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Abstract. The stabilization of Hochschild homology of commutative alge-
bras is Gamma homology. We describe a cyclic variant of Gamma homology
and prove that the associated analogue of Connes’ periodicity sequence be-
comes almost trivial, because the cyclic version coincides with the ordinary
version from homological degree two on. We show that a possible desym-
metrized definition of Gamma homology coincides with a shifted version of
Hochschild homology and its associated cyclic theory does the same.
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1. Introduction

Given a commutative algebra A, there are several homology theories available
that can help to understand A. Hochschild homology and cyclic homology of A
are related by Connes’ periodicity sequence

. . . → HH n(A)
I−→ HC n(A)

S−→ HC n−2(A)
B−→ HH n−1(A) → . . .

which is a good means for comparing Hochschild homology with its cyclic vari-
ant.

Using the commutativity of A we could consider André–Quillen homology as
well. Viewing A as an E∞-algebra with trivial homotopies for commutativity
allows us to consider André–Quillen homology in the category of differential
graded E∞-algebras as defined by Mike Mandell [7]. This homology theory
coincides with Alan Robinson’s Gamma homology [15, 1] which in turn can be
interpreted as stabilization of Hochschild homology of A by [11, Theorem 1].
Gamma homology has the feature that it agrees with André–Quillen homology
for Q-algebras [17, Theorem 6.4].

The Hodge decomposition for Hochschild homology for flat commutative al-
gebras, with the base ring containing rationals, splits André–Quillen homology
off as the first summand HH (1)

∗ ∼= AQ∗−1 in the decomposition (see [3, 6, 9]).
Cyclic homology splits similarly and from degree three on the first summand
HC (1)

∗ of that decomposition is again André–Quillen homology, AQ∗−1. It is
known that the periodicity sequence passes to a sequence for the decomposition

ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de



2 B. RICHTER

summands [6, 9],

. . . → HH (i)
n (A)

I−→ HC (i)
n (A)

S−→ HC
(i−1)
n−2 (A)

B−→ HH
(i)
n−1(A) → . . .

Therefore rationally the periodicity sequence collapses in higher degrees for
the first decomposition summand, because there the map I becomes an isomor-
phism. One could guess that this is a defect of working over the rationals, but
we will show in the course of this paper that this is not the case.

Robinson and Whitehouse proposed a cyclic variant of Gamma homology of
differential graded E∞-algebras over a cyclic E∞-operad in [17].

We construct a cyclic variant of Gamma homology which arises naturally
from the interpretation of Gamma homology as stable homotopy of certain Γ-
modules.

It turns out, however, (compare Corollary 4.4) that this definition of cyclic
Gamma homology coincides with usual Gamma homology from homological de-
gree two on; hence this sequence collapses. We explicitly describe (see Proposi-
tions 5.4 and 5.5) cyclic Gamma homology in small degrees in terms of ordinary
cyclic homology and deRham cohomology.

An alternative approach for a cyclic version of Gamma homology is to first
extend the definition of Gamma homology to associative algebras and then to
build a cyclic version of the resulting theory. In Section 6 we show that such a
desymmetrized definition of Gamma homology coincides with a shifted version
of Hochschild homology. Gamma homology of commutative algebras views a
commutative algebra as an E∞-algebra and computes André–Quillen homology
in the category of E∞-algebra. If the characteristic of the base ring is not zero,
then the non-trivial homology groups of symmetric groups lead to the fact that
Gamma homology is not isomorphic to classical André–Quillen homology of
commutative algebras.

Gamma homology of associative algebras should be viewed as André–Quillen
homology of A∞-algebras, so one interpretation of our result is that the A∞-
homology of associative algebras is Hochschild homology. Robinson and White-
house proved an analogous result using a different model [17, Corollary 4.2].

The associated cyclic theory of Gamma homology of associative algebras co-
incides with shifted Hochschild homology as well, so the two approaches to
producing cyclic Gamma homology that we present in this paper fail to give
something different.

