?).

From the Adem relations, we know that Sq¢*Sq¢®> = S¢Sq', thus Sq¢®Sq* +
Sq*Sq®> = 0 over Z/2Z. This gives [p][0] = 0. Because of the representation
theorem (1.3.10), we then have for a space X that

Sp={[e] | €: X = Cp,e00 =0} ={rx € H(X;Z/2Z) | Sq¢*(z) = 0= S¢*(x)}.
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Since QK (G,n+ 1) = K(G,n), we have
Too(X) = H™(X; Z/22)/S¢* H*(X; Z/2Z) + SEH™(X; Z/2Z),

which becomes quite obvious by regarding the following diagram.

X - K(Z)2Z,n) % K(Z)2Z,n+ 1) x K(Z/2Z,n+2) —2—~ K(Z/2Z,n + 4)
! !

K(Z/2Z,n) x K(Z/2Z,n+ 1) —2~ K(Z/2Z.,n + 3)

\/

X

4.3 Factorization of primary operations by sec-
ondary operations

One main point in the later proof will be the factorization of a certain Steenrod
operation by secondary operations. The idea of this factorization goes back to
Adams’ factorization of the Steenrod square S¢' for p = 2 in [1]. A few years
later, Liulevicius proved the factorization in question of the cyclic reduced power
PP for n > 0 and p odd in his Ph. D. thesis (see [16]). We will therefore not be
able to give a proof of this factorization, but only state the theorem and explain
the operations involved.

Theorem 4.3.1 Let p be an odd prime. There exist stable secondary cohomol-
ogy operations W;, R, I, elements ay;, by, ¢y of positive grading in the Steenrod
Algebra A over the field Z./pZ and a scalar 0 # vy, € Z/pZ such that

k
Z CL]W-\I/Z' + ka + Z cmli, = {UkPPkH}

i=1 v
for all integers k > 0, modulo total indeterminacy.

These operations are as follows:
R is defined on Sp(X) = {zx € H™(x;Z/pZ) | B(x) = 0= Pl(x)} and R(z) is an
element of

Tou(X) = H™HP-D(X; Z/pZ)/PQHm(X; Z/pZL)+(1/2B8P =P ) H™ =% (X Z/pZ)

with 6 representing (751) and ¢ representing (P?, 1/26P! — P13).
For k > 0,V is defined on Sy = {x € H™(X;Z/pZ) | B(z) = 0 = PP (z),i =

0,1,...,k} and Uy (x) lies in

k
Top(X) = H™ 2" 0-0(X; 7,/pI) / P H™(X; Z/pL)+ Y O H 2 DY (X 7,/p7),
=0
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where ¥J; are elements of the Steenrod algebra A and ¢’ and ¢’ represent

( B
(PPt — P,

o oy ) A (P (PP

The only thing we need to know about the operations I', is that they are of odd
degree.
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Chapter 5

The Brown-Peterson spectrum

5.1 Thom spectra

We now construct a so called Thom spectrum M(f) for each map
f + X — BJF where the latter is defined as the telescope of the sequence
{++ = BF, — BF,y1 — ...} and BF, is the classifying space for (S",*)-
fibrations.

Our presentation relates to the one of Rudyak in [24].

Definition 5.1.1 Given a diagram m R 13 22, of morphisms over B =
base(§) = base(n;),i = 1,2, we define its double mapping cylinder over B to
be the bundle

DCyl(¢1, ¢2) = & x [0,2] Uy, (m Una),

where 1 : (€ x {0}) U (€ x {2}) = €UE ™% 1 L.

With this we define the homotopy smash product &€ A" 7 of two sectioned bundles
(&, s¢), (n, sy) as a certain double mapping cylinder. Its construction can be found
in [24], pp. 188,189. It is rather complicated and provides not much insight, so
we omit it here.

Definition 5.1.2 Let BF, be the classifying space for (S™, x)-fibrations and '
the universal object over it. Let 0 be the trivial (S, x)-fibration over a point and
P YEARG — A the classifying morphism for Y=AR0. We set - = base(p) :
base(yp A" ) — base(vF) and define BF to be the telescope of the sequence

{-+— BF, iB]:nH — .. )
By definition of the telescope, we have an inclusion BF, = BF, x {n} C BF, X
n,n+ 1] — BF.
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Definition 5.1.3 Let « be a (S, *)-fibration p : Y — X. A section of a is a
map s : X — Y with pos = idx. We define the Thom space of o by setting
T(a):=Y/s(X) and T(«) :=x if X =0).

Let BF,, be the telescope of the finite sequence {BF, L SR BF,}. We can
regard BF, as a CW-subcomplex of BF and by doing so we have a CW-filtration
{BF,} of BF. Since we identify z € BF; in the telescope with its image r;(z),
we have BF, ~ BF, and there is an universal object v+ over BF,.

Definition 5.1.4 Let X be a CW-complex and f : X — BF. Moreover, let X}
be the maximal CW -subcomplex which is contained in f~Y(BF,). This obviously
gives a CW-filtration of X with f(X}) C BF,. We define f, : X} — BF, by
setting fn(z) = f(x).

x—L-pr

L

X} +-BF,
By definition (6.4.3), there is an induced fibration fiv% over X7 which will be
denoted by C". If i, : X7 — X}LH is the inclusion and ("' the induced fibration
over X}LH, then clearly i* ("™ = (" @ 0. Together with the maps s, : XT(C") =
T ®0) — T(C") we get the Thom spectrum M(f) = {T(C"), s, }.

