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Abstract. We o¤er a solution to the long-standing problem of group completing
within the context of rig categories (also known as bimonoidal categories). Given a rig cate-
gory R we construct a natural additive group completion R that retains the multiplicative
structure, hence has become a ring category. If we start with a commutative rig category R
(also known as a symmetric bimonoidal category), the additive group completion R will be
a commutative ring category. In an accompanying paper we show how to use this construc-
tion to prove the conjecture that the algebraic K-theory of the connective topological
K-theory ring spectrum ku is equivalent to the algebraic K-theory of the rig category V
of complex vector spaces.

1. Introduction and main result

Multiplicative structure in algebraic K-theory is a delicate matter. In 1980 Thomason
[17] demonstrated that, after additive group completion, the most obvious approaches to
multiplicative pairings cease to make sense. For instance, let us write ð�MÞM for the
Grayson–Quillen [8] model for the algebraic K-theory of a symmetric monoidal category
M, written additively. An object in ð�MÞM is a pair ða; bÞ of objects of M, thought of as
representing the di¤erence ‘‘a� b’’. The naı̈ve guess for how to multiply elements is then
dictated by the rule that ða� bÞðc� dÞ ¼ ðacþ bdÞ � ðad þ bcÞ. This, however, does not
lead to a decent multiplicative structure: the resulting product is in most situations not
functorial.

Several ways around this problem have been developed, but they all involve first pass-
ing to spectra or infinite loop spaces by one of the equivalent group completion machines,
for instance the functor Spt from symmetric monoidal categories to spectra defined in [18],
Appendix. The original problem has remained unanswered: can one additively group com-
plete and simultaneously keep the multiplicative structure, within the context of symmetric
monoidal categories?

We answer this question a‰rmatively. Our motivation came from an outline of proof
in [5] of the conjecture that 2-vector bundles give rise to a geometric cohomology theory
of the same sort as elliptic cohomology, or more precisely, to the algebraic K-theory of
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connective topological K-theory, which by work of Ausoni and the fourth author ([1], [2]) is
a spectrum of telescopic complexity 2. The solution of the ring completion problem given
here enters as a step in our proof in [4] of that conjecture. For this application the alterna-
tives provided in spectra were insu‰cient.

Before stating our main result, let us fix some terminology.

Definition 1.1. Let jCj denote the classifying space of a small category C, that is, the
geometric realization of its nerve NC. A functor F : C! D will be called an unstable equiv-

alence if it induces a homotopy equivalence of classifying spaces jF j : jCj ! jDj, and will
usually be denoted C!@ D. A lax symmetric monoidal functor F : M!N of symmetric
monoidal categories, with or without zeros, is a stable equivalence if it induces a stable
equivalence of spectra Spt F : SptM! SptN.

We note that the functor Spt takes values in connective spectra, and any lax symmet-
ric monoidal functor whose underlying functor is an unstable equivalence is a stable equiv-
alence.

Unstable equivalences are often called homotopy equivalences, or weak equivalences.
We use ‘‘unstable’’ to emphasize the contrast with stable equivalences. These definitions
readily extend to simplicial categories and functors between them.

By a rig (resp. commutative rig) we mean a ring (resp. commutative ring) in the alge-
braic sense, except that negative elements are not assumed to exist. By a rig category (resp.
commutative rig category), also known as a bimonoidal category (resp. symmetric bimonoi-
dal category), we mean a category R with two binary operations l and n, satisfying the
axioms of a rig (resp. commutative rig) up to coherent natural isomorphisms. By a biper-

mutative category (resp. a strictly bimonoidal category) we mean a commutative rig cate-
gory (resp. a rig category) where as many of the coherence isomorphisms as one can rea-
sonably demand are identities. See Definitions 2.1 and 2.4 below for precise lists of axioms.

A morphism of simplicial rig categories is an unstable equivalence (resp. stable equiv-
alence) if the underlying map of simplicial symmetric monoidal categories is.