Lars Hesselholt proved an analogous phenomenon in the setting of topological
Hochschild homology. Fix an arbitrary prime p. In [4] he showed that the
equivalence between stable K-theory and topological Hochschild homology is
reflected in an equivalence between the p-completions of the stabilization of
topological cyclic homology and p-completed topological Hochschild homology.

Our methods of proof use the extension of the definitions of cyclic, Hochschild
and Gamma homology to functor categories. We recall the necessary prerequi-
sites from [5, 10, 11, 12].
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2. The Category F and F-Modules

We recall the definition of cyclic homology from [5, §6] (see also [10, §3]). Let
F denote the skeleton of the category of finite unpointed sets and let n be the
object {0, . . . , n} in F . We call functors from F to the category of k-modules
F -modules. Here k is an arbitrary commutative ring with unit. For a set S we
denote by k[S] the free k-module generated by S.

The projective generators for the category of F -modules are the functors Fn

given by

Fn(m) := k[F(n,m)];

whereas the category of contravariant functors from F to k-modules has the
family Fn with

Fn(m) := k[F(m,n)]

as generators.
For two F -modules F and F ′ let F ⊗ F ′ be the pointwise tensor product of

F and F ′, i.e., F ⊗ F ′(n) = F (n)⊗ F ′(n). As a map in F from the object 0 to
an object m just picks an arbitrary element, one obtains that (F0)⊗n ∼= Fn−1.
The functor F0 is an analog of the functor L from [11] in the unpointed setting
and the tensor powers (F0)⊗n ∼= Fn−1 for n > 1 correspond to L⊗n.

Given a unital commutative k-algebra A, the F -module which gives rise to
cyclic homology of A is the functor L(A) that sends n to A⊗n+1. A map f : n →
m induces f∗ : L(A)(n) → L(A)(m) via

f∗(a0 ⊗ . . .⊗ an) = b0 ⊗ . . .⊗ bm, with bi =
∏

j∈f−1(i)

aj.

Here we set bi = 1 if the preimage of i is empty.
For any F -module F , cyclic homology of F , HC ∗(F ), can be defined [10, 3.4]

as the homology of the total complex associated to the bicomplex

...

b

²²

...

b

²²

...

b

²²
F (2)

b
²²

F (1)
B

oo

b
²²

F (0)
B

oo

F (1)

b
²²

F (0)
B

oo

F (0)

In particular, cyclic homology of A, HC ∗(A), is the homology of this total
complex applied to the functor L(A). We recall the definition of b in (1) and
the one of B in Definition 5.1.
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3. The Relationship to the Category Γ

Let Γ be the skeleton of the category of pointed finite sets and let [n] be the
object [n] = {0, . . . , n} with 0 as basepoint. The projective generators of the
category of Γ-modules are the functors Γn given by

Γn[m] = k[Γ([n], [m])].

There is a natural forgetful functor µ : Γ → F and the left adjoint to µ, ν : F →
Γ, which adds an extra basepoint ν(m) = [m + 1]. Pulling back with these
functors transforms Γ-modules into F -modules and vice versa:

ν∗ : Γ-modules // F -modules :µ∗oo

In [10, Proposition 3.3] Pirashvili shows that

TorF∗ (ν∗F, G) ∼= TorΓ∗ (F, µ∗G).

Lemma 3.1. The functor Fn pulled back along µ is isomorphic to Γn+1.

Proof. We first show that the Γ-module µ∗(F0) is isomorphic to Γ1: for every
object [n] we obtain that

µ∗(F0)[n] = F0(n) = k[F(0, n)] ∼= kn+1

because the value of a function f ∈ F(0, n) on 0 can be an arbitrary element
i ∈ n. The Γ-module Γ1 has the same value on [n], because a function g ∈
Γ([1], [n]) has an arbitrary value on 1 but sends zero to zero. As we just allow
pointed maps, the two functors are isomorphic.