Remark: There is a similar construction for a CW-filtration of X with f(X,,) C
BJF,. However, the homotopy type of the Thom spectrum does not depend on
the choice of filtration (see [24], IV.5.13).

Example 5.1.5 The unitary group U(n) acts on S"™ since unitary endomor-
phisms preserve the norm. Therefore, it is U(n) C F, which induces a map

f:BU — BF and thus MU = M(f).
For a more clear construction of MU have a look at the appendix, section (6.5.3).

Theorem 5.1.6 The homotopy groups of the spectrum MU are given by
T (MU) = Z|xy, xa,...] with |x;| = 2i and its homology is given by m,(MU) =
Z[bl,bQ, .. .], ‘bl| - 22

(See for example [25], pp. 230,231 and p. 399.)

Remark: The ring Z[by, by, .. .| with |b;] = 2 is also known as Lazardring from
formal group law theory.

We now introduce the Thom isomorphism corresponding to a map X — BF
which is an important ingredient to our proof.

Recall that a fibration F' — E — B is orientable, if m;(B) acts trivially on
H.(F;G).
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Chapter 5. The Brown-Peterson spectrum

Theorem 5.1.7 Let « = {p: Y — X} be an orientable (S", )-fibration and X
path-connected, then there are Thom isomorphisms

¢c + Hi(X:G) = Hipn(T(0);G) and ¢% : H'(X;G) = H™"(T(a); G)

Proof: (Compare [24].) To prove the isomorphism on homology, we consider the
Serre spectral sequence for the relative fibration (Y, s(X)) — X. It is

E? =~ H,(X;H,(S" % G)) =
P p( q( ) {O otherwise.

As there is only one row with nonzero entries (¢ = n), all differentials d" are
zero for » > 2. Thus, Equ = E5- As this spectral sequence converges to

H.(Y,s(X);G) = H,(T(«); G) we have

The isomorphism on cohomology follows analogously with the cohomology Serre
spectral sequence.

O

Definition 5.1.8 Let X be a CW -complex. We say that a map o = {f : X —
BFY is regular if f(X™=2) C BF, for everyn.
Given a reqular map as above we define f, : X2 — BF, via f,(x) = f(z) for
every x € X2 and set

a" = fiE
With this we can write M(f) = {T(a™)}. We call a orientable if o™ is for every
n > 2.

Remark: We will later use an equivalent characterization of orientability.
For connected X, we have in fact that mo(M(f)) = Z if « is orientable and
mo(M(f)) = Z/2Z if « is not (see proposition 5.24 in [24], pp. 262,263). More-
over, orientability is equivalent to the existence of a lift of f : X — BF to BSF
which is the classifying space for all spherical fibrations of degree 1:

BSF
7 l
x1.pr

We know this from complex vector bundles where orientability is equivalent to
the existence of a lift to BSU:

BSU
7

//f l

— BU
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Chapter 5. The Brown-Peterson spectrum

Theorem 5.1.9 Let X be a CW-complex and o = {f : X — BF}. Addition-
ally, let G be an abelian group and suppose that o is orientable. Then there are
1somorphisms

o+ Hi(X;G) — Hi(M(f);G) and @ H'(X;G) — H'(M(f);G).
Proof: (See [24].) ®¢ can be constructed as

H(G ) = B(XY20) " B (T(0): 6) = B(M(F); G),

where 1 << N. The cohomology version is analogous.

O
Remark: There is a version of theorem (5.1.7) for a generalized (co-)homology
coming from a spectrum E (see [13]) which of course implies a generalized version
of theorem (5.1.9). In fact, we will later use this theorem for a homology theory
coming from an Eilenberg-MacLane spectrum.

5.2 The Brown-Peterson spectrum

We said that m,(MU) = MU, = Zlxy,z,...] with |z;| = 2i. In particular, it is
isomorphic to the complex cobordism ring QY.

Theorem 5.2.1 QU = Zlxa, x4, x6, .. .| and xop may be taken to be the class
[CP*] if k = p— 1 for some prime p.

(See for example [25], chapter 12.)

If we localize the spectrum MU at a prime p we can find a unique map of
ringspectra € : MUqy — MU, such that e2 =cande, : MUqpy — MU, 18
given by

[CP™ if n=p'—1 for some integer ¢,

£.[CP"] = {

The existence of this idempotent needs of course to be proven (see for example
[13]) and in fact, all this goes back to a famous theorem of Quillen in [21].

The image of a multiplicative idempotent in MU, ( )¢ is a natural direct sum-
mand and so gives rise to a multiplicative generalized (co-)homology theory:
For any spectrum E, we define BP,(E) = im e, and BP* = im ¢* with
&+ MUy (E) — MUy (E) and & : MUj, (E) — MU (E) respectively.

The representing spectrum is called Brown-Peterson spectrum and denoted BP.

0 otherwise.