By a (simplicial) ring category we mean a (simplicial) rig category R such that p0jRj is
a ring in the usual sense, with additive inverses.

Theorem 1.2. Let ðR;l; 0R;n; 1RÞ be a small simplicial rig category. There are sim-

plicial rig categories ZR and R, natural in R, and natural morphisms

R @ ZR! R

of simplicial rig categories such that

(1) R is a simplicial ring category,

(2) R @ ZR is an unstable equivalence, and

(3) ZR! R is a stable equivalence.

2 Baas, Dundas, Richter and Rognes, Ring completion of rig categories
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(4) If furthermore (a) R is a groupoid, and (b) for every object X in R the translation

functor X l ð�Þ is faithful, then there is a natural chain of unstable equivalences of ZR-

modules connecting R to the Grayson–Quillen model ð�RÞR for the additive group comple-

tion of R.

Addendum 1.3. Let R be a small simplicial commutative rig category. There are nat-

ural morphisms

R @ ZR! R

of simplicial commutative rig categories such that all four statements of the theorem above

hold.

In particular, the induced maps SptR Spt ZR! SptR are stable equivalences of
ring spectra, but the point is that R is ring complete, before passing to spectra. Here are
some examples of rig categories that can be ring completed by this method.

� If R is a rig, then the discrete category R with the elements of R as objects,
and only identity morphisms, is a small rig category. When R is commutative, so is R.
The spectrum SptR is the Eilenberg–Mac Lane spectrum of the algebraic ring completion
of R.

� There is a small commutative rig category E of finite sets, with objects the finite sets
n ¼ f1; . . . ; ng for nf 0. In particular, 0 is the empty set. There are no other morphisms in
E than the automorphisms, and the automorphism group of n is the symmetric group Sn.
Disjoint union and cartesian product of sets induce the operations l and n, and SptE is
equivalent to the sphere spectrum.

� For each commutative ring A there is a small commutative rig category FðAÞ of
finitely generated free A-modules. The objects of the rig category FðAÞ are the free

A-modules An ¼
Ln

i¼1

A for nf 0. There are no other morphisms in FðAÞ than the automor-

phisms, and the automorphism group of An is the general linear group GLnðAÞ. Direct sum
and tensor product of A-modules induce the operations l and n, and SptFðAÞ is the
(free) algebraic K-theory spectrum of the ring A.

� Let V be the topological commutative rig category of complex (Hermitian) vector
spaces. It has one object Cn for each nf 0, with automorphism space equal to the unitary
group UðnÞ. There are no other morphisms. The spectrum SptV is a model for the con-
nective topological K-theory spectrum ku. The case relevant to [5] and [4] is the 2-category
of 2-vector spaces of Kapranov and Voevodsky [9], viewed as finitely generated free
V-modules. We can functorially convert V to a simplicial commutative rig category by
replacing each morphism space with its singular simplicial set.

1.1. Outline of proof. The problem should be approached with some trepidation,
since the reasons for the failure of the obvious attempts at a solution to this long-standing
problem in algebraic K-theory are fairly well hidden. The standard approaches to additive
group completion yield models that are symmetric monoidal categories with respect to an
additive structure but which have no meaningful multiplicative structure [17]. The failure
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comes about essentially because commutativity for addition only holds up to isomorphism.
We therefore need to make a model that provides enough room to circumvent this di‰-
culty.

Our solution comes in the form of a graded construction, GR, related to iterations of
the Grayson–Quillen model. It is a J-shaped diagram of symmetric monoidal categories,
where the indexing category J ¼ I

Ð
Q is a certain permutative category over the category

I of finite sets n ¼ f1; . . . ; ng and injective functions. Its definition can be motivated in a
few steps. First, we use Thomason’s homotopy colimit [18] of the diagram

0 R!D R�R

in symmetric monoidal categories as a model for the additive group completion of R. An
object ða; bÞ in the right-hand category R�R represents the di¤erence a� b, while an ob-
ject a in the middle category R represents the relation a� a ¼ 0, since a maps to ða; aÞ on
the right-hand side, and to zero in the left-hand category.