The general case easily follows by direct considerations or by using the de-
compositions of Fn and Γn+1 as (n + 1)-fold tensor products Fn ∼= (F0)⊗n+1

and Γn+1 ∼= (Γ1)⊗n+1. ¤

Recall, that Hochschild homology of a Γ-module G, HH ∗(G), can be defined
as the homology of the complex

G[0]
b←− G[1]

b←− · · · (1)

where b =
∑n

i=0(−1)iG(di) and di is the map of pointed sets that for i < n
sends i and i + 1 to i and is bijective and order preserving on the other values
in [n]. The last map, dn, maps 0 and n to 0 and is the identity for all other
elements of [n].

Later, we will need the following auxiliary result.

Lemma 3.2. Hochschild homology of a Gamma module G is isomorphic to
the homology of the normalized complex which consist of G[n]/Dn in chain de-
gree n where Dn ⊂ G[n] consists of all elements of the form (si)∗F [n− 1] where
si is the order preserving injection from [n− 1] to [n] which misses i.

Proof. This result just uses the standard fact that the Hochschild complex is
the chain complex associated to a simplicial k-module and the elements in Dn

correspond to the degenerate elements; therefore the complex D∗ is acyclic. ¤
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A similar result applies to cyclic homology of F -modules.
Let S1 = ∆1/∂∆1 denote the standard model of the simplicial 1-sphere. Re-

call from [5, 10] that Hochschild homology of a commutative unital k-algebra
A, HH ∗(A), coincides with the homotopy groups of the simplicial k-module
µ∗L(A)(S1). Here, we evaluate µ∗L(A) degreewise. Note that more gener-
ally, Hochschild homology of any Γ-module G as defined above coincides with
π∗G(S1).

4. Gamma Homology and Its Cyclic Version

Let t be the contravariant functor from Γ to k-modules which is defined as

t[n] = HomSets∗([n], k)

where Sets∗ denotes the category of pointed sets. Pirashvili and the author
proved in [11] that Gamma homology of any Γ-module G, HΓ∗(G), is isomorphic
to TorΓ∗ (t, G). In particular, Gamma homology of the algebra A, HΓ∗(A) is
isomorphic to TorΓ∗ (t, µ

∗L(A)).
For a cyclic variant of Gamma homology, we have to transform the functor t

into a contravariant F -module. Choosing ν∗t does this, but it inserts an extra
basepoint. Killing the value on an additional point amounts to defining the
F -module t by the following exact sequence:

0 −→ F0 −→ ν∗(t) −→ t −→ 0. (2)

The transformation from F0 to ν∗t is given by sending a scalar multiple λf of
a map f : n → 0 to the function in HomSets∗([n + 1], k) which sends the points
1, . . . , n + 1 to λ.

Proposition 4.1. On the family of projective generators (Fn)n≥0 the torsion

groups with respect to t are as follows:

TorF∗ (t,Fn) ∼=
{

0 for ∗ > 0,
kn for ∗ = 0.

Proof. It is clear that the torsion groups vanish in positive degrees because the
functors Fn are projective. We have to prove the claim in degree zero, but the
tensor products in question are easy to calculate:

t⊗F Fn ∼= t(n) ∼= kn. ¤

Definition 4.2. We call the group TorFn (t, F ) the nth cyclic Gamma homology
group of the F-module F and denote it by HΓCn(F ).

Remark 4.3. We will see in 5.4 that cyclic Gamma homology of an algebra A
in degree zero behaves analogously to usual Gamma homology whose value in
homological degree zero gives Hochschild homology of degree one.

Robinson and Whitehouse proposed a cyclic version of Gamma homology for
algebras over cyclic differential graded E∞-operads [17, Definition 3.10]. Alan
Robinson [16] assured the author that their definition agrees with ours in the
case of commutative algebras.
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As the functor F0 is projective, the calculation in proposition 4.1 allows us
to draw the following conclusion.