Theorem 5.2.2 The Brown-Peterson spectrum BP is a homotopy-commutative
and -associative ringspectrum with H (BP) = Zyy[l, o, . ..], where |l;] = 2(p" —
1), and H*(BP;F,) = A,/(B) with A, being the Steenrod Algebra and (3 the

Bockstein homomorphism.
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Chapter 5. The Brown-Peterson spectrum

The multiplication on BP is induced by the composition
BP A BP — MUy A MUy, =% MU, — BP.

The grading of the generators of H,(BP) is of course due to the definition of .
A detailed proof of this theorem may be found in [24], pp. 413-415.

The question of interest is if BP posseses a strictly commutative model. In fact,
this question has not been answered yet though there were many attempts. One
attempt was to detect BP as the p-localization of the Thom spectrum M (f),
associated to some map f : X — BJF. We will now explain this - unfortunately
unsuccessful - attempt in detail.

5.3 DBP as a multiplicative Thom spectrum

So far, we introduced the classifying space BF and constructed a Thom spectrum
M(f) for each map f: X — BF.

Remark: BF is weakly equivalent to an infinite loop space.

Boardman and Vogt showed in [4], that F is an FE.-space and that every
classifying space of an FE.-space is again an F.-space. As we said before, a
space is E if and only if it is weakly equivalent to an infinite loop space.

Knowing this we can now consider loop maps f : X — BJF and state the following
theorem which actually is a corollary of theorem 7.1 in [15], which is far more
general.

Theorem 5.3.1 Let X = QY and f : X — BF be an infinite loop map. Then
the associated Thom spectrum M (f) is a E-ringspectrum.

Thus, if we could show that M(f) localizes to BP for some prime p, p # 2,
BP would be an E-ringspectrum as we explained in (1.5.2) and thus strictly
commutative. However, we will prove that M (f) does not even localize to BP if
f is only a 2-fold loop map.

Proposition 5.3.2 Let X = Q%Y and f : X — BF be a 2-fold loop map. Then
the associated Thom spectrum M (f) does not localize to BP for any prime p # 2.

Outline of the proof:

We will prove this proposition by contradiction. That is, we will assume that BP
is indeed the localization of the Thom spectrum associated to a 2-fold loop map
X = Q%Y — BF. By use of the Thom isomorphism and the Eilenberg-Moore
spectral sequence we will then show that this implies H,(Y;F,) = F,[y1, yo, ... ]
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Chapter 5. The Brown-Peterson spectrum

with |y;| = 2p’. However, theorem (4.3.1) on the factorization of secondary
cohomology operations tells us, that in this case we would have ¢} = 0 which
obviously cannot be true since y; is a generator in a torsionfree polynomial ring.

Before we start with the actual proof, we collect some helpful tools that will help
later on.

Lemma 5.3.3 If H.(X;Z,)) = H.(BP), then X = Q*Y is connected and we
can assume that QY is connected without loss of generality.

Remark: We need this in order to apply the theorems of chapter 2 which were
valid only for connected topological groups.

Proof: Since we know for any space Z that Hyo(Z; R) = @ryz) R, we see that
Q%Y is actually arcwise connected (and thus connected) as Hy(Q?Y;Z,)) =
Hy(X;Zgy) = Zp). We can assume Y to be connected because if it was not,
we would get Q(QY) = Q(Y;) for QY = 1;Y; and the basepoint lying in Y.

U

Lemma 5.3.4 H,(BQ?Y) =~ H,(QY) and H,(BQY) = H,(Y).

Proof: Consider the path-loop fibration QY — PY — Y and its corresponding
long homotopy sequence:

- —= 1 (PY) = (V) = 1,1 (QY) — 1, 1 (PY) — ...

As PY is contractible, we have m;(PY") = 0 for all ¢ and thus 7,(Y) = 7,_1(Q2Y),
for all n.

Now consider the universal bundle G — EG — BG for QY. Again, we have a
long homotopy sequence:

- = T (EQY) — 1, (BQY) — 1,1 (QY) — 1, 1 (EQY) — ...

As EQY is as well contractible, it is 7,(BQY) = m,_1(QY), for all n. This
finally gives m,(BQY) = ,(Y). By replacing QY by Q%Y and Y by QY we get
as well 7,(BQ?Y) = 7,(QY).

We want now apply Whitehead’s theorem in order to prove the desired isomor-
phism on homology. This theorem states, that if there is a map between arcwise
connected spaces of the homotopy type of a C'W-complex and the induced map
on homotopy is an isomorphism, so is the induced map on homology. Thus, we
have to show that BQY,Y and BO2?Y,QY respectively are arcwise connected
(i.e. mgp = *). In the case of the classifying spaces this is obvious. In the case of
Y and QY we can assume them to be arcwise connected with a similar argument
as above. If they were not the loop space on them would be the loop space
on the path-component of the basepoint so we can restrict to this component.
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O

Proof of (5.3.2): Suppose M (f) localizes to BP for any prime p # 2. Then
To(M(f)@) = Zg and thus f : X — BF is orientable. Therefore, we can apply
the HZ,)-Thom isomorphism which gives

HZ) (X) = Hd(X;Zy)) = HZy) (M(f)) = H(BP) = Zg)[l, o, .|
with [I;] = 2p" — 2.

