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1. Introduction

An interpolation between the category of graded modules and the category of chain
complexes is the category Pair(Mod) of pairs of graded modules. An object in
this category consists of two graded modules A and B and a map ∂: A−→B of
degree zero between them.

In fact, consider the homology functor H∗ from the category of chain com-
plexes, Chain, to the category of graded modules, Mod. One has the secondary
homology functor D as in the diagram

Chain
H∗ ��

D ������������� Mod

Pair(Mod)

π0

�������������

which is a factorization of H∗ carrying a chain complex (C∗, d) to the pair

D(C∗) = (∂: s−1(coker(d)) −→ ker(d)).

Here ∂ is induced by the differential d and s−1 denotes the suspension. Over
a field the functor H∗ is compatible with the monoidal structure given by the
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tensor product. We will equip the category of pairs of modules with a canonical
symmetric monoidal structure, such that all functors in the diagram preserve the
monoidal structure up to a natural transformation. In particular, every operad O in
the category Chain yields an operad D(O) in the category Pair(Mod).

In this paper we investigate the basic facts concerning secondary operads. These
are operads in the symmetric monoidal category Pair(Mod); algebras over such
operads are called crossed modules and prolongations of crossed modules are
crossed extensions.

For any secondary operad D = (∂: D1 → D0) we define operadic cohomol-
ogy H ∗

D associated to D as the set of equivalence classes of crossed extensions.
Weak equivalence classes of crossed modules over D yield the elements in the
third operadic cohomology H 3

D. This corresponds to the classical fact that crossed
modules in the category of groups represent elements in the third cohomology of
groups (see [9, IV.5] or [17, 18]), and Huebschmann’s result [13] ensures that in
fact every cohomology class in group cohomology can be gained as an equivalence
class of a crossed extension of groups.

In general, if O is an operad of graded modules, then operadic cohomology
H ∗
(0→O)

(A,M) vanishes whenever A is a free O-algebra. So for operads in graded
modules we obtain a cohomology theory which behaves similar to the one, which
arises from the homology theory for quadratic operads defined in [10].

If Ass is the operad for associative algebras and if we work relative to a field,
then H ∗

0→Ass is Hochschild cohomology. This case is studied in [6].
Let E(∞)Ass be an E∞ operad with a map from Ass. Then the cohomology

theory H ∗
(D(E(∞)Ass))

is a cohomology theory for commutative algebras, such as
André–Quillen cohomology and Gamma cohomology defined by Robinson and
Whitehouse [21].

For example, for each space X, the cochains C∗(X) are an algebra over
Mandell’s E∞ operad [19]. Mandell proved that the E∞ structure on cochains
suffices to determine the homotopy type of certain spaces. In order to get insight
into the structure of Mandell’s operad M(∞) we propose to consider the second-
ary operad D(M(∞)) and algebras over it. The action of the secondary operad
D(M(∞)) on D(C∗(X)) gives rise to a crossed module which is an intermediate
step between the bare cohomology-algebra of a space and its homotopy type.

2. The Secondary Homology of a Chain Complex

Let R be a commutative ring with unit. We denote by Mod the category of Z-
graded R-modules and by Chain the category of chain complexes over R.

Remark 2.1. Note that Mod and Chain are symmetric monoidal categories
under the graded tensor product ⊗ over R. In both cases the unit object is the ring
R concentrated in degree 0. These categories are symmetric monoidal categories
enriched over the category of R-modules. We have the interchange map T : X ⊗
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Y → Y ⊗ X in Mod which carries x ⊗ y to the element (−1)|x||y|y ⊗ x where
|x| = n if x ∈ Xn. Such an interchange sign has to be used whenever graded
elements are interchanged. For example for a differential d of degree −1 we have
(id ⊗ d)(x⊗ y) = (−1)|x|x⊗ dy. Hence the differential in a tensor product X⊗ Y

of chain complexes is given by d⊗ = id ⊗ d + d ⊗ id.

DEFINITION 2.2. For an arbitrary category M, the category of pairs in M, Pair
(M), is defined as follows. Objects are maps f : A → B in M and a morphism
(α, β): f → g is a commutative diagram in M

A
f ��

α

��

B

β

��
A′ g �� B ′

We will define a ⊗̄-product in the category of pairs of graded R-modules and
show that (Pair(Mod), ⊗̄) is a symmetric monoidal category.

DEFINITION 2.3. Given V = (∂: V1 → V0) and W = (∂ ′: W1 → W0) in
Pair(Mod) consider the following diagram of graded modules:

V1 ⊗W1
d2→ V1 ⊗W0 ⊕ V0 ⊗W1

d1→ V0 ⊗W0,

where d1 and d2 are defined as follows:

d2(v1 ⊗ w1) = (∂v1)⊗ w1 − v1 ⊗ (∂ ′w1),

d1(v1 ⊗ w0) = (∂v1)⊗ w0,

d1(v0 ⊗ w1) = v0 ⊗ (∂ ′w1).

Since d1d2 = 0 we obtain a map ∂̃ induced by d1:

∂̃: (V ⊗̄W)1 := V1 ⊗W0 ⊕ V0 ⊗W1

Im(d2)
→ V0 ⊗W0 =: (V ⊗̄W)0.

The map ∂̃: (V ⊗̄W)1 → (V ⊗̄W)0 ∈ Pair(Mod) is termed the ⊗̄-product of V
and W and is denoted by V ⊗̄W .

The definition of the ⊗̄-product occurs for instance also in [20, p. 232].
The symmetry isomorphism T : X ⊗ Y → Y ⊗ X on chain complexes from

2.1 clearly passes to an isomorphism V ⊗̄W ∼= W⊗̄V . We denote also by R ∈
Pair(Mod) the pair (0: 0 → R) concentrated in degree zero. Taking all these
structures together we obtain the following result.

PROPOSITION 2.4. The category Pair(Mod) with the ⊗̄-product is a symmetric
monoidal category. The unit of this product is R.
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DEFINITION 2.5. Given V = (∂: V1 → V0) ∈ Pair(Mod) we denote the coker-
nel of ∂ in the category Mod by π0(V ) and the kernel by π1(V ).

PROPOSITION 2.6. Given two pairs V and W then

π0(V ⊗̄W) ∼= π0(V )⊗ π0(W).

Moreover there exists a map

ψ : π0(V )⊗ π1(W)⊕ π1(V )⊗ π0(W) → π1(V ⊗̄W)

which is an isomorphism if R is a field.
Proof. Consider the map

φ: π0(V ⊗̄W) → π0(V )⊗ π0(W)

defined by φ(x ⊗ y) = x ⊗ y. Here x denotes the class of x in the quotient. It is
easy to check that this is an isomorphism. The map

ψ : π0(V )⊗ π1(W)⊕ π1(V )⊗ π0(W) → π1(V ⊗̄W)

is defined by ψ(v0 ⊗ w1) = v0 ⊗ w1 and ψ(v1 ⊗ w0) = v1 ⊗ w0. It is easy to
check that this is a well defined map. If R is a field we can find linear sections
q1: Im(∂) → V1 and q2: Im(∂ ′) → W1 to prove that in this case ψ is an
isomorphism. �

We introduce now the secondary homology functor D: Chain → Pair(Mod).

DEFINITION 2.7. LetC be a chain complex with differential d: C → C of degree
−1. Consider the graded modules D1(C) = s−1 coker(d) and D0(C) = ker(d).
Here we define for a graded module W the shifted graded module s−1W by

Wn = (s−1W)n−1, w �→ s−1(w).

We denote by s−1(x) ∈ s−1 coker(d) the element corresponding to x ∈C via the
projection C → coker(d). Then d induces a map of graded modules

D(C) = (∂: D1(C) = s−1 coker(d) → D0(C) = ker(d))

carrying s−1(x) to dx. A map f : C→C ′ of chain complexes induces a map
D(f ): D(C) → D(C ′) in Pair(Mod) and therefore we obtain a functor

D: Chain → Pair(Mod)

which is termed the secondary homology functor.

For any chain complex C the homology of C,H∗(C) is isomorphic to π0(D(C))

and π1(D(C)) is the shifted homology s−1H∗(C). Thus the composition π0 ◦D is
a factorization of the homology functor.
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Note that for the ground ring R ∈ Chain concentrated in degree 0 we have

D(R) = (0: s−1R → R),

where s−1R denotes the ring R concentrated in degree −1. Therefore D(R) ∈
Pair(Mod) does not coincide with the unit R= (0 →R), but we have a canonical
inclusion map R → D(R) of pairs.

PROPOSITION 2.8. Given chain complexes A and B there exists a map

ϒ : D(A) ⊗̄D(B) → D(A⊗ B)

of pairs which is natural in A and B. Moreover, ϒ commutes with the symmetry
isomorphism T from 2.1 in the following sense: let T̄ denote the interchange map
T̄ : D(A) ⊗̄D(B) → D(B) ⊗̄D(A), then

D(A) ⊗̄D(B)
ϒ ��

T̄

��

D(A⊗ B)

D(T )

��
D(B) ⊗̄D(A)

ϒ �� D(A⊗ B) commutes.

In addition, if R is a field then ϒ induces an isomorphism on the cokernel π0 and
an epimorphism on the kernel π1.