Group completion is a homotopy idempotent process, meaning that we may repeat it
any positive number of times and always obtain unstably equivalent results. For each nf 0
we realize the n-fold iterated group completion of R as the homotopy colimit of a Qn-
shaped diagram in symmetric monoidal categories, where Q1 is the three-object category
indexing the diagram displayed above, and in general Qn is isomorphic to the product of n

copies of Q1. One distinguished entry in the Qn-shaped diagram is the product of 2n copies
of R. Its objects are given by 2n objects of R, which we regard as being located at the cor-
ners of an n-dimensional cube. These represent an alternating sum in R of terms in R, with
signs determined by the position in the n-cube. The other entries in the Qn-shaped diagram
are diagonally embedded subcubes of the n-cube, or the zero category, and encode cancel-
lation laws in the group completion.

As regards the multiplicative structure, there is a natural pairing from the n-fold
and the m-fold group completion to the ðnþmÞ-fold group completion, with all possible
n-products of the entries in the two original cubes being spread out over the bigger cube.

For instance, the product of the two 1-cubes ða; bÞ and ðc; dÞ is a 2-cube
ac ad

bc bd

� �
, where

for brevity we write ac for an c, and so on. Rather than trying to turn any single n-fold
group completion into a ring category, we instead pass to the homotopy colimit over of
all of them. To allow the homotopy colimit to retain the multiplicative structure, we pro-
ceed as in [6] and index the iterated group completions by the permutative category I , in-
stead of the (non-symmetric) monoidal category of finite sets and inclusions that indexes
sequential colimits. For each morphism m! n in I there is a preferred functor from Qm-
shaped to Qn-shaped diagrams, involving extension by zero. For instance, the unique mor-
phism 0! 1 takes a in R (for m ¼ 0) to ða; 0Þ in R�R in the display above (for n ¼ 1).
See Section 3 for further examples and pictures in low dimensions.

The resulting homotopy colimit, modulo a technical point about zero objects, gives
the desired ring category R. As described, this is the homotopy colimit of an I -shaped dia-
gram, whose entry at n is the homotopy colimit of a Qn-shaped diagram, for each nf 0.
Such a double homotopy colimit can be condensed into a single homotopy colimit over a
larger category, namely the Grothendieck construction J ¼ I

Ð
Q. In the end we therefore
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prefer to present the ring category R as the one-step homotopy colimit of a J-shaped dia-
gram GR. The graded multiplication

GRðxÞ � GRðyÞ ! GRðxþ yÞ

for x, y in J is defined as above, by multiplying two cubes together to get a bigger cube,
and makes GR a J-graded rig category. The di‰culty one usually encounters does not
appear, essentially because we have spread the product terms out over the vertices of the
cubes, and not attempted to add together the ‘‘positive’’ and ‘‘negative’’ entries in some
order or another.

From a homotopy theoretic point of view, the crucial information lies in the fact that
for each nf 0, the homotopy colimit of the spectra associated to the Qn-shaped part of the
GR-diagram is stably equivalent to the spectrum associated with R. For instance, the ho-
motopy colimit of the diagram

� ¼ Spt 0 SptR!D SptðR�RÞ

(for n ¼ 1) is the ‘‘mapping cone of the diagonal’’, hence is again a model for the spectrum
associated with R. From a categorical point of view, the possibility of interchanging the
factors in R�R tells us that the passage to spectra is unnecessary, since this flip induces
the desired ‘‘negative path components’’, without having to stabilize.

We use Thomason’s homotopy colimit in symmetric monoidal categories to trans-
form the J-graded rig category GR into the rig category R, see Proposition 3.2 and Lemma
5.2. The technical point alluded to above is that zero objects are troublesome (few symmet-
ric monoidal categories are ‘‘well pointed’’), and must be handled with care. This gives rise
to the intermediate simplicial rig category ZR that appears in Theorem 1.2.