As we want to use the Eilenberg-Moore spectral sequence in the following, we
have to change the coefficients of our homology. The Eilenberg-Moore spectral
sequence was only constructed for coefficients in a field, thus we exchange
Zp-coefficients for Fp-coefficients. We have to do this exchange of coefficients
anyway, as we want to use secondary cohomology operations later on and these
were only defined for cohomology with [F,-coefficients.

As H,(X;Z) is a free polynomial algebra and the exchange of coefficients does
not affect the generators, we get H.(X,F,) =F,[l1,l2,...].

By use of the Eilenberg-Moore spectral sequence, we want to show that
H*(Y;F,) = Fuly1, 92, . ..] with |yx| = 2p*. As a first step, we apply proposition
(2.1.5) on X = Q%Y in order to calculate H.(BQ?Y;F,) = H,(QY;F,).

Calculation of H.(Q2Y)

Understanding QY as BQ?Y = BX, we use proposition (2.1.4) in order to
calculate H,(Q2Y').

For this purpose, we first have to determine E2, & Tor., (X;Fp)(IFp, F,).

Recall that H.(X;F,) & H.(BP;F,) = F,ll1,ls,...] with |l;] = 2(p* — 1). For
simplification, we first calculate Torkrl- lk](IFp, [F,) with [; graded as above. The
generalisation to infinitely many generators will follow afterwards.

Since F,[l1,...,l;] and F, are graded, we can choose our resolution in the
category of graded F,[ly,...,l;]-modules. (We need here that this category has
enough free objects. Fortunately, this is true.) Thus, there will be an induced
grading of Tory"! (F,,Fp).

One main point is how we understand F, as Fp[ly,...,[;]-module.  The
module structure of a graded module M over a graded ring A has to fulfill
the rule A;M; C M;;. In our case, F, only lives in degree zero. That is,
we have no choice but to demand that (Fp[l1,...,lk])o = F, acts on F, by
multiplication and elements of higher degree go to zero. Moreover, this makes
sense in a more intuitive way as we can understand F,, as Fp[ly, ..., L]/ (L, ..., ).

Let us define R :=Fp[ly, ..., ;] and [ := (l4,...,l;) in order to keep things a little
bit clearer. Then let [ : R¥ — R be the linear form given by ((r1,..., ) = > lir;.
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Chapter 5. The Brown-Peterson spectrum

This gives rise to a complex K () = (A3 R¥, d;), called the Koszul complex, where
A% RF denotes the graded exterior algebra over R¥. The map d; : AT RF — A% RE
is given by

d(vo® -+ @vy) = Y (1) 1)o@+ @G ® - @y,

1=0

where v; € R*. Obviously, we have d; = [ for n = 0. To see that K (1) is indeed
a complex, we have to check that d? = 0. We do an example first in order to
understand what is going on.

Let n = 2, then:

dlz(?}() XUV X UQ) = dl(l(vo)vl X Vg — Z(Ul)vo X Vg + l( )'Uo ® Ul)
= l(’l}o)dl(’l)l ® Ug) — l(vl)dl(vo ® UQ) + l(Ug)dl(’Uo ® ’U1)
= (vo)l(vy)ve — L(vg)l(ve)vy — (I(v1)l(vo)va — L(v1)l(v2)vg)
+l(Ug)l(Uo)U1 - Z(Ug)l(vl)ﬂo

= 0
since R is commutative. We see that when applying d; the second time, the
positions are changed. In the first summand for example, v; goes to the Oth
position and vy to the first, because vy is missing. This causes opposite signs and
thus the terms add up to zero. Hence:

n

i@ @) = dY (1))@ Q6@ D v,)

1=0

—_

= 2NN @ - @00 00 @ - S v,

= J

I
o

+Z D U0 @ QU@ ®6G, - ®uy,)
Jj=i+1
= 0

We claim now, that K(I) is a resolution of R/I = IF, over R. This means, the
following sequence is exact:

— ARTRE AL AR A U AR LR RJT -0

This is equivalent to H,(K(l)) = 0if n > 0 and Ho(K (1)) = R/(l1,...,lx). We
proof this by induction on k.
If k=1, then I = ({;) and K(I) = K(ly) is the complex

0—>Rl—1>R—>O.
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Chapter 5. The Brown-Peterson spectrum

Multiplication with [; is injective, thus H, (K (1)) = 0 for n > 0 and Hy(K (l1)) =
R/LR = R/I.
Suppose now that K ([) is a resolution as stated for k—1. Consider the length-one-

complex K (l;) and the exact sequence of complexes 0 — Ky — K(l) — K; — 0
which looks like this:

degree 0 0 0 0 0
id
1 0 0 R R 0
‘lk 0
0 0—=R-"2=R-2>0 0
0 0 0 0 0
Tensoring over R with the Koszul complex K = K(ly,...,l;_1) maintains exact-

ness. Moreover, the middle term is K (I,) @ g K = K(I). The short exact sequence
0— Ko®K — K(l) - K1®K — 0 gives rise to a long exact homology sequence:

o Hy (K @p K) =5 Hy(Koy©p K) — Ho(K(1) — Hy (K9 K) = ...