Corollary 4.4. Cyclic Gamma homology of any F-module F coincides with
Gamma homology of the induced Gamma module µ∗(F ) in degrees higher than 1,
i.e.,

HΓC∗(F ) = TorF∗ (t, F ) ∼= TorΓ∗ (t, µ
∗F ) ∼= HΓ∗(µ∗(F )) ∀∗ > 1.

In low degrees the difference between cyclic and ordinary Gamma homologies
is measured by the following exact sequence:

0 → TorF1 (ν∗t, F ) → TorF1 (t, F )
δ−→ F (0) → ν∗t⊗F F → t⊗F F → 0

which is nothing but

0 → HΓ1(µ
∗F ) → HΓC1(F ) → µ∗F (0)

δ−→ HΓ0(µ
∗F ) → HΓC0(F ) → 0.

We will obtain more explicit descriptions in the algebraic case in the next sec-
tion.

5. The B Operator

In an unstable situation there is a map B which connects cyclic homology
and Hochschild homology and which gives rise to Connes’ important periodicity
sequence

· · · −→ HH n(A)
I−→ HC n(A)

S−→ HC n−2(A)
B−→ HH n−1(A) −→ · · ·

In low degrees the map B sends the zeroth cyclic homology of a k-algebra A
which is nothing but A again to the first Hochschild homology group of A
which consists of the module of Kähler differentials Ω1

A|k and the map is given

by B(a) = da. If we consider the first nontrivial parts in the long exact sequence
of Tor-groups as above, arising from the short exact sequence 0 → F0 → ν∗t →
t → 0 then, for the functor L(A), we obtain

· · · → A → ν∗t⊗F L(A) → t⊗F L(A) → 0

and ν∗t ⊗F L(A) is isomorphic to the zeroth Gamma homology group of A
which is the module of Kähler differentials. The map is induced by the natural
transformation from F0 to ν∗t. The aim of this section is to prove that this
map is given by the B-map.

Let us recall the general definition of the B-map for cyclic and Hochschild
homology of functors. If T is the generator of the cyclic group on n+1 elements
viewed as the permutation T : n → n, T (i) = i + 1 mod n + 1. Thus T acts on
F (n) for every F -module F . We define τ to be (−1)nT .

The B-map from cyclic homology to Hochschild homology can be viewed as
a map from the nth generator Fn to the (n + 1)st in the following manner:

Definition 5.1. Let s be the map of finite sets which sends i to i + 1. Then
the B-map is defined as a map B : Fn → Fn+1. On a generator f : m → n it is
B(f) := (1− τ) ◦ s ◦N ◦ f where N is the norm map N =

∑n+1
i=1 τ i.
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On the part F (n) ∼= Fn ⊗F F of the complex for cyclic homology of F
this induces the usual B-map known from the algebraic case F = L(A), for a
commutative algebra A. By the very definition of the map it is clear that it is
well-defined on the tensor product.

In our situation we apply the B-map to the first column of the double complex
for cyclic homology of F

...

b

²²

...

b

²²

...

b

²²
F (2)

b
²²

F (1)
B

oo

b
²²

F (0)
B

oo

F (1)

b
²²

F (0)
B

oo

F (0)

and send all other columns to zero. In [10, 3.2] it is shown that ν∗Γn
∼= Fn.

Using this we obtain an isomorphism F (n) ∼= Fn⊗FF ∼= ν∗Γn⊗FF ∼= Γn⊗Γµ∗F
and see that B gives rise to a map from the total complex for cyclic homology
of F to the complex for Hochschild homology of µ∗(F ).

A verbatim translation of the proof for ([5, 2.5.10, 2.1]) in the case of a cyclic
module to our setting gives the following result:

Lemma 5.2. The map B is a map of chain complexes and therefore induces
a map from HC ∗(F ) to HH ∗+1(µ

∗F ).