Proof. We define ϒ : D(A) ⊗̄D(B) → D(A⊗ B) as follows:

(s−1 coker(dA)⊗ ker(dB))⊕ (ker(dA)⊗ s−1 coker(dB))
Im(d2)

ϒ1 ��

∂ �� ker(dA)⊗ ker(dB)

ϒ0
��

s−1 coker(dA⊗B)
∂A⊗B �� ker(dA⊗B)

The top row in the diagram corresponds to the ⊗̄-product D(A) ⊗̄D(B) and
the bottom row corresponds to D(A ⊗ B). The map ϒ0: ker(dA) ⊗ ker(dB) →
ker(dA⊗B) is defined by

ϒ0(xi ⊗ yj ) = xi ⊗ yj , xi ∈ (ker(dA))i, yj ∈ (ker(dB))j .

The map ϒ1 is defined as follows. For s−1(xi) ∈ (s−1 coker(dA))i and yj ∈
(ker(dB))j we define ϒ1(s

−1(xi)⊗yj ) to be the element s−1(xi ⊗ yj ) ∈ (s−1 coker
(dA⊗B))i+j . For xi ∈ (ker(dA))i and s−1(yj ) ∈ (s−1 coker(dB))j we define ϒ1(xi⊗
s−1(yj )) = (−1)is−1(xi ⊗ yj ) ∈ (s−1 coker(dA⊗B))i+j .

We check that the map ϒ1 is well-defined. Suppose xi = 0 ∈ (coker(dA))i , that
is, xi = dAai+1 for some ai+1 ∈ Ai+1. Then

ϒ1(s
−1(xi)⊗ yj ) = s−1(dAai+1 ⊗ yj ) = s−1(dA⊗B(ai+1 ⊗ yj )) = 0.

The same argument works for yj = 0 ∈ (coker(dB))j . For z = (dAxi ⊗ yj − xi ⊗
dByj ) ∈ Im(d2) we have ϒ1(z) = dA⊗B((−1)ixi ⊗ yj ). Thus ϒ1 is well-defined.
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If R is a field then ϒ induces an isomorphism

ϒ∗: π0(D(A) ⊗̄D(B)) = π0(D(A))⊗ π0(D(B))

= H∗(A)⊗H∗(B) → π0(D(A⊗ B)) = H∗(A⊗ B)

and an epimorphism

ϒ∗: π1(D(A) ⊗̄D(B))

= s−1H∗(A)⊗H∗(B)⊕H∗(A)⊗ s−1H∗(B) → π1(D(A⊗ B))

= s−1H∗(A⊗ B). �

3. Operads

In this section we recall basic definitions and facts related to operads. Readers who
are familiar with the notions of operads, their algebras and their modules might
wish to skip this section and to continue with Section 4.

Operads can be defined in any symmetric monoidal category, for example the
categories Mod, Chain, and Pair(Mod) introduced above. We recall from [14,
Part I] the basic definitions and examples of operads, algebras over operads, ideals
and modules over such algebras.

DEFINITION 3.1. An operad C in a symmetric monoidal category (M,⊗) con-
sists of a family of objects C(j), j � 0 together with a unit map ν: e → C(1)where
e denotes the unit object for the symmetric monoidal structure, a right action by
the symmetric group ,j on C(j) for every j and maps

γ : C(k)⊗ C(j1)⊗ · · · ⊗ C(jk) → C(j)

for k � 1, js � 0 and j = ∑
js . The maps γ are required to be associative, unital

and equivariant in the following sense:

(a) The following associativity diagrams commute, where
∑
js = j and

∑
it = i.

We set gs = j1 + · · · + js and hs = igs−1+1 + · · · + igs for s = 1, . . . , k.

C(k)⊗
(

k⊗
s=1

C(js )
)

⊗
(

j⊗
r=1

C(ir )
)

shuffle

��

γ⊗id �� C(j)⊗
(

j⊗
r=1

C(ir )
)

γ

��
C(i)

C(k)⊗
(

k⊗
s=1

(
C(js)⊗

(
js⊗
q=1

C(igs−1+q)
)))

id⊗(⊗s γ ) �� C(k)⊗
(

k⊗
s=1

C(hs)
)γ

��

(b) The composition in the operad makes the unit in the operad act as identity:

C(k)⊗ e⊗k � ��

id⊗ν⊗k
��

C(k)

C(k)⊗ C(1)⊗k
γ

����������

e ⊗ C(j) � ��

ν⊗id ��

C(j)

C(1)⊗ C(j)
γ

���������
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(c) For σ ∈ ,k, τs ∈ ,js , the permutation σ (j1, . . . , jk) ∈ ,j permutes
k blocks of letters as σ permutes k letters and (τ1, . . . , τk) ∈ ,j denotes the
block sum, that is, the image of (τ1, . . . , τk) in ,j under the natural
inclusion ,j1 × · · · × ,jk ↪→ ,j . The following equivariance diagrams
commute:

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)
γ

��

σ �� C(k)⊗ C(jσ(1))⊗ · · · ⊗ C(jσ(k))
γ

��
C(j)

σ(jσ(1),...,jσ(k)) �� C(j)
where σ(x0 ⊗ x1 ⊗ · · · ⊗ xk) = (x0σ ⊗ xσ(1) ⊗ · · · ⊗ xσ(k)) and

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)
γ

��

τ �� C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)
γ

��
C(j) (τ1,...,τk) �� C(j)

where τ̄ = id ⊗ (τ1 ⊗ · · · ⊗ τk).

DEFINITION 3.2. Let C be an operad in the category Mod (resp. Chain). An
ideal J in C consists of a sequence of graded R[,j ]-submodules (resp. subchain
complexes) J (j) of C(j) such that γ (c ⊗ d1 ⊗ · · · ⊗ dk) is in J if either c or any
of the ds is in J .

If J is an ideal in C then the quotient C/J defined as (C/J )(j) = C(j)/J (j)
is an operad.

DEFINITION 3.3. Let C be an operad in a symmetric monoidal category. A C-
algebra is an object A together with maps

θ : C(j)⊗ A⊗j → A

for j � 0, subject to the following conditions:

(a) The action of the operad on A is associative, thus for j = ∑
js the following

two possible ways of composition agree:

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)⊗ A⊗j

shuffle

��

γ⊗id �� C(j)⊗ A⊗j
θ��

A

C(k)⊗ C(j1)⊗A⊗j1 ⊗ · · · ⊗ C(jk)⊗ A⊗jk id⊗θ⊗k
�� C(k)⊗ A⊗k

θ
��

(b) The unit of the operad acts as the identity on A:

e ⊗ A

ν⊗id ��

� �� A

C(1)⊗ A
θ

��������
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(c) The action θ is equivariant, that is, for σ ∈ ,j the composition θ ◦ σ is
again θ

C(j)⊗ A⊗j

θ ��������
σ �� C(j)⊗ A⊗j

θ		������

A
where σ(x ⊗ a1 ⊗ · · · ⊗ aj ) is (xσ ⊗ aσ(1) ⊗ · · · ⊗ aσ(j)).

DEFINITION 3.4. Let C be an operad and A be a C-algebra. An A-module is an
object M together with maps

λ: C(j)⊗ A⊗(j−1) ⊗M → M

for j � 1. These maps are required to be associative, unital and equivariant in the
following sense:

(a) The following associativity diagrams commute, where j = ∑
js .

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)⊗ A⊗(j−1) ⊗M

shuffle

��

γ⊗id �� C(j)⊗ A⊗(j−1) ⊗M

λ��
M

C(k)⊗
(
k−1⊗
s=1

C(js)⊗ A⊗js
)

⊗ C(jk)⊗ A⊗(jk−1) ⊗M
id⊗θ⊗(k−1)⊗λ

�� C(k)⊗ A⊗(k−1) ⊗M

λ

��

(b) The unit in the operad acts as identity on M:

e ⊗M

ν⊗id ��

� �� M

C(1)⊗M
λ

��������

(c) The map λ is equivariant with respect to the action of the symmetric groups on
A, that is, for σ ∈ ,j−1 ⊂ ,j the following diagram commutes:

C(j)⊗ A⊗(j−1) ⊗M

λ 

���������
σ �� C(j)⊗ A⊗(j−1) ⊗M

λ��									

M
where σ(x ⊗ a1 ⊗ · · · ⊗ aj−1 ⊗m) = (xσ ⊗ aσ(1) ⊗ · · · ⊗ aσ(j−1) ⊗m).

A map f : M → N of A-modules is a map f in the category M such that the
following diagram commutes for every j � 1:

C(j)⊗ A⊗(j−1) ⊗M

id⊗id⊗f
��

λ �� M

f

��
C(j)⊗ A⊗(j−1) ⊗N

λ �� N

EXAMPLE 3.5. If A is a C-algebra then A is an A-module with the multiplication
given by θ : C(j)⊗A⊗j → A.
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EXAMPLE 3.6. The operad Com is defined as follows. The module Com(j) is
R for j � 0 and the ,j -actions are trivial. The unit map ν is the identity and the
composition maps are the evident identifications.

EXAMPLE 3.7. The operad Ass consists of the module Ass(j) = R[,j ] for
j � 0; here Ass(0) has to be interpreted as the ground ring R. The unit map is the
identity, the composition maps are defined by

γ (σ, τ1, . . . , τk) = σ (j1, . . . , jk)(τ1, . . . , τk)

for σ ∈ ,k and τs ∈ ,js .

4. Secondary Operads

We now come to the type of operads which will be central to our work.

DEFINITION 4.1. A secondary operad D is an operad in the symmetric monoidal
category (Pair(Mod), ⊗̄).