By application of the Kiinneth formula, this gives

= Rep Hy(K) =5 Rep Hy(K) — Hy(K(1) = R®p Hy(K) = ...
Thus, ¢ is simply multiplication by I, because H, (K (1)) = H,(K(ly) ®r K) =
R/l,R ®r H,(K) (again by use of the Kiinneth formula). The exactness of the
above sequence is equivalent to the exactness of the following short sequence:

0 — Coker(H,(K) -2 H,(K)) — Ho(K (1)) — Ker(Ho_1(K) -2 Hp_1(K)) — 0

The inductive hypothesis is H,(K) = 0 for n > 0 and Hy(K) =
R/(LR+ -+ 1 R), thus H,(K(l)) = 0 for n > 1.

For n = 1, Hi(K(l)) = Ker(Hy(K) R Hy(K)). As this multiplication is
injective, we have H;(K(l)) = 0.

For n =0, Hy(K(l)) = Coker(Hy(K) R Hy(K)) = R/I as we wanted to show.

So far we have that K(1) is a free resolution of R/I over R. In order to calculate
Tor®(R/I, R/I), we have to determine the homology of (AR(R*) @r R/I,d;®1).
By definition, the image of [ is in I, thus d;®1 = 0 because of the module structure
of R/I over R. Therefore, Tor®(R/I,R/I) = A3(R*) ®@r R/I = AE/I((R/[)k).
Moreover, (R/I)f = (F,)* = I/I*> by counting generators.  Hence,
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Chapter 5. The Brown-Peterson spectrum

Tor(R/I, R/T) = A*R/I(I/IQ) = Ag, (Ls oo )

Our last task here is to check that the canonical product on the Tor-groups is iden-
tical to the exterior algebra product. Hence, consider f : K(I) @g K(I) — K(I)
where (K(I) @r K(1))n, = ®prq=nK(l), ®r K(l),. This is in fact a homomor-
phism of complexes lifting the muliplication on R/I such that each f, is the
multiplication in the exterior algebra. Since all differentials are zero, one sees
very easily by having a look on the product formula of the Tor-term (section
(2.1)) that both products correspond.

The ideas presented so far do hold of course in a more general context, too.
In fact, the presentation was guided by the general proof of Loday in [17] (pp
103-105) and supplemented by details.

We now have to generalize the above result to infinitely many generators. Con-
sider the direct system --- — R¥ -5 RF1 —  with j being the inclusion
(ri,...,r%) — (r1,...,7%,0) and its direct limit R*°. Then the following is a
direct system

j* J* j* j*
ntl pk _ A® n pk N0 A ro0 pk
- ——= AT RF——ARR ARRY =R R/I 0
J* J*

dl(k+1) dl(k+1)
A

e AR A £ S AYRM = R—— R/T—=0)

sk -k

J J

with direct limit

di(o0) di(c0) di
s AFTRe AR R L 1)

AYR®=R——=R/I—0
Thereby, [(k) is the linear form belonging to (I1,...,l;) and [(co) the one be-
longing to (Iy,l,...) with |l;] = 2p° — 2. The latter is well-defined since the
elements of the direct limit R*> do only have finitely many non-zero components.
By (6.3.2), this direct limit is a resolution of R/I = Fp[l1,la,...]/(l1,12,...) = F,.
If we tensor with R/I and drop the last term, the above (without the last terms)
is still a direct system with direct limit

di(00)® dl(oo)®1 dz(oo>®

e AT R 0 RIOT AR R @ RJIMOD . MDDV R 9 RIT 0

The homology groups of this complex are Tor®(R/I, R/I). By (6.3.2), the ho-
mology of the direct limit is the direct limit of the homology of the underlying
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direct system. Thus we finally get:

Torlr! 2 I(I,, F,) = limA% (In,..., 1) = Ak (I, o, ...

Torgp[ll’b’"'](lﬁ‘p, F,) = Ag (L1, 12, ... ) has an internal grading because of the grad-
ing of the ;. Thus, E?, = Afbi;(ll, la,...), that is, the Es-page looks like this:

, A
2(p+p* +1°) -6 11515
203 — 2 I3
2(p +p?) -4 lhl
2p% — 2 lo
2p — 2 Iy
tp -
(0,0) 1 2 3 P

Where there is no entry we mean of course 0.

Let us consider the related maps d* : E2  — E2_, .. It is obvious, that they
either start in zero or go to zero. The same holds for all other differentials. To
see this, consider the total degree (p + ¢) of elements. In the first column, the
total degree equals 2p° — 1 for some i. In the second one, it equals 2(p’ + p’) — 2
and in the third 2(p® + p’ + p*) — 3. In general, the total degree equals
200°7  aip') — #{a; # 0},a; € {0,1}. The differentials have total degree —1.
Hence, if we can show, that there exist no elements whose total degree differs
by 1, then all differentials must be zero. If the total degree of two elements
differs by 1, then one of them has to be even and one odd. Thus, the number of
a; # 0 must differ by an odd amount, at least one. However, this means that the
total degrees differ by at least one p’-summand which is obviously larger than 1.
Consequently, all differentials are zero and the spectral sequence collapses in E?,
that is £? = E*.

By lemma (2.0.14), our spectral sequence converges to total(Effjk)
Ap, (21, 22,...) with |z| =2p" — 1.