1.2. Plan. The structure of the paper is as follows. After replacing the starting com-
mutative rig (resp. rig) category R by an equivalent bipermutative (resp. strictly bimonoi-
dal) category, we discuss graded versions of bipermutative and strictly bimonoidal catego-
ries and their morphisms in Section 2. In Section 3 we introduce the construction GR
mentioned above, and show that it is a J-graded bipermutative (resp. strictly bimonoidal)
category.

Thomason’s homotopy colimit of symmetric monoidal categories is defined in a non-
unital (or zeroless) setting. We extend this to the unital setting by constructing a derived
version of it in Section 4, and in Section 5 we show that the homotopy colimit of a graded
bipermutative (resp. graded strictly bimonoidal) category is almost a bipermutative (resp.
strictly bimonoidal) category—it only lacks a zero. Section 6 describes how the results
obtained so far combine to lead to an additive group completion within the framework
of (symmetric) bimonoidal categories. This ring completion construction is given in Theo-
rem 6.5.

Most of this paper appeared earlier as part of a preprint [3] with the title ‘‘Two-vector
bundles define a form of elliptic cohomology’’. Some readers thought that title was hiding
the result on rig categories explained in the current paper. We therefore now o¤er the ring
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completion result separately, and ask those readers interested in our main application
to also turn to [4]. One should note that there was a mathematical error in the earlier pre-
print: the map T in the purported proof of Lemma 3.7 (2) is not well defined, and so the
version of the iterated Grayson–Quillen model used there might not have the right homo-
topy type.

A piece of notation: if C is any small category, then the expression X A C is short for
‘‘X is an object of C’’ and likewise for morphisms and diagrams.

2. Graded bipermutative categories

2.1. Permutative categories. A monoidal category (resp. symmetric monoidal cate-
gory) is a category M with a binary operation l satisfying the axioms of a monoid (resp.
commutative monoid), i.e., a group (resp. abelian group) without negatives, up to coherent
natural isomorphisms. A permutative category is a symmetric monoidal category where the
associativity and the left and right unitality isomorphisms (but usually not the commutativ-
ity isomorphism) are identities. For the explicit definition of a permutative category see for
instance [7], 3.1, or [12], Section 4; compare also [10], XI.1. Since our permutative catego-
ries are typically going to be the underlying additive symmetric monoidal categories of cat-
egories with some further multiplicative structure, we call the neutral element ‘‘zero’’, or
simply 0.

We consider two kinds of functors between permutative categories ðM;l; 0M; tMÞ
and ðN;l; 0N; tNÞ, namely lax and strict symmetric monoidal functors. A lax symmetric

monoidal functor is a functor F in the sense of [10], XI.2, i.e., there are morphisms

f ða; bÞ : FðaÞlFðbÞ ! Fðal bÞ

for all objects a; b A M, which are natural in a and b, there is a morphism

n : 0N ! Fð0MÞ;

and these structure maps fulfill the coherence conditions that are spelled out in [10], XI.2; in
particular

FðaÞlFðbÞ ���!f ða;bÞ
Fðal bÞ

tNðFðaÞ;FðbÞÞ

???y
???yFðtMða;bÞÞ

FðbÞlFðaÞ ���!f ðb;aÞ
Fðbl aÞ

commutes for all a; b A M. Let Perm be the category of small permutative categories and
lax symmetric monoidal functors.

We might say that f is a binatural transformation, i.e., a natural transformation of
functors M�M!N. Here ‘‘bi-’’ refers to the two variables, and should not be confused
with the ‘‘bi-’’ in bipermutative, which refers to the two operations l and n.
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A strict symmetric monoidal functor has furthermore to satisfy that the morphisms
f ða; bÞ and n are identities, so that

Fðal bÞ ¼ FðaÞlFðbÞ and Fð0MÞ ¼ 0N

[10], XI.2. We denote the category of small permutative categories and strict symmetric
monoidal functors by Strict.