In order to detect for instance actions of a secondary operad on a certain pair of
modules, it is crucial to have an explicit description of the data which determine
a secondary operad. In work in progress [7] we use this to study the operadic
structure of secondary cohomology.

A secondary operad can be defined explicitly in the following way.

PROPOSITION 4.2. A secondary operad consists of a family of pairs of graded
modules

∂j : D1(j) → D0(j), j � 0

together with a unit map ν: R → D0(1), a right action by the symmetric group ,j

on Di(j) for i = 0, 1 and j � 0 such that ∂j (xσ ) = (∂jx)σ for every σ ∈ ,j and
x ∈ D1(j) and maps

9: D0(k)⊗ D0(j1)⊗ · · · ⊗ D0(jk) → D0(j),

90: D1(k)⊗ D0(j1)⊗ · · · ⊗ D0(jk) → D1(j),

9s : D0(k)⊗ D0(j1)⊗ · · · ⊗ D1(js)⊗ · · · ⊗ D0(jk) → D1(j)

for k � 1, js � 0,
∑
js = j , s = 1, . . . , k, such that the following conditions

(a), . . . ,(e) hold.

(a)
9(id ⊗ ∂js ⊗ id) = ∂j9s, (1)
9(∂k ⊗ id) = ∂j90. (2)
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Here we use the convention on signs above. Moreover for all i, : � 0, yi ∈
D1(ji), y: ∈ D1(j:) and xr ∈ D0(jr), x0 ∈ D0(k) the following equation
holds:

9:(x0 ⊗ · · · ⊗ ∂iyi ⊗ · · · ⊗ y: ⊗ · · · ⊗ xjk )− 9i(x0 ⊗ · · · ⊗ yi ⊗
· · · ⊗ ∂:y: ⊗ · · · ⊗ xjk ) = 0. (3)

(b) D0 together with the maps 9: D0(k)⊗ D0(j1)⊗ · · · ⊗ D0(jk) → D0(j) is an
operad in Mod.

(c) The mixed compositions 9s for s � 0 and the operad composition 9 interact
nicely, that is, the following associativity diagrams commute, where

∑
js = j

and
∑
it = i. We set gs = j1 + · · · + js and hs = igs−1+1 + · · · + igs for

s = 1, . . . , k.

D1(k)⊗
(

k⊗
s=1

D0(js )

)
⊗

( j⊗
r=1

D0(ir )

)

shuffle

��

90⊗id �� D1(j)⊗
( j⊗
r=1

D0(ir )

)

90
��

D1(i)

D1(k)⊗
(

k⊗
s=1

(
D0(js)⊗

( js⊗
q=1

D0(igs−1+q )
)))

id⊗(⊗s9)�� D1(k)⊗
(

k⊗
s=1

D0(hs)

)90

��

For every s0 = 1, . . . , k we have

D0(k)⊗
(

k⊗
s=1

Dδs (js)

)
⊗

(
j⊗

r=1
D0(ir )

)

shuffle

��

9s0 ⊗id
�� D1(j)⊗

(
j⊗

r=1
D0(ir )

)

90
��

D1(i)

D0(k)⊗
(

k⊗
s=1

(
Dδs (js)⊗

(
js⊗
q=1

D0(igs−1+q)
)))

9 �� D0(k)⊗
(

k⊗
s=1

Dδs (hs)

)9s0

��

where δs = 0 for all s �= s0 and δs0 = 1 and 9 = id⊗9⊗(s0−1)⊗90⊗9⊗(k−s0).
And for every r0 = 1, . . . , j we have

D0(k)⊗
(

k⊗
s=1

D0(js)

)
⊗

(
j⊗

r=1
Dδr (ir )

)

shuffle

��

9⊗id �� D0(j)⊗
(

j⊗
r=1

Dδr (ir )

)

9r0

��
D1(i)

D0(k)⊗
(

k⊗
s=1

(
D0(js )⊗

(
js⊗
q=1

Dδgs−1+q (igs−1+q)
)))

9̃ �� D0(k)⊗
(

k⊗
s=1

Dδ′s (hs)

)
9s1

��

where δr = 0 for all r �= r0 and δr0 = 1, δ′
s = 0 for s �= s1 and δ′

s1
= 1

where s1 is defined by j1 + · · · + js1−1 < r0 � j1 + · · · + js1 and 9̃ =
id ⊗ 9⊗(s1−1) ⊗ 9r0−gs1−1 ⊗ 9⊗(k−s1).
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(d) The following unit diagrams commute:

D1(k)⊗ R⊗k � ��

id⊗ν⊗k
��

D1(k)

D1(k)⊗ D0(1)⊗k
90

��









R ⊗ D1(j)
� ��

ν⊗id ��

D1(j)

D0(1)⊗ D1(j)
91

��









(e) For σ ∈ ,k, τs ∈ ,js , the permutation σ (j1, . . . , jk) ∈ ,j permutes k blocks
of letters as σ permutes k letters and (τ1, . . . , τk) ∈ ,j denotes the block sum.
The mixed action maps 9s for s � 0 fulfill the usual equivariance conditions

D1(k)⊗ D0(j1)⊗ · · · ⊗ D0(jk)

90 ��

σ �� D1(k)⊗ D0(jσ(1))⊗ · · · ⊗ D0(jσ(k))

90��
D1(j)

σ(jσ(1),...,jσ(k)) �� D1(j)

where σ (x0 ⊗ x1 ⊗ · · · ⊗ xk) = (x0σ ⊗ xσ(1) ⊗ · · · ⊗ xσ(k)) and

D1(k)⊗ D0(j1)⊗ · · · ⊗ D0(jk)

90 ��

τ �� D1(k)⊗ D0(j1)⊗ · · · ⊗ D0(jk)

90��
D1(j)

(τ1,...,τk) �� D1(j)

where τ = id ⊗ τ1 ⊗ · · · ⊗ τk . And for every s0 = 1, . . . , k we have

D0(k)⊗ Dδ1 (j1)⊗ · · · ⊗ Dδk (jk)

9s0 ��

σ �� D0(k)⊗ Dδσ(1) (jσ (1))⊗ · · · ⊗ Dδσ(k) (jσ(k))

9
σ−1(s0)��

D1(j)
σ(jσ(1),...,jσ(k)) �� D1(j)

where σ (x0 ⊗ x1 ⊗ · · · ⊗ xk) = (x0σ ⊗ xσ(1) ⊗ · · · ⊗ xσ(k)) and

D0(k)⊗ Dδ1(j1)⊗ · · · ⊗ Dδk (jk)

9s0 ��

τ �� D0(k)⊗ Dδ1(j1)⊗ · · · ⊗ Dδk (jk)

9s0��
D1(j)

(τ1,...,τk) �� D1(j)

where δs = 0 for all s �= s0 and δs0 = 1.

Proof. By 2.3 a map

γ : D(k) ⊗̄D(j1) ⊗̄ · · · ⊗̄D(jk) → D(j)

corresponds to a commutative diagram

(
⊕

i=1,...,k D0(k)⊗ ···⊗D1(ji )⊗ ···⊗D0(jk))

Z
��

��

D0(k)⊗ · · · ⊗ D0(jk)

��
D1(j) �� D0(j)

Here Z is generated by the elements of the form

(x0 ⊗ x1 ⊗ · · · ⊗ ∂iyi ⊗ · · · ⊗ yr ⊗ · · · ⊗ xk)− (x0 ⊗ · · · ⊗ yi ⊗
· · · ⊗ ∂ryr ⊗ · · · ⊗ xk),

where x0 ∈ D0(k), xi ∈ D0(ji), yr ∈ D1(jr). The maps 9, 90 and 9s are induced
by γ .

Conditions (a) and (b) follow from the diagram above and conditions (c)–(e)
follow from analogous conditions of 3.1. �
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PROPOSITION 4.3. If D is a secondary operad then Im(∂) defined by Im(∂)(j) =
Im(∂j ) ⊆ D0(j) is an ideal in the operad D0. In particular π0D defined by
π0D(j) = D0(j)/Im(∂j ) with unit and right action of ,j induced by D is also
an operad in Mod.

Proof. Follows from Equations (1) and (2) of (4.2). �
The inclusion functor i: Mod → Pair(Mod) defined by i(M) = (0: 0 →

M) takes operads C in Mod to secondary operads i(C) = (0 → C). In particular
one can define the secondary operads (0 → Com) and (0 → Ass) from the
corresponding operads in Mod.

Remark 4.4. In general, given an operad C in Mod and an ideal J in C then
the inclusion ∂ = inc: J → C yields a secondary operad. The unit and right action
of the symmetric group is given by the structure of operad on C and the fact that
J is an ideal in C. The maps 9 and 9s’s are induced by the maps γ : C(k)⊗ C(j1)

⊗ · · · ⊗ C(jk) → C(j) and the inclusions.

The secondary homology functor D: Chain → Pair(Mod) takes operads of
chain complexes to secondary operads. Given an operad C of chain complexes we
denote by D(C) the families of pairs

D(C)(j) = D(C(j)) = (∂j : D1(C(j)) → D0(C(j))).
An action of ,j on D(C)(j) is induced by the action of ,j on C(j) and the unit
of C induces a unit for D(C) via the inclusion map R → D(R). The natural
transformation ϒ from (2.8) leads to the compositions

ϒ : D(C)(j) ⊗̄D(C)(n1) ⊗̄ · · · ⊗̄D(C)(nj ) −→ D
(
C(j)⊗ C(n1)⊗ · · · ⊗ C(nj )

)
.