Thus, H.(QY;F,) = Ag, (21, 22, ... ), |2 = 2p* — 1. Applying theorem (2.1.5) on

~
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QY then gives H*(BQY;F,) = H*(Y;F,) = F,[y1,va,...] with || = 2p* as
wanted.

Finally, we now take advantage of cohomology operations in order to produce
a contradiction: On the one hand, we have PP(y;) = vy} due to |y1| = 2p and
Yy # 0 since y; is a generator in the torsion free polynomial ring Fply1, ya, ... ].
On the other hand, the factorization of PP by secondary cohomology operations
tells us that PP(y;) = 15 (bR + >, coyl'y). However, the operations I', are
of odd degree. Thus, I'y = 0 since our polynomial algebra only lives in even
degree. Moreover, the operation R is of degree 4(p — 1). As 2p' +4(p — 1) #
2p7 for all 4,5 and p # 2, it is zero as well. Consequently, PP(y;) = 0. 4

O

Final words

We proved that BP is not the localization of a Thom spectrum associated to
a 2-fold loop map and thus cannot be understood as a Thom spectrum in this
way. So, what does this tell us concerning our question if there is a strictly
commutative product structure on BP? Unfortunately, this does not tell us very
much. For example, the above proof would hold as well for BP(1) which is the
spectrum representing BP (1), = Zg,)[lh], |l1] = 2p—2, since the degree of this first
generator was exactly what caused the contradiction. However, it is known that
BP(1) does have a strictly commutative product structure (see[3]). Moreover, the
proof obviously holds for every BP(n) representing BP(n), = Zy[ly, ..., 1], L] =
2(p* — 1), but we do not yet know if they possess a strictly commutative model.

60



Chapter 6

Appendix

6.1 Axioms for a reduced homology theory

Definition 6.1.1 Let PT' be the category of pointed topological spaces and homo-
topy classes of basepoint preserving maps. We denote by ¥ the (reduced) suspen-
sion functor defined by X(X, xq) = (XX, ) and X[f] = [1ge A f] for (X, x) € PT'.
A reduced homology theory h, on PT' is a collection of covariant functors hs,
from PT' to the category of (abelian) groups and natural equivalences oy, : iy —
l~1n+1 o X satisfying the exactness axiom:

For every pointed pair (X, A, z) with inclusions i : (A,xg) — (X, z9) and
J:(X,mg) — (X U; CA, %) the sequence

Fn(A, 20) — hn (X, 20) 2 Ty (X U; CA, %)

15 ezact.
By saying that o, is a natural equivalence, we mean that the diagram

B (X)) = hypi (2X)

B (Y) = Iy (YY)
commutes.

Many of the readers might know about reduced singular homology and its nice
property of being zero on any single point {z}. This follows for every re-
duced homology theory from the exactness axiom by considering the inclusions
i: ({z},x) - ({z},2), and j : ({z},2) — ({z} U; C'{z}, *), where C" is the

reduced cone: Both inclusions are in fact the identity and the sequence
5 id 7 id 7
h({z}) = h({z}) = h({z})
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is exact only if h({z}, ) = 0 (compare [25], p.110).
There is another axiom which will be of some importance.

Definition 6.1.2 (Wedge axiom) A reduced homology theory satisfies the
wedge aziom, if for every collection (Xo,Za)aca of pointed spaces the inclusions
lg @ Xg — \/ﬁeA Xpg induce an isomorphism

ia* . EB&EAiLn<Xa) - iln( \/ Xa)

a€cA
for all n.

The dual notion of a reduced homology theory is a reduced cohomology theory.
Its axioms are essentially the same except for it being a contravariant functor,
that is all the arrows involved go in the opposite direction.

6.2 Hopf algebras

Definition 6.2.1 A bialgebra over k is an k-algebra H with product X, together
with algebra homomorphisms A and € making H into a coalgebra. We call H
Hopf algebra if in addition there is a k-module homomorphism s : H — H such
that the following diagrams commute:

sQid gy idr®s

H®H H®H H®H H®H

N . E

H——k H H k H

The homomorphism s is called antipode and evidently reminds a little bit of an
inversion.

The easiest example of a Hopf algebra is the polynomial algebra R[a]. Its
coproduct must be given by A(a) = a® 1+ 1 ® « since there are no elements of
lower - but nonzero - degree than a.

Further examples are exterior and divided power algebras.

An important fact about Hopf algebra is the relationship between the (co-
Jproduct structure of a graded Hopf algebra A, and its graded dual A* with
A* = Hom(Ag, R): The coproduct of A, determines the product of A* and vice
versa.

In the case of a divided power algebra the coproduct fulfills A(yx(a)) =
Y ivi(e) @ yi—i(a). Thus, A;; takes v4i() to vi(a) @ vj(a). So if x; is a
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generator of A* that is dual to ;(«) then z;2; = x;;; which is the product for-
mula in a polynomial algebra.

Conversely, the coproduct in a polynomial algebra R[x] fulfills A(z") = (z ®
l+1@az)" =3, (")a' @ 2" if z. So if o; is dual to ;, the product in the
dual algebra has to fulfill oo, = (7;) «,, which is exactly the multiplication in
a divided power algebra.

Thus, I'g(«) and R[z] are dual to each other as Hopf-algebras.