Remark 5.3. In degree zero, the B-map from F0 to F1 applied to an f ∈ F0(n)
is given by (1− τ) ◦ s ◦ f .

We should first make sure that cyclic Gamma homology has the right value
in homological dimension zero.

Proposition 5.4. Cyclic Gamma homology in degree zero is isomorphic to
cyclic homology in degree one. In particular, HΓC0(A) ∼= HC 1(A).

Proof. The cokernel of the map F (0) → ν∗(t) ⊗F F can be determined by a
map from F (0) to F (1): we use the beginning of the resolution of t

. . . → Γ2
α−→ Γ1

β−→ t → 0

(see [10, §1.4]). Here, α is the sum of maps d0− d1 + d2 whereas β sends a map
g from [n] to [1] to

∑
g(i)=1 χi where χi is the characteristic function of i. The

exactness of ν∗ turns this into an exact sequence . . . → F2
ν∗α−→ F1

ν∗β−→ ν∗t → 0.
We can choose a lift of the inclusion map i from F0 to ν∗t to F1 by sending a
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generator f ∈ F0(n) to s ◦ f . We call this lift j.

F2

ν∗α
²²
F1

ν∗β
²²

0 // F0

j
==||||||||

i // ν∗t
π // t̄ // 0

It is easy to see that ν∗β ◦ j = i. The snake lemma allows us to calculate
the cokernel of i via the quotient of F1 by the image of j and the kernel of ν∗β
which is the image of ν∗α. The map j corresponds to the reduced part of the
B-map and ν∗α is the Hochschild boundary.

As Hochschild and cyclic homology coincide with their normalized version
(see Lemma 3.2), we obtain that the cokernel of i is isomorphic to the first
cyclic homology group. ¤

Cyclic Gamma homology in dimension one can be explicitly described as well.
In small degrees our Tor-exact sequence looks as follows:

0 → HΓ1(µ
∗F ) → HΓC1(F )

δ−→ F (0)
B−→ HH 1(F ).

Therefore we obtain the following.

Proposition 5.5. The difference between cyclic Gamma homology and ordi-
nary Gamma homology in degree one is measured by the kernel of the B-map.

In the case of the functor L(A) the exact sequence is

0 → HΓ1(A) → HΓC1(A)
δ−→ A

d−→ Ω1
A|k.

Thus in degree one the difference between Gamma homology and its cyclic
version is measured by the zeroth deRham cohomology of A. For instance, if A
is étale, then HΓ1(A) = 0 = Ω1

A|k and therefore HΓC1(A) ∼= A.
The above calculations in small dimensions suggest that one should view the

sequence of Tor-groups coming from the sequence 0 → F0 → ν∗t → t → 0 as
the stable version of the periodicity sequence. In the algebraic case the two
sequences are nicely related in the following way.

HC1(A)
B // HH2(A)

I //

stab
²²

HC2(A)
S // HC0(A)

B // HH1(A) //

stab∼=
²²

HC1(A) //

∼=
²²

0

0 // HΓ1(A) // HΓC1(A)
δ // A

B // HΓ0(A) // HΓC0(A) // 0

But in higher dimensions the transformation I from the periodicity sequence
becomes an isomorphism. The term F0 ⊗F F ∼= F (0) plays the role of cyclic
Gamma homology in dimension −1.
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6. Gamma Homology for Associative Algebras

6.1. Gamma homology for algebras over operads. An alternative natural
extension of the definition of Gamma homology is to construct a version that
allows associative algebras as input. One could hope that an alternative ver-
sion of cyclic Gamma homology could be gained as a cyclic version of Gamma
homology of associative algebras.