Prolonging ϒ with D applied to the composition maps γ for the operad C, D(γ ),
gives composition maps for D(C).

PROPOSITION 4.5. If C is an operad in Chain then D(C) is a secondary operad.
Proof. The natural transformation ϒ preserves the symmetric monoidal struc-

tures. The results from (2.8) guarantee that the composition D(γ )◦ϒ is associative
and equivariant. �
5. Crossed Modules Over Operads

DEFINITION 5.1. Let D be a secondary operad. A crossed module ∂: V1 → V0

over D is a D-algebra in Pair(Mod).

We can characterize crossed modules explicitly as follows.

PROPOSITION 5.2. A crossed module over D is a pair ∂: V1 → V0 together with
maps

θ : D0(j)⊗ V
⊗j

0 → V0, β: D1(j)⊗ V
⊗j
0 → V1,

λ: D0(j)⊗ V
⊗(j−1)

0 ⊗ V1 → V1
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such that the following properties (a), . . . , (f ) hold. For now, let τi,k denote the
permutation which exchanges i and k.

(a) V0 together with the maps θ : D0(j)⊗ V
⊗j

0 → V0 is a D0-algebra in Mod.
(b) V1 together with the maps λ: D0(j) ⊗ V

⊗(j−1)
0 ⊗ V1 → V1 is a V0-module.

Moreover the map ∂: V1 → V0 is a map of V0-modules.
(c) The differential ∂ relates the action map β to θ (resp. λ) in the following sense.

The map β satisfies
∂β = θ(∂j ⊗ id

V
⊗j
0
), (4)

where ∂j is the map ∂j : D1(j) → D0(j), and for y0 ∈ D1(j), xi ∈ V0 and
yi ∈ V1 we have

β(y0 ⊗ x1 ⊗ · · · ⊗ xr−1 ⊗ ∂yr ⊗ · · · ⊗ xj )− λ((∂jy0)×
× τrj ⊗ x1 · · · ⊗ xr−1 ⊗ xj ⊗ · · · ⊗ yr) = 0 (5)

(d) For s �= r, the map λ satisfies
λ(x0τsj ⊗ · · · ⊗ xs−1 ⊗ x ⊗ · · · ⊗ ∂yr ⊗ · · · ⊗ y) −

− λ(x0τrj ⊗ · · · ⊗ xs−1 ⊗ ∂y ⊗ · · · ⊗ x ⊗ · · · ⊗ yr) = 0 and (6)

λ(x0 ⊗ · · · ⊗ ∂ys ⊗ · · · ⊗ y) −
− λ(x0τsj ⊗ · · · ⊗ ∂y ⊗ · · · ⊗ ys) = 0, (7)

where x0 ∈ D0(j), x, xi ∈ V0 and y, yj ∈ V1.
(e) The following associativity diagrams commute, where j = ∑

js .

D1(k)⊗ D0(j1)⊗ · · · ⊗ D0(jk)⊗ V
⊗j

0

shuffle

��

90⊗1 �� D1(j)⊗ V
⊗j

0
β

��
V1

D1(k)⊗ D0(j1)⊗ V
⊗j1

0 ⊗ · · · ⊗ D0(jk)⊗ V
⊗jk

0
1⊗θ⊗k

�� D1(k)⊗ V ⊗k
0

β

��

and for every s0 = 1, . . . , k.

D0(k)⊗ Dδ1(j1)⊗ · · · ⊗ Dδk (jk)⊗ V
⊗j
0

shuffle

��

9s0 ⊗1
�� D1(j)⊗ V

⊗j
0

β
��
V1

D0(k)⊗ Dδ1(j1)⊗ V
⊗j1
0 ⊗ · · · ⊗ Dδk (jk)⊗ V

⊗jk
0

α �� D0(k)⊗ V
⊗(s0−1)
0 ⊗ V1 ⊗ V

⊗(k−s0)
0

λ̃

��

where δs = 0 for every s �= s0 and δs0 = 1, α = 1 ⊗ θ⊗(s0−1) ⊗ β ⊗ θ⊗(k−s0)

and λ̃(x0 ⊗ · · · ⊗ ys0 ⊗ · · · ⊗ xj ) = λ(x0τs0j ⊗ · · · ⊗ xj ⊗ · · · ⊗ ys0).
(f) The map β is equivariant with respect to the action of the symmetric group,

that is, for σ ∈ ,j , β ◦ σ = β

D1(j)⊗ V
⊗j
0

β �����
���

�

σ �� D1(j)⊗ V
⊗j

0

β		���
���

�

V1

where σ (x0 ⊗ · · · ⊗ xj ) = (x0σ ⊗ xσ(1) ⊗ · · · ⊗ xσ(j)).
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Proof. A map θ̃ : D(j) ⊗̄V ⊗̄j → V can be described as a commutative diagram

(D1(j)⊗V
⊗j
0 )

⊕
i=1,...,k (D0(j)⊗V

(i−1)
0 ⊗V1 ⊗V

(j−i)
0 )

Z

��

��

D0(j)⊗ V
⊗j

0

��
V1

�� V0

Here Z is generated by the elements of the form

(y0 ⊗ x1 ⊗ · · · ⊗ ∂ryr ⊗ · · · ⊗ xj )− (∂0y0 ⊗ · · · ⊗ yr ⊗ · · · ⊗ xj )

and

(x0 ⊗ x1 ⊗ · · · ⊗ ∂iyi ⊗ · · · ⊗ yr ⊗ · · · ⊗ xj )−
− (x0 ⊗ · · · ⊗ yi ⊗ · · · ⊗ ∂ryr ⊗ · · · ⊗ xj ),

where x0 ∈ D0(j), y0 ∈ D1(j) and xi ∈ V0, yi ∈ V1. The maps θ, β and λ are
induced by θ̃ : D(j) ⊗̄V ⊗̄j → V . Conditions (a)–(d) follow from the commutative
diagram above and conditions (e) and (f) follow from analogous conditions in
3.3. �

The following two results now follow directly from the definitions.

PROPOSITION 5.3. Given a crossed module V = (∂: V1 → V0) over D then
π0(V ) is a π0D-algebra and π1(V ) is a π0(V )-module.

PROPOSITION 5.4. Let D: Chain → Pair(Mod) be the secondary homology
functor. If C is an operad in Chain and A is a C-algebra then D(A) is a crossed
module over the secondary operad D(C).

Here the results (2.8) guarantee thatD(A) has well-defined action maps because
D respects the monoidal structure.

LEMMA 5.5. Consider the secondary operad (0 → Ass). A crossed module
∂: V1 → V0 over (0 → Ass) is the same as a crossed module over an algebra
as defined in [3, 6].

Proof. If ∂: V1 → V0 is a crossed module over (0 → Ass) then V0 is a graded
associative algebra with unit by setting

a1 · · · aj = θ(e ⊗ a1 ⊗ · · · ⊗ aj ),

where e ∈ ,j is the identity. The graded R-module V1 is a V0-bimodule where the
bimodule structure is defined as follows. For a ∈ V0 and m ∈ V1 we set

a ·m = λ(e ⊗ a ⊗m), m · a = λ(τ ⊗ a ⊗m),

where λ: R[,2] ⊗ V0 ⊗ V1 → V1 and τ ∈ ,2 is the transposition. It is clear that
∂: V1 → V0 is a map of bimodules. For v,w ∈ V1 we have

∂(v) ·w = λ(e ⊗ ∂(v)⊗ w) = λ(τ ⊗ ∂(w)⊗ v) = v · ∂(w).
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This proves that ∂: V1 → V0 is a crossed module in the sense of [3, 6]. Conversely
given a crossed module over an algebra ∂: V1 → V0 we define

θ : R[,j ] ⊗ V
⊗j

0 → V0

by θ(σ ⊗ a1 ⊗ · · · ⊗ aj ) = sign(σ )aσ−1(1) · · · aσ−1(j). In the same way we define

λ: R[,j ] ⊗ V
⊗(j−1)
0 ⊗ V1 → V1.

The Equations (6) and (7) in the definition of crossed modules follow from the
fact that ∂(v) · w = v · ∂(w). Thus ∂: V1 → V0 is a crossed module over (0 →
Ass). �
LEMMA 5.6. A crossed module ∂: V1 → V0 over (0 → Com) is determined by
the following data. The graded module V0 is a graded commutative algebra, V1 is
a module over V0 and ∂ is a map of modules such that ∂(v) · w = v · ∂(w) for all
v,w ∈ V1.

DEFINITION 5.7. Let D be a secondary operad. We define the category CrossD as
follows. Objects are crossed modules over D. A morphism f of crossed modules
over D is a morphism of algebras over D. Explicitly, such a morphism f is a pair of
maps (f0, f1) which makes the following diagrams of graded modules commute:

V1

f1

��

∂ �� V0

f0
��

V ′
1

∂ ′
�� V ′

0

such that

(a) f0: V0 → V ′
0 is a map of D0-algebras, that is, for every j � 0 the following

diagram commutes:

D0(j)⊗ V
⊗j

0

id⊗f j0
��

θ �� V0

f0

��
D0(j)⊗ (V ′

0)
⊗j θ ′

�� V ′
0.