6.3 Direct limits of chain complexes

Definition 6.3.1 Let R be a ring and Ci[n| a chain complex of R-modules for
each n. A direct system of chain complezes (Ci[n], fi[n]) is a sequence of chain
maps

f+10] f<[1]

C.[0] C.[1] o] R

Its direct limit is a chain complex of R-modules lim(Ci[n], fi[n]) together with
maps ¢, : Cin] — Im(Ci[n], fi[n]) such that ¢ny1 0 fin] = ¢n which fulfills the
following universal property:

For each chain complex C! together with chain maps 1, : Cin] — C. sal-
isfying i1 o fin] = ., for all n > 0, there exists a unique chain map
Y lim(Ci(n], fi[n]) — C§ such that 1 o ¢, = 1y, for alln > 0.

¢n+1

Ciln + 1]

If (Ci[n], fi[n]) is a direct system of chain complexes, then the m-th R-chain
module of its direct limit is equal to the direct limit lim(Cy,[n]) of the direct
system of R-modules (C,,[n], fin[n]). With this, we can state the following lemma
saying that the direct limit exchanges with homology.

Lemma 6.3.2 Let (Ci[n], fi[n]) be a direct system of chain complexes over R.
Then the map
iy H,,(C. [n]) — H,(limC. n])

is bijective for all m € Z.
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The proof of this lemma, needs the following one:

Lemma 6.3.3 Let R be a ring and M,, N,, P, R-modules for all n. We call
a short sequence of direct systems of R-modules exact, if for each n > 0 the
corresponding sequence of R-modules is exact. For each short exact sequence of
direct systems

0— (My, fn) = (Naygn) — (Pp,hy) — 0

we get an induced short sequence of R-modules
0 — Lm(My, f,) — im(Ny, g,) — im(Py, hy) — 0
that is again exact.

Both proofs may be found in [18] (p. 114 and p. 118). The exactness in lemma
(6.3.3) is proven by really looking at elements. This is not difficult but a little bit
technical. Lemma (6.3.2) is proven by a sharp look at the following short exact
sequences

0 — Bpln] ™™ 7 ] " [, (C.ln]) — 0,
0 = Zyln] ™ Culn] ™ B,, 4[] — 0,

0 — By[n] tmlr) Cm[n] — coker(k,[n]) — 0,

where B,,[n| denotes the image of ¢, 41[n| : Crryi[n] — C[n] and Z,,[n] denotes
the kernel of ¢,,[n] : Cp[n] — Cy,—1[n], and use of lemma (6.3.3).

6.4 Bundles and fibrations

In the following, all maps are assumed to be continous.

Our (very short) presentation restricts to complex vector bundles; since they are
the ones we need for the concrete construction of MU. The constructions we
make hold as well for real vector bundles of course.

Definition 6.4.1 A complex vector bundle & of dimension n over a space B
1s a bundle over B such that each point b € B has a neighborhood U and a
homeomorphism hy @ p~'(U) — U x C" such that py o hy = p|,-1) where py
denotes projection onto the first factor U.

Example 6.4.2 The casiest example is the trivial vector bundle over X with

total space E = X x C" and p: E — X being the projection onto the first factor.
The trivial vector bundle for n =1 is called trivial line bundle.
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Definition 6.4.3 If p : E — B is a (complex) vector bundle £ over B and
f: X — B is continuous, then the induced bundle f*(£) over X is the one with
total space f*(E) ={(x,e) € X x E: f(x) = p(e)} and projection onto the first
component. In other words, f*(E) is the pullback of f and p.

f(E)—E
|,
X B

Definition 6.4.4 Let & and & be (complex) vector bundles of dimensions ny
and ny over spaces X1 and X9 with total spaces Ey and Ey. Then their external
sum & X & is a bundle of dimension ny + ny over X; X Xy given by the map
p1 X po i By x By — X7 X Xs.

When X1 = Xy = X, the Whitney sum & @&, is the bundle over X induced from
&1 x & by the diagonal map A - X — X x X.

A*(X XX)HEl X Fy

l lpl Xp2
A

X X x X

Proposition 6.4.5 Let &1,& be complex vector bundles over X1, Xy respectively,
then there 1s a natural homeomorphism

T(& x &) = T(&) NT(&2)

Proof: (See [25].) We know that D" x D™ = D™, The fibre of & X &
(see (6.4.4)) over (z,y) € X x Y is &, X &, and we have a homeomorphism
D(&1)z X D(&)y = D(&1 X &)(wy) for all (z,y). This gives a homeomorphism
D(&) x D(&) = D(& x &) so that D(&;) x S(&2) US(&1) x D(&2) is mapped onto
S(€, % &). Thus

T(&) xT (&) = D(&)/S(E) AD(E)/S(&2)
~ _D(&)/S(&) x D(&)/S(Es)
D(&1) x S(§2) US(&1) x D(&2)
~ D(&;) x D(&2)
— D(&) x S(&) US(&1) x D(&)
= D(& x &)/S(& x &) =T(6 x &)

O

Corollary 6.4.6 If the complex vector bundle & is isomorphic to the Whitney
sum &' @ e, where € denotes the trivial line bundle, then T(§) = X*T(¢').
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Proof: (Compare [25].) We have T'(¢) = D?/S' = §2. We can regard ¢’ & ¢ over
X as & x e over X x X. Hence, with proposition (6.4.5) we get

TE @e)=T(E xe)ZT(EYANT(e) 2T(&) NS* 2 22T (¢).