More generally, if Õ is an operad in the category of sets and O is the cor-
responding operad in the category of k-modules for some commutative ring

with unit k which is defined as O(n) := k[Õ(n)] with k[−] denoting the free k-
module, then there is an associated category ΓO. In [8] this category was called
category of operators and refer to the precise definition of ΓO to their paper.
The category ΓO has the same objects as the category Γ. Roughly speaking
the morphisms are maps f of finite pointed sets together with operad elements

wi ∈ Õ(|f−1(i)|).
The functor t is defined as the cokernel of two representable functors and

we will define an analogous contravariant functor on ΓO. Let ΓOn be the repre-

sentable functor ΓOn ([m]) = k[ΓO([m], [n])]. Fix an element w ∈ Õ(2).

Definition 6.1. For a functor F from the category ΓO to the category of
k-modules the Gamma-O-homology of F is defined as

HΓO∗(F ) := Tor∗(tO, F )

where tO is defined as the cokernel of the map

ΓO2
α−→ ΓO1 .

Here, α is the same sum of maps of pointed sets d0 − d1 + d2 as before, but d2

carries τ.w as operad element for the the preimage of zero, whereas d0, d1 carry
w as their operad element for the preimage of zero resp. one.

This definition depends of course on the chosen element w. But we think

of w as some canonical element in Õ(2) that parametrizes a multiplication on
O-algebras and therefore we refrain from decorating HΓO∗(F ) with w.

As the operad of commutative monoids O = Com comes from the operad
whose degree n part consists of the one-elementian set, the category ΓCom is
identical with the category Γ and therefore Gamma-Com-homology is ordinary
Gamma homology. In the following we will identify HΓAs∗(F ) explicitly and
thus we will focus on the operad O = As for associative monoids from now on.
We will denote HΓAs∗(F ) by HΓ(as)∗(F ) and tAs by t(as). Here we choose w
to be the identity in the symmetric group on two elements.

The category Γ(as) can be described explicitly as in [12] as follows. Objects
of Γ(as) are finite pointed sets

[n] := {0, 1, . . . , n}, n > 0,

and a morphism [n] → [m] is a map f : [n] → [m] of finite pointed sets together
with a total ordering on the preimages f−1(j) for all j ∈ [m]. In order to define
the composition in Γ(as) we recall the definition of the ordered union of ordered
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sets. If S is a totally ordered set and if Xs is a totally ordered set for each s ∈ S
the the disjoint union X =

∐
s∈S Xs will be ordered as follows: For x ∈ Xr and

y ∈ Xs we declare x 6 y in X if and only if r < s or r = s and x 6 y in Xs.
If f : [n] → [m] and g : [m] → [k] are morphisms in Γ(as), then the composite

of g and f as a map is g ◦ f , while the total ordering in (g ◦ f)−1(i), i ∈ [n] is
given by the identification (g ◦ f)−1(i) =

∐
j∈g−1(i) f−1(j).

6.2. Hochschild and cyclic homology. In order to identify Gamma-As-
homology, we recall the main results from [12]. Loday observed that the sim-
plicial circle C : ∆op → Γ has a lift to Γ(as)

Ĉ : ∆op → Γ(as)

with Ĉn = [n] and face maps di : [n] → [n− 1]

di(j) =

{
j, j 6 i,

j − 1, j > i,
for i 6= n and dn(j) =

{
j, j 6= n,
0, j = n.

Here, the ordering on the preimages d−1
i {j} with more than one element is

i < i+1 for i 6= n and n < 0 for i = n. Note that the homology of the simplicial
module L(A; M)(Ĉ) is Hochschild homology of an associative algebra A with
coefficients in an A-bimodule M . In [12, Theorem 1.3] we identify Hochschild

homology of any functor F form Γ(as) to k-modules with TorΓ(as)
∗ (b̄, F ) and

cyclic homology of any functor G from F(as) to k-modules with TorF(as)
∗ (b, G).

Here, b is the cokernel of d0 − d1 : F(as)1 → F(as)0 and b̄ is the cokernel of
d0 − d1 : Γ(as)1 → Γ(as)0.