(b) The map f1: V1 → V ′
1 is f0-equivariant, that is, the diagrams

D1(j)⊗ V
⊗j
0

id⊗f j0
��

β �� V1

f1

��
D1(j)⊗ (V ′

0)
⊗j β ′

�� V ′
1 and

D0(j)⊗ V
⊗(j−1)
0 ⊗ V1

id⊗f (j−1)
0 ⊗f1

��

λ �� V1

f1

��
D0(j)⊗ (V ′

0)
⊗(j−1) ⊗ V ′

1
λ′

�� V ′
1 commute.

DEFINITION 5.8. Given a secondary operad D, a π0D-algebra A and anA-module
M we define the category CrossD(A,M) as follows. Objects are crossed modules
over D with cokernel A and kernelM. Morphisms in CrossD(A,M) are morphisms
of crossed modules in CrossD which induce the identity on A and M.
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6. Operadic Cohomology

Let D = (D1 → D0) be a secondary operad in the category of graded R-modules,
and let A be a π0D-algebra. For any algebra (∂: B1 → B0) over the secondary
operad (D1 → D0), the cokernel B0/∂B1 of ∂ is such an algebra. In addition let M
be an A-module, that is, there are structure maps ν: π0D(n)⊗ A⊗n−1 ⊗M → M.

DEFINITION 6.1. A D-extension of length n, n � 2, of A by M is an exact
sequence of graded R-modules

E : 0 �� M �� Cn−1
∂n−1 �� Cn−2

∂n−2 �� · · · ∂2 �� C1
∂1 �� C0

π �� A �� 0 .

Here, the Cn−1, . . . , C2 are A-modules, the pair ∂1: C1 → C0 is a crossed module
over D, and all maps in the sequence are maps of C0-modules, where the C0-
module structure on Cn−1, . . . , C2 is induced by the quotient map π : C0 → A.

Note that a D-extension of length 2 is an element of the category CrossD(A,M)

as in 5.8. Note that the kernel of ∂1 is an A-module: the module structure of C1

given by λ: D0(n) ⊗ C⊗n−1
0 ⊗ C1 → C1 sends the kernel of ∂1 to itself, because

∂1 is a map of C0-modules. Furthermore it is well-defined on π0D, because of
∂β = θ(∂n ⊗ 1C⊗n

0
) (compare 5.2 (4)). Thanks to relation 5.2 (6), λ is well-defined

on the cokernel of π as well.

DEFINITION 6.2. An equivalence of two D-extensions of A by M is a sequence of
maps fn−1, . . . , f0

E : 0 �� M �� Cn−1
∂n−1 ��

fn−1

��

· · · ∂2 �� C1
∂1 ��

f1

��

C0
π ��

f0

��

A �� 0

E ′: 0 �� M �� C ′
n−1

∂ ′
n−1 �� · · · ∂ ′

2 �� C ′
1

∂ ′
1 �� C ′

0
π ′

�� A �� 0,

where the pair (f1, f0) is a map of D-algebras, and the fi are maps of π0D0-A-
modules for 2 � i�n− 1.

DEFINITION 6.3. We now define for any n � 2, the D-cohomology of A with
coefficients in M,Hn+1

D (A,M), to be the set of equivalence classes of D-extensions
of A by M of length n.

We prove in Section 8 that such equivalence classes form a well-defined set
which has the structure of an abelian group.

Work of MacLane and Whitehead [17, 18] identified elements in the third co-
homology of groups as equivalence classes of crossed modules of groups. Later,
Huebschmann [13] extended this result and proved an isomorphism between the
cohomology classes of groups and equivalence classes of certain crossed exten-
sions of groups. In [6], Hochschild cohomology of algebras over fields was shown
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to be isomorphic to equivalence classes of crossed extensions of algebras. In partic-
ular, result [6, 4.3] together with our Lemma 5.5 proves that operadic cohomology
H ∗
(0→Ass)(A,M) coincides with usual Hochschild cohomology of an associative

k-algebra A (for k a field) with coefficients in an A-bimodule M.
For any map α: D → D′ of secondary operads, any crossed module over D′ is

a crossed module over D via α and similarly algebras over π0D′ are algebras over
π0D. A D′-extension of length n can be considered as a D-extension of the same
length.

DEFINITION 6.4. For any map of secondary operads α: D → D′ we define the
induced map in cohomology

α∗: Hn+1
D′ (A,M) −→ Hn+1

D (A,M)

on an equivalence class [E]D′ of a D′-extension of length n to be the equivalence
class of E considered as a D-extension:

α∗([E]D′) := [E]D.

We point out, that α∗ does not have to be an isomorphism, if α is a weak equival-
ence.

Recall that we denote the secondary cohomology functor from chain complexes
to pairs of graded modules by D (see Definition 2.7).

LEMMA 6.5. Let Ass denote the operad in chain complexes given by Ass con-
centrated in degree zero. A crossed module V = (∂: V1 → V0) over D(Ass) is
the same as a crossed module over (0 → Ass) together with a map β̄: π0(V ) →
π1(V ) of degree −1. In particular, the natural map given by the inclusion of op-
erads (0 → Ass) ⊂ D(Ass) yields a surjective map from H ∗

D(Ass) to H ∗
(0→Ass) for

all graded associative algebras A and all A-modules M for all degrees ∗ � 3. In
degree three, we obtain a splitting

H 3
D(Ass)(A,M) ∼= H 3

(0→Ass)(A,M)⊕ Hom(A, s−1M).

Proof. To prove this, note that D1(Ass)(j) is the R-module R[,j ] concen-
trated in degree −1, s−1(R[,j ]). The map β̄ is induced by β: s−1(R[,1])⊗ V0

∼=
s−1(R)⊗ V0 → V1. It is easy to check that β ◦ ∂ = 0 and ∂β̃ = 0.

Conversely, given β̄: π0(V ) → π1(V ) we consider β: V0 → V1 induced by β̄
and define the maps β: D1(Ass)(j) ⊗ V

⊗j
0 → V1 by β(σ ⊗ a1 ⊗ · · · ⊗ aj ) =

β(sign(σ )aσ−1(1) · · · aσ−1(j)).
Consider the cohomology corresponding to the secondary operad D(Ass) of a

graded associative algebra A with coefficients in M. An n-fold extension of A by
M is

0 → M −→ Cn−1 −→ · · · −→ C1
∂−→ C0 −→ A → 0,
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where ∂: C1 → C0 is a crossed module over D(Ass). This projects to an extension
with respect to (0 → Ass), but inH ∗

D(Ass) maps between extensions have to respect
β: C0 → C1 of degree −1, that is they have to preserve β̄: A → s−1coker(∂). In
degree three, maps between D(Ass)-crossed extensions are the identity on A and
M, therefore β is automatically preserved and splits off as an additional datum. �

A similar result holds for the operad Com.

LEMMA 6.6. Let Com denote the operad in chain complexes given by Com con-
centrated in degree zero. A crossed module V = (∂: V1 → V0) over D(Com) is
the same as a crossed module over (0 → Com) together with a map β̄: π0(V ) →
π1(V ) of degree −1. In particular, the operadic cohomology H ∗

D(Com) has a ca-
nonical projection map to H ∗

(0→Com) for ∗ � 3 and we have a splitting

H 3
D(Com)(A,M) ∼= H 3

(0→Com)(A,M)⊕ Hom(A, s−1M).

Remark 6.7. If O is an arbitrary operad in the category of R-modules, then we
get a similar projection map

H ∗
D(O)(A,M) � H ∗

(0→O)(A,M)

for any O-algebra A and any A-module M, because any extension with respect
to D(O) is a (0 → O)-extension and the choice β = 0 is allowed. But the
contribution to the D(O) structure from s−1O in D1(O) might be bigger than in
the cases above and we cannot expect to get a splitting for the third cohomology
group in general.

The functor D sends a differential (commutative) graded algebra A∗ to ∂: D1

(A∗) → D0(A∗) with the homology of A∗ as cokernel and the shifted homology of
A∗ as kernel. Therefore, every differential (commutative) graded algebra A∗ gives
a canonical cohomology class in H 3

D(Ass) (resp. H 3
D(Com))

0 → s−1H∗(A∗) −→ D1(A∗) −→ D0(A∗) −→ H∗(A∗) → 0. (8)

Here, the map β̄ is the natural shift map from H∗(A∗) to s−1H∗(A∗). The H∗(A∗)-
bimodule structure of s−1H∗(A∗) is given by

a · s−1(x) · b = (−1)|a|s−1(axb).

For any differential graded algebra A∗ the cohomology class represented by D(A∗)
was studied in [6, 3.6] and termed the characteristic class of A∗; the corresponding
class in Hochschild cohomology of H∗(A∗) was studied in [5]. We now extend the
concept of characteristic classes to algebras over an E∞ operad.

7. Mandell’s Operad and Characteristic Classes

In [19, §1], Mandell uses a specific E∞ operad which acts on cochain complexes
C∗(X) of topological spaces. In the following we call a unital operad O an E∞
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operad, if each O(n) is free overR[,n] and if the augmentations O(n)⊗O(0)⊗n →
O(0) are quasi-isomorphisms.