O
Let us turn to fibrations now.

Definition 6.4.7 A fibration is a bundle p : E — B that satisfies the following
homotopy lifting property:

For every map F : X x I — B and every g : X — FE with po g(x) = F(z,0),
there exists G : X x I — E with G(x,0) = g(z) and po G = F':

g

X

7
l Eleld
0 2

Ve

E

p

XxI—"+B
where iy maps x € X onto (x,0) € X x I.

Definition 6.4.8 Let p : E — B be a bundle. A section is a map s : B — E
such that po s = idp. A pair (§, s¢) consisting of a bundle & and a corresponding
section s¢ s called a sectioned bundle.

Definition 6.4.9 Given two sectioned bundles (&, s¢), (1, s,), a sectioned bun-
dle morphism is bundle morphism ¢ : & — n which respects the sections, i.e.

Oltotal(€) o s¢ = s, 0 lbase(¢).

Definition 6.4.10 A sectioned fibration is a sectioned bundle (£, s¢) such that &
is a fibration and S¢ : idpasee) C & @5 a cofibration over the basespace of €.

Definition 6.4.11 A (F,*)-fibration is a sectioned fibration (&,s¢) such that
(Fy,se(x)) is homotopy equivalent to (F,*) with respect to basepoints for every
x € base(§).

A (F,*)-morphism is a sectioned bundle morphism ¢ = (g, f) : (§,5¢) — (1, sy)
such that g respects fibers and sections with respect to f, that is

91Fe : Fr = Fyy and g|Fy : (Fy, 5¢(2)) = (Fy), s9(f (2)),
are (pointed) homotopy equivalences for every x € base(§).

Definition 6.4.12 A universal (F,*)-fibration is an (F,*)-fibration v = {pp :
Er — Br} with the following properties:

(1) Every (F,x)-fibration over a CW-space X is equivalent to a fibration f*~¥
for some f: X — Bp.
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(2) Let f,g: X — Bp be two maps of a CW-space X. Then the (F,x)-fibrations
*~Y and f*+F are equivalent if and only if f ~ g.

The basespace Bp of a universal (F,x)-fibration is called a classifying space
for (F,*)-fibrations. If an (F,*)-fibration € is equivalent to f*y% for some
f : base(§) — Bp, we say that [ classifies & or that f is a classifying map
for €.

A classifying morphism for an (F,x)-fibration & is any (F,*)-morphism ¢ : & —

o

6.5 The Thom spectrum MU

The construction we present here is mainly guided by Ravenel’s exposition in
22].

Definition 6.5.1 (Thom space) Given a complex vector bundle § = {p: E —
B} with a Hermitian metric, the disk bundle D(§) consists of all vectors v € E
with |v] < 1 and the sphere bundle S(§) consists of all vectors v € E with |v] = 1.
We define the Thom space T'(§) to be the quotient D(&)/S(§).

A map f: X — B leads to a map T(f) : T(f*(§)) — T(§) called the Thomifica-

tion of f.

Remark: It can be shown that the homeomorphism type of the Thom space is
independent of the choice of metric.

Theorem 6.5.2 Let BU(n) be the classifying space for the unitary group that is
m(BU(n)) = mp_1U(n). There is a unique n-dimensional complex vector bundle
7E over it which is universal in the sense that any n-dimensional complex vector
bundle over a paracompact space X is induced by a map X — BU(n) and two
such bundles over X are isomorphic if and only if they are induced by homotopic
maps. We call 4S the universal (n-dimensional complex vector) bundle.

(See for example [25], pp. 202,203.)

That is we have the following one-to-one correspondence:

{homotopy classes of maps f: X — BU(n)}

!

{n-dim. complex vector bundles over X}

It can be shown, that BU(n) is the union of the Grassmanian Gy, under in-
clusions maps i : ng — ng 41 Which are induced by the standard inclusion of
Crtk — C**1 and send an n-dimensional subspace of C"** to the correspond-
ing one in C"tF+1,
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On GSJC we define a map j : ng — G¢ +1,, Which is induced by the standard
inclusion of C"** into C***+! and sends an n-dimensional subspace x of C"** to
the (n + 1)-dimensional subspace of C""**1 spanned by x and a fixed vector not
lying in C"™*. Then j*(75,1,) = Ynx @ €, where € denotes the trivial complex
line bundle.

Definition 6.5.3 Let BU(n) be the the classifiying space for the unitary group
U(n) and vS the universal bundle over it.
MU, the Thom spectrum for the unitary group, is defined by

MUy, = T(7S) and MUy = SMUs,.
The map X MUy, — MUy, 1 is the obvious one. In order to get a map
ZzT(’YS) =YX MUspy1 — MUzpyo = T(’YSH).

we consider the map j : BU(n) — BU(n + 1) with j*(75,,) = 7, ® . The
Thomification of j is by corollary (6.4.6) the desired map:

T(j) : T(7* (vmy1)) = T () = T(yms1)
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