6.3. Gamma-As-homology. With these prerequisites at hand it is straight-
forward to prove the following result.

Theorem 6.2. For any functor F from Γ(as) to the category of k-modules
Gamma-As-homology of F is isomorphic to a shifted version of Hochschild ho-
mology of F , i.e.,

HΓ(as)∗(F ) ∼=
{

HH ∗+1(F ) ∗ > 0,
t(as)⊗Γ(as) F ∗ = 0.

Proof. From [12, Proposition 2.2] we know that for every [n] in Γ(as) the sim-
plicial module

∆op Ĉ //Γ(as)
k[Γ(as)([n],−)]

//k-modules

has homology concentrated in degree zero with zeroth homology group b̄[n].
Therefore

. . .
d→ Γn(as)

d→ Γn−1(as)
d→ . . .

d→ Γ1(as)
d→ Γ0(as)

is a projective resolution of b̄ with d =
∑n

i=0(−1)idi and hence

. . .
d→ Γn(as)

d→ Γn−1(as)
d→ . . .

d→ Γ1(as)

is a projective resolution of t(as) such that the homology groups of

. . .
d⊗id−→ Γn(as)⊗Γ(as) F

d⊗id−→ Γn−1(as)⊗Γ(as) F
d⊗id−→ . . .

d⊗id−→ Γ1(as)⊗Γ(as) F
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are Hochschild homology groups. ¤
For instance we can consider the functor L(A; M) for an associative algebra

A and an A-bimodule M . In degree zero TorΓ(as)
∗ (t(as),L(A; M)) gives the

first Hochschild homology group of A with coefficients in M if one considers
a symmetric A-module M . If M is not symmetric then the zeroth homology
group differs, because one considers not just cycles modulo boundary but M⊗A
modulo boundary.

Remark 6.3. Robinson and Whitehouse obtain a version of Gamma homology
for associative algebras that gives shifted Hochschild homology for all degrees
[17, Corollary 4.2]. So their theory differs from our version in degree zero.

6.4. Cyclic Gamma-As-homology. Starting off with HΓ(as)∗(F ) there is an
obvious candidate for a cyclic variant. Let G be a functor from F(as) to the
category of k-modules and let d be the boundary map d : F(as)n → F(as)n−1.
Here, d is defined as before for Γ(as).

Definition 6.4. We define the fake cyclic Gamma-As-homology of G as

HΓC(as)f
∗(G) = TorF(as)

∗ (r,G)

where r is the cokernel of d : F(as)2 → F(as)1.

Proposition 6.5. The fake cyclic Gamma-As-homology coincides with
shifted Hochschild homology.

Proof. From [12, Lemma 2.4] we see that for all [n] in F(as) the simplicial
k-module

∆op Ĉ //F(as)
k[F(as)([n],−)]

//k-modules (3)

has homology in degrees zero and one and therefore the truncated complex

. . .
d→ Fn(as)

d→ Fn−1(as)
d→ . . .

d→ F1(as)

has homology concentrated in degree zero and this homology is precisely the
functor r. We know that F(as)n ⊗F(as) G ∼= G(n) and the differentials in (3)
give rise to the Hochschild boundary map. Therefore we obtain

HΓC(as)f
∗(G) ∼=

{
HH ∗+1(G) ∗ > 0,
r ⊗F(as) G ∗ = 0.

and thus this fake cyclic variant of Gamma homology does not give anything
new. ¤

Note that the adjunction of adding and forgetting basepoints

ν : F // Γ :µoo

does not pass to the associative setting. We still have a functor µ : Γ(as) →
F(as) that forgets the special role of the basepoint and a functor ν : F(as) →
Γ(as) that adds an extra basepoint but these functors are no longer adjoint to
each other. Possible alternatives to the above cyclic variant can be constructed
as derived functors of pulled back versions of t(as) as in (2). As we do not have
adjointness at hand, there are several a priori different choices.
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