Mandell takes the Eilenberg–Zilber operad Z from [12], takes its good trunca-
tion to Z̃ (i.e., Z̃n = Zn for negative n, Z̃0 are the cycles of Z0 and all the other
Z̃n are trivial) and tensors it with an arbitrary E∞ operad O. Let us denote the
resulting operad by M(∞) – although M(∞) depends of course on the choice
of the operad O. The Eilenberg–Zilber operad is the endomorphism operad of
the normalized cochain functor, that is, Z(n) is the cochain complex of natural
transformations from N∗(−)⊗n to N∗(−). As the normalized cochains N∗(X) are
a direct summand of all cochains C∗(X), one obtains an action of Z on C∗(X).

PROPOSITION 7.1. There is a choice of an E∞ operad O, such that the resulting
Mandell operad M(∞) is part of a commutative diagram

M(∞)

∼
���������

Ass

�����������
�� Com

Proof. In degree zero, the Eilenberg–Zilber operad contains the Alexander–
Whitney transformations AWn from the n-fold tensor product of normalized co-
chain complexes N∗(−)⊗n to the normalized cochain complex N∗(−). We define
a map from Ass(n) to Z(n) by sending a permutation σ ∈ ,n to AWn ◦ σ . We
have to check that the composition in the operad of associative graded algebras
γ (σ ; τ1, . . . , τn) of elements σ ∈ ,n and τi ∈ ,ki for 1 � i � n gives a
well-defined element in Z

( ∑
ki

)
. The image of γ (σ ; τ1, . . . , τn) in Z

( ∑
ki

)
is

AW
∑
ki ◦ γ (σ ; τ1, . . . , τn) which is AW

∑
ki ◦ σ (k1, . . . , kn) ◦ (τ1, . . . , τn) where

σ (k1, . . . , kn) denotes the block permutation in ,k1 + ···+ kn corresponding to σ and
(τ1, . . . , τn) is the block sum of the τi . Thus we have to show that this transforma-
tion coincides with γ (AWn ◦σ ;AWk1 ◦ τk1 , . . . , AW

kn ◦ τkn ). Using the symmetry
isomorphism in the category of cosimplicial modules and cochain complexes, we
see, that (AWn ◦ σ ) ◦AWk1 ⊗ · · · ⊗AWkn agrees with AWn ◦AWk

σ−1(1) ⊗ · · · ⊗
AW

k
σ−1(n) and therefore the claim follows. As each AWn gives rise to cochain

maps, the image of the map from Ass lies in Z̃ .
Now choose any E∞ operad O which allows a map from Ass to O. For instance

one can take the cochain complex of the Barratt–Eccles operad, which has the
classifying spaces of the translation category of the symmetric groups as building
blocks. The operad Ass has a diagonal in each part ?: Ass(n) −→ Ass(n)⊗
Ass(n) which is a map of operads (that turns Ass into a so-called Hopf-operad).
The map? is the linear extension of the group-like diagonal, that is,?(σ)= σ⊗ σ .

We obtain the desired map from Ass to the operad M(∞) by composing the
two maps from Ass to the operads Z̃ respectively O:

Ass
?−→ Ass ⊗ Ass −→ Z̃ ⊗ O = M(∞). �
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In [22, Theorem 3.2] Spitzweck defines a semi model category structure for
operads in the category of (unbounded) chain complexes which we will use from
now on. Note, that fibrations in his structure are given by surjective maps, in par-
ticular, every operad is fibrant. For people who are not familiar with semi model
category structures we note, that cofibrations in such a structure have the left lifting
property with respect to fibrations which are weak equivalences (see [22, 2.3]) and
that any morphism can be factored as a cofibration followed by a fibration which is
as well a weak equivalence – these are the only facts which we will use about semi
model structures.

Let A(∞) be a cofibrant replacement of the operad Ass, ∗ � A(∞)
∼−→

Ass, and consider a factorization of the composite f : A(∞) → Ass → Com
into a cofibration followed by an acyclic fibration A(∞) � E(∞)

∼−→ Com.
Therefore E(∞) is a cofibrant replacement of the operad Com. Furthermore,
the canonical map from Ass to Com has such a factorization as
well

Ass � E(∞)ass ∼−→ Com.

Note that the homotopy types of A(∞) and E(∞) are well-defined, and the ho-
motopy type of E(∞)ass is well-defined in the category of operads under Ass.
The augmentation map from Mandell’s operad M(∞) to Com is surjective and
a quasi-isomorphism, hence it is an acyclic fibration. Therefore there exists a map
from E(∞)ass to M(∞)which lifts the map from E(∞)ass to Com which is a weak
equivalence. Altogether, we obtain the following diagram of operads and operad
maps:

∗
��

��
∗
��

��

E(∞)

∼
��

A(∞)
��

�����������

∼
����

E(∞)ass ∼ ��

∼
�� �� M(∞)

∼
����

Ass
��

�����������
Com

Applying the functor D from chain complexes to pairs of modules, we obtain a
similar diagram of secondary operads which leads to maps between cohomology
groups.

Let A be a graded commutative algebra and let M be an A-module. There is a
cohomology theory for (graded) commutative algebras, namely Gamma cohomol-
ogy, H9∗, defined by Robinson and Whitehouse in [21]. For that cohomology
theory one obtains a chain of maps from Harrison cohomology, Harr∗(A,M), to
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Gamma cohomology and further on to Hochschild cohomology as in the bottom
row of the following diagram:

H ∗
D(M(∞))

(A,M)

����														

H ∗
D(Ass)(A,M)

pr

��

H ∗
D(E(∞)ass)

(A,M)��

?

��

H ∗
D(Com)(A,M)

����������������
��

pr

��
H ∗
(0→Ass)(A,M)

for fields

H ∗
(0→Com)(A,M)

for fields7.3
��

HH∗(A,M) H9∗−1(A,M)�� Harr∗(A,M)��

As the diagram indicates there might be a comparison map from the cohomology
with respect to the secondary operad D(E(∞)ass) to Gamma cohomology.

DEFINITION 7.2. Let X be an arbitrary space. The cochains C∗(X) on X are
an algebra over Mandell’s operad; therefore D(C∗(X)) is a crossed module over
D(M(∞)) with cokernel H ∗(X) and kernel s−1H ∗(X). We call the resulting
cohomology class in H 3

D(M(∞))
(H ∗(X), s−1H ∗(X)) given by the extension

0 → s−1H ∗(X) −→ D1(C
∗(X)) −→ D0(C

∗(X)) −→ H ∗(X) → 0

the characteristic class of the M(∞)-algebra C∗(X).
In general, for an arbitrary algebra A∗ over the operad M(∞), one can define

the characteristic class of A∗ to be the canonical extension

0 → s−1H ∗(A∗) −→ D1(A
∗) −→ D0(A

∗) −→ H ∗(A∗) → 0.

Then for any M(∞)-algebra the characteristic class of A∗ lifts the characteristic
class of A∗ as defined in [6, 3.5], where one views A∗ as a differential associative
graded algebra, see (1)

For the secondary operad (0 → Com) one gets a map from H ∗
(0→Com) to

Harrison cohomology, Harr∗ as follows.

PROPOSITION 7.3. Let k be a field, A a graded commutative algebra and M an
A-module. Then there is a map

H ∗
(0→Com)(A,M) −→ Harr∗(A,M).

Proof. Let

0 −→ M
i−→ A1

∂−→ A0
π−→ A → 0



60 HANS-JOACHIM BAUES ET AL.

be a crossed extension of A by M. We can choose a k-linear section s of π , π ◦ s =
idA, and a k-linear section t from the image of ∂ (which is the kernel of π ) to A1.
As π is multiplicative, we obtain that the difference s(a)s(b) − s(ab) is in the
kernel of π . We define

g: A⊗ A → A1, g(a, b) := t (s(a)s(b) − s(ab)).

Note, that g is symmetric in both arguments because A and A0 are graded com-
mutative algebras, that is,

g(b, a) = t (s(b)s(a) − s(ba))

= (−1)|a||b|t (s(a)s(b) − s(ab)) = (−1)|a||b|g(a, b).

With the help of the section s and the map g we can now associate a Hochschild
cocycle to the crossed extension above: let θ : A⊗3 → A1 be

θ(a, b, c) := s(a)g(b, c) − g(ab, c)+ g(a, bc)− g(a, b)s(c).

In fact, θ(a, b, c) is annihilated by ∂ , so θ is actually a map to M. Furthermore, the
symmetry of g translates to a Harrison condition for θ : we claim that

θ(a, b, c)− (−1)|b||c|θ(a, c, b) + (−1)|c|(|a|+|b|)θ(c, a, b) = 0.

The proof of this fact is a direct calculation. Therefore, this cocylce θ is in fact a
cocycle for the third Harrison cohomology (compare [11, p. 192] adapted to the
graded case).

In order to prove that the cohomology class of this cocycle does not depend on
the choice of the sections we assume there is a different section s′ of π . As the
difference map s − s′ is clearly in the kernel of π , there is a map h: A → A1

with ∂h = s − s′. Let g′: A ⊗ A → M be the analogue of g for the section s and
let θ ′ be the corresponding cocycle. Then, similar to the case of usual Hochschild
cohomology, one can prove that that the difference θ − θ ′ can be expressed as
the coboundary of g − g′ − ψ where ψ(a, b) = s(a)h(b) − h(ab) + h(a)s(b) −
h(a)∂h(b). We already saw that g and therefore g′ is symmetric; similarly the map
ψ satisfies ψ(a, b) = (−1)|a||b|ψ(b, a) because A1 → A0 is a crossed module, A
is graded commutative and A1 is a graded A0-module. Therefore up to a Harrison
coboundary, the cocycle θ does not depend on the choice of the section s.