A natural transformation n : F ) G of lax symmetric monoidal functors, with com-
ponents na : FðaÞ ! GðaÞ, is required to be compatible with the structure morphisms, so
that nalb � f ða; bÞ ¼ gða; bÞ � ðna l nbÞ and n0M � n ¼ n. Similar compatibilities are required
for natural transformations of strict symmetric monoidal functors.

Since any symmetric monoidal category is naturally equivalent to a permutative cat-
egory, we lose no generality by only considering permutative categories. We mostly con-
sider the unital situation, except for the places in Sections 4 and 5 where we explicitly state
that we are in the zeroless situation.

2.2. Bipermutative categories. Roughly speaking, a rig category R consists of a
symmetric monoidal category ðR;l; 0R; tRÞ together with a functor R�R! R called
‘‘multiplication’’ and denoted by n or juxtaposition. Note that the multiplication is not a
map of monoidal categories. The multiplication has a unit 1R A R, multiplying by 0R is the
zero map, multiplying by 1R is the identity map, and the multiplication is (left and right)
distributive over l up to appropriately coherent natural isomorphisms. If we pose the ad-
ditional requirement that our rig categories are commutative, then this coincides with what
is often called a symmetric bimonoidal category. Laplaza spelled out the coherence condi-
tions in [11], pp. 31–35.

According to [13], VI, Proposition 3.5, any commutative rig category is naturally
equivalent in the appropriate sense to a bipermutative category, and a similar rigidification
result holds for rig categories. Our main theorem (resp. its addendum) is therefore equiv-
alent to the corresponding statement where we assume that R is a strictly bimonoidal cate-
gory (resp. a bipermutative category). We will focus on the bipermutative case in the course
of this paper, and indicate what has to be adjusted in the strictly bimonoidal case.

The reader can recover the axioms for a bipermutative category from Definition
2.1 below as the special case of a ‘‘0-graded bipermutative category’’, where 0 is the
one-morphism category. Otherwise one may for instance consult [7], 3.6. One word of
warning: Elmendorf and Mandell’s left distributivity law is precisely what we (and [13],
VI, Definition 3.3) call the right distributivity law. Note that we demand strict right distrib-
utivity, and that this implies both cases of Condition 3.3 (b) in [7], in view of Condition
3.3 (c).

If R is a small rig category such that p0jRj is a ring (has additive inverses), then we
call R a ring category. Elmendorf and Mandell’s ring categories are not ring categories in
our sense, but non-commutative rig categories. In the course of this paper we have to re-
solve rig categories simplicially. If R is a small simplicial rig category such that p0jRj is a
ring, then we call R a simplicial ring category (even though it is usually not a simplicial
object in the category of ring categories).
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If R is a strictly bimonoidal category, a left R-module is a permutative category M
together with a multiplication R�M!M that is strictly associative and coherently dis-
tributive, as spelled out in [7], 9.1.1.

2.3. J-graded bipermutative categories and strictly bimonoidal categories. The fol-
lowing definition of a J-graded bipermutative category is designed to axiomatize the key
properties of the functor GR described in Section 3, and simultaneously to generalize the
definition of a bipermutative category (as the case J ¼ 0). More generally, we could have
introduced J-graded rig categories (resp. J-graded commutative rig categories), generaliz-
ing rig categories (resp. commutative rig categories), but this would have led to an even
more cumbersome definition. We will therefore always assume that the input R to our ma-
chinery has been transformed to an equivalent bipermutative or strictly bimonoidal cate-
gory before we start.

Definition 2.1. Let ðJ;þ; 0; wÞ be a small permutative category. A J-graded bipermu-

tative category is a functor

C : J ! Strict

from J to the category Strict of small permutative categories and strict symmetric