In a similar fashion one shows, that an equivalence of crossed extensions

0 �� M
i �� A1

∂ ��

α

��

A0
π ��

β

��

A �� 0

0 �� M
i′ �� A′

1
∂ ′

�� A′
0

π ′
�� A �� 0

yields equivalent cocycles. Therefore we obtain a well-defined map from equiva-
lence classes of extensions to the third Harrison cohomology of A with coefficients
in M.
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Similar arguments to those in [6] show that short exact sequences of A-modules
0 → M ′ → M → M ′′ → 0 lead to long exact sequences of cohomology
groups H ∗

(0→Com)(A,−). In addition, it is clear that cohomology with respect to
the secondary operad (0 → Com) vanishes for every injective module M, because
then every extension 0 → M → Cn−1 → · · · → C1 → C0 → A → 0 can be seen
to be equivalent to the extension

0 → M → M → 0 → · · · → 0 → A → A → 0.

Thus inductively, if we have a map up to degree n � 3 and we embed the A-
module M into an injective module I , the long exact sequence associated to 0 →
M → I → I/M → 0 gives us an isomorphism between Hn+1

(0→Com)(A,M) and
Hn
(0→Com)(A, I/M) which yields the desired map

Hn+1
(0→Com)(A,M)∼=Hn

(0→Com)(A, I/M)→Harrn(A, I/M)→Harrn+1(A,M).

�
Remark 7.4. Note that the map constructed above cannot be an isomorphism in

general, because Harrison cohomology does not vanish on free (graded) commuta-
tive algebras. Barr proves in [1, 4.4] (following an example of André) that for a
field k of characteristic p and all n of the form n = 2p

m

the Harrison cohomology
groups Harrn(k[x], k) do not vanish, whereas we will later show in (8.14) that
H ∗
(0→Com) vanishes on free algebras.
But in characteristic zero, Harrison cohomology agrees with André–Quillen

cohomology up to a degree shift. Here both H ∗
(0→Com) and André–Quillen cohomo-

logy vanish on free graded commutative algebras and they are connected by the
map above at least if the ground ring is a field.

8. The Homotopy Category of Crossed Modules

In the following, D will always be a secondary operad. We now redefine operadic
cohomology by using cofibrant resolutions.

DEFINITION 8.1. A morphism f : V = (∂: V1 → V0) → V ′ = (∂ ′: V ′
1 → V ′

0)

of crossed modules over D is a weak equivalence if f induces isomorphisms on
kernel and cokernel:

π0(f ): π0(V )
� �� π0(V

′) and π1(f ): π1(V )
� �� π1(V

′).
Let Ho(CrossD) be the localization of the category of crossed modules over

D with respect to weak equivalences. The results in this section imply that this
localized category exists. We need to talk about free objects.

DEFINITION 8.2. Let C be an operad in Mod. A C-algebra A is called free
(with basis W ) if a graded module W ⊆ A is given, such that HomC-alg(A,B) =
HomR-mod(W,B) for every C-algebra B.
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DEFINITION 8.3. A crossed module over D, V = (∂: V1 → V0), is called free
with basis (W, d) if d: W → V0 is an R-linear map from the R-module W to V0

and the set HomCrossD(V , V
′) of morphisms of crossed modules from V to V ′ is in

1–1 correspondence with the set of pairs (f0, f1) of maps such that f1: W → V ′
1

is R-linear, f0: V0 → V ′
0 is a map of D0-algebras and the diagram

W

f1
��

d �� V0

f0
��

V ′
1

∂ ′
�� V ′

0

commutes. A free crossed module ∂: V1 → V0 is called totally free if in addition
V0 is free as a D0-algebra.

DEFINITION 8.4. Given a secondary operad D we say that D satisfies the freeness
condition if for every R-linear map d: W → V0 from an R-module W to V0 there
exists a free crossed module over D with basis (W, d).

Freyd’s adjoint functor theorem (see for instance [15, V. 6, Theorem 2]) ensures
the existence of free crossed modules. We will give explicit constructions in two
particular cases.

EXAMPLE 8.5. An explicit construction for the free crossed module over the
secondary operad (0 → Ass) is given in [3, p. 58].

EXAMPLE 8.6. The secondary operad (0 → Com) satisfies the freeness con-
dition and the free crossed module over (0 → Com) is constructed as follows.
Let A be a graded commutative k-algebra and let W be a graded k-vector space.
Suppose there is a k-linear map d: W → A of degree zero. The free crossed module
associated toA and d: W → A is given as follows: Consider the free symmetric A-
module A⊗W generated by W . Here the symmetric bimodule structure is given by
b·(a⊗w) := ba ⊗w and (a⊗w)·b := (−1)|b||w|ab⊗w = (−1)|b|(|a|+|w|)ba ⊗w

for a, b in A and w in W .
Let ϕ: A⊗W −→ A be defined as

ϕ(a ⊗ w) := ad(w)

for a in A and w in W . We want to turn A ⊗ W into a crossed module. To this
end, we define d ′: A ⊗ W ⊗ A ⊗ W → A ⊗ W as d ′(a ⊗ v ⊗ b ⊗ w) :=
advb ⊗ w − (−1)|w||b||v|adwb ⊗ v.

We define A1 = A⊗W/im(d ′) and ∂: A1 → A to be ∂([a ⊗ v]) := adv. Then
∂ satisfies

∂([a ⊗ v]) · [b ⊗ w] = adv · [b ⊗ w] = [advb ⊗ w]

= (−1)|w||b||v|[adwb ⊗ v] = [a ⊗ v] · bdw.
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The pair (A1, A, ∂) is a crossed module and every map of crossed modules
from (A1, A, ∂) to another crossed module B1 → B0 over 0 → Com corresponds
uniquely to a linear map from W to B1 and a map of Com-algebras from A to B0.

THEOREM 8.7. If the secondary operad D satisfies the freeness condition then
the category Ho(CrossD) exists.

We show the existence of the localized category by using the homotopy category
of a cofibration category as in [4].

DEFINITION 8.8. A D-cross chain complex is a sequence of graded R-modules

· · · �� Cn
∂n �� Cn−1

∂n−1 �� Cn−2
∂n−2 �� · · · ∂2 �� C1

∂1 �� C0
π �� A �� 0

where ∂i−1∂i = 0 for all i � 2, ∂1: C1 → C0 is a D-algebra with cokernel A, the
Ci, i � 2 are A-modules and the maps ∂i are maps of A-modules for i � 2.

DEFINITION 8.9. A morphism of D-cross chain complexes C∗ and C ′∗ is a se-
quence of maps fn: Cn → C ′

n such that

· · · �� Cn

∂n ��

fn

��

Cn−1
∂n−1 ��

fn−1

��

· · · ∂2 �� C1
∂1 ��

f1

��

C0
π ��

f0

��

A ��

f̄0

��

0

· · · �� C ′
n

∂ ′
n �� C ′

n−1

∂ ′
n−1 �� · · · ∂ ′

2 �� C ′
1

∂ ′
1 �� C ′

0
π �� A′ �� 0

commutes. Here the fi are f̄0-equivariant in the sense that the diagram

π0D(n)⊗ A⊗n−1 ⊗ Ci
��

id⊗f̄⊗n−1
0 ⊗fi

��

Ci

fi

��
π0D(n)⊗ A′⊗n−1 ⊗ C ′

i
�� C ′

i

commutes and the pair (f1, f0) is a map of D-algebras.

DEFINITION 8.10. A morphism f of D-cross chain complexes is called a weak
equivalence if it induces an isomorphism on the corresponding homology groups.

The cofibrations will consist of morphisms which are built by adding free gen-
erators. For a D-cross chain complex C∗ let C(n)∗ denote its truncation at degree n,
that is

C
(n)
: :=

{
C: if : � n,

0 for : > n.

DEFINITION 8.11. A morphism f : C∗ → M∗ of D-cross chain complexes is
called a cofibration if it is a free extension in each degree, that is, if for any n � 0
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there is a free graded R-module Wn together with maps

Wn

jn ��

dn
��� Mn

∂n
�����

Mn−1

such that for any map from the n-truncation of C∗ to some D-cross chain com-
plex C ′∗, φ: C(n)∗ → C ′∗, for any map g from the (n − 1)-truncation of M to C ′∗,
g: M(n−1)∗ → C ′∗, and for any choice of a R-linear map aWn

from Wn to C ′
n which

is compatible with the structure maps up to degree n − 1 and which extends g on
Wn there is a unique map of D-cross chain complexes g from M(n)∗ to C ′∗ which
extends aWn

and which is compatible with φ up to degree n:

Cn
fn

��

∂n

��

φn

��
Mn

∂n

��

gn �� C ′
n

∂n

��

Wn

jn

����������

aWn

����������

dn�����
���

��

Cn−1
fn−1 ��

φn−1

��
Mn−1

gn−1 �� C ′
n−1

So cofibrations i: C∗ � M∗ can be characterized in such a way that there are
free R-modules Wn in every degree and M∗ is freely built out of C∗ by the Wn.

Note that a D-cross chain complex · · · → Cn → · · · → C1 → C0 → A which
consists of a totally free D-cross module C1 → C0 and free A-modules Cn, n � 2
is a cofibrant object. In analogy to 8.3 we call such complexes totally free.

We claim that these data suffice to get the desired homotopy category. We will
mark cofibrations with a tailed arrow � and −→∼ will denote the weak equival-
ences. Recall that an object C∗ is ‘fibrant’ in a cofibration category, if any trivial
cofibration i: C∗ → M∗ has a retract:

C∗
��
∼

��

C∗

M∗

��

THEOREM 8.12. The category of D-cross chain complexes together with the
classes of weak equivalences and cofibrations as above is a cofibration category.

Proof. We have to check the axioms (C1)−(C4) of [4, p. 6]. For (C1) one
has to show that the weak equivalences fulfill the 2-out-of-3-property, that isomor-
phisms are weak equivalences and that cofibrations are closed under composition.
But these properties are obvious in our setting.
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We will first check (C3), that is, we have to prove that every map f : C∗ →
C ′∗ of D-cross chain complexes possesses a factorization as f = q ◦ i where i
is a cofibration and q is a weak equivalence. Consider f0: C0 → C ′

0 � π0C
′∗

and choose enough D0-algebra generators in a free R-module W0 and build C0
∐

D0(W0) =: M0 together with a map M0
q0−→ C ′

0 which becomes surjective after
projecting down to π0C

′∗. In order to continue the construction we have to kill any
superfluous elements in π0 and have to find a map of D-crossed modules in the
next step. Consider a free R-module W ′

1 together with a R-linear map ∂ ′
1 to M0.

We extend this map over the coproduct with C1 and the free D-crossed module
in degree 1, W̃1 generated by W ′

1. We choose W ′
1 and a map d1 in such a way

that the image of that coproduct under d1 is exactly the kernel of the composition
M0 → C ′

0 → π0C
′∗. Thus q0 sends the image of d1 to the image of ∂ ′

1 and we can
choose a map q ′

1: W̃1 → C ′
1 such that the diagram

C1

∂1

��

i1 �� W̃1

q ′
1 ��

d1

��

C ′
1

∂ ′
1

��
C0

i0 �� M0
q0 �� C ′

0

commutes and such that the composition q ′
1 ◦ i1 is f1. But still the restriction of q ′

1
to the kernel of d1 to the kernel of ∂ ′

1 does not have to be surjective. So we have to
correct the middle term W̃1 and have to choose additional generators in some free
R-module U1, so that we can map these elements surjectively to the kernel of ∂ ′

1. In
order to get a well-defined map we send them to zero under the vertical map d1.
Along the same line of argumentation, the factorization in higher degrees can be
proven.

Instead of proving (C4), namely that every object has a fibrant model, we prove

that every object is indeed fibrant, and in addition to the retract r to i: C∗ �� ∼ ��M∗
we will construct a homotopy α: i ◦ r � idM∗ .

Let (M(n)∗ |C>n+1∗ ) be the subcomplex of M∗ which consists of Mi in degrees
i�n and is Ci for i > n and let ιn be the inclusion of (M(n)∗ |C>n+1∗ ) in M∗

...

��

...

��
Cn+1

ιn+1=in+1 ��

∂n+1 ��

Mn+1
∂n+1��

Mn

ιn=id ��

∂n ��

Mn

∂n��
...

...

Note that i: C∗ → M∗ gives rise to a morphism C∗ → (M(n)∗ |C>n+1∗ ) and by abuse
of notation we will call this map i again. We construct retractions

C∗ �� i�� (M(n)∗ |C>n+1∗ )

r

��
ι �� M∗

and retracting homotopies αn: Mn → Mn+1.
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We start in degree zero. The zeroth part M0 is built out of C0 by adding a
free algebra on some free module W0. We have to define the retraction r0 and the
retracting homotopy α0 on this free module. Consider

W0� �

j0

��
C0

i �� M0

As every element j0(w0) is a cycle in degree zero, we can choose linear maps
χ0: W0 → C0 and ρ0: W0 → M1 such that j0(w0) is hit by i ◦χ0 up to a boundary,
that is, we can fill in the above diagram to obtain:

M1

∂1

��

W0� �

j0

��

χ0

��

ρ0

��

C0
i

�� M0 with i ◦ χ0 + ∂1 ◦ ρ = j0.

Assume such retractions together with a deformation homotopy α exist on (M(n)∗|C>n+1∗ ) up to a fixed degree n. In order to construct an extension up to degree
n+ 1, note that r and α satisfy

∂α + α∂ = ι− i ◦ r
and therefore

ir∂ = ι∂ − ∂α∂ = ∂(ι− α∂).

As i is a weak equivalence, there is an element that hits this boundary. So we can
choose a map ψ : Wn+1 → Cn+1 with ∂ψ = r∂ . Note that ∂(ι− α∂ − iψ) is zero,
that is, ι− α∂ − iψ sends the module Wn+1 to cycles. As i is a weak equivalence,
these cycles have to be in the image of i up to a boundary. So there are maps
χn+1: Wn+1 → Cn+1 and ρn+1: Wn+1 → Mn+2 such that iχn+1 + ∂ρn+1 =
ι − iψ − α∂ . Now we can define our retraction in degree n + 1 as ψ + χ on the
module Wn+1 and α can be extended to degree n+1 by defining it to be ρ onWn+1.
This gives inductively the desired retraction and homotopy.

Finally we have to prove (C2), (b), namely that for any cofibration i: C∗ � M∗
and any morphism f : C∗ → C ′∗ the push-out

C∗
f ��

i

��

C ′∗

ī
��

M∗
f̄ �� M∗

∐
C∗ C

′∗

exists, and ī is a weak equivalence if i is one.
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To see that such push-outs exists, consider a cofibration i: C∗ � M∗; so M∗
is built out of C∗ and some free R-modules Wn. Each Wn has a structure map
dn: Wn → Mn−1. Take the image of the Wn under f to get the corresponding
modules for the push-out: We use fn−1 ◦ dn to map Wn to M∗

∐
C∗ C

′∗n−1
. The map

f̄ is induced by f on C∗ and the identity on Wn.
If i: C∗ � M∗ is in addition a weak equivalence, then by the preceeding argu-

ment it is a strong deformation retract with retraction r and homotopy α relative
to C∗. We define a retract for ī to be f ◦ r and the homotopy relative to C ′∗ to be
ᾱ = f̄ ◦ α on the generators of Wn. �

Having a cofibration category at hand, we can now define operadic cohomology
of a π0D-algebra A with coefficients in an A-module M to be the cohomology of
the homomorphisms from a cofibrant resolution of A into M, H ∗HomA(C∗,M)

for ∗ > 2. Note that an appropriate notion of a homotopy in our context is the
following.

DEFINITION 8.13. Given two morphisms f and g of D-cross chain complexes,
a homotopy between f and g, α: f � g, is a sequence of maps αn: Cn → C ′

n+1
such that

g0 − f0 = ∂ ′
1α0, gn − fn = ∂ ′

nαn + αn−1∂n,

where all the αn are morphisms of π0D0-A-modules for n � 1 and where α0 is a
derivation in the following operadic sense: The diagram

D0(n)⊗ C⊗n
0

θ ��

H

��

C0

α0

��
D0(n)⊗ C ′

0
⊗n−1 ⊗ C ′

1
λ �� C ′

0

has to commute where H is the sum
∑n−1

i=0 idD0(n) ⊗ t−in ◦ (idD0(n) ⊗ f ⊗n−1
0 ⊗ α0) ◦

idD0(n) ⊗ t in with tn denoting the cyclic permutation of n letters.
One can see that the two definitions coincide by mimicking the usual proof

in homological algebra, that Yoneda extension groups and Ext-groups in terms
of projective resolutions coincide (compare for instance [16, III. 6]). Let us just
indicate, how the corresponding maps are defined: If

· · · → Cn+1 → Cn → · · · → C1 → C0

is a cofibrant replacement of A, then by definition the above sequence prolonged
to A is exact. Now assume a map f : Cn → M is given with f ◦ ∂n+1 = 0. We can
truncate the resolution at the stage n and consider

0 → M → f∗(Cn−1)
∂̄n−1−→ Cn−2 → · · · → C1 → C0 → A,

where f∗(Cn−1) is the push-out M
∐

Cn/Cn−1
Cn−1 and where ∂̄n−1: M

∐
Cn/Cn−1

Cn−1 → Cn−2 is the induced differential. Then it is easy to check that we have
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exactness at f∗(Cn−1) and therefore get an n-fold extension. The proof that this
gives an isomorphism between equivalence classes of n-fold extensions andHn

D(A,
M) is then almost verbatim the one in [16, III. 6].

Following MacLane’s remarks in [16, p. 393] one could obtain a direct reformu-
lation of cohomology in terms of equivalence classes of extensions; but we prefer
the explicit reformulation in terms of cofibration categories.

In particular, the above comparison implies that the cohomology H ∗
D(A,M) is

a set, and an abelian group structure can be imposed as usual by the addition of
extensions. If A is free, then · · · → 0 → 0 → A is a cofibrant resolution of A.
Therefore we obtain the following important fact.

THEOREM 8.14. If D is a secondary operad of the form (0 → O) then the
cohomology groups H ∗

(0→O)
(A,M) vanish for all ∗ � 3 if A is a free O-algebra.

The motivation for studying crossed modules over secondary operads is the
secondary cohomology of a topological space: for any pointed topological space X
the cohomological information can be refined to a pair ∂ : H1(X) → H0(X)which
has the usual cohomology H ∗(X) as cokernel and shifted cokernel. The precise
operadic structure of secondary cohomology will be the subject of a subsequent
paper [2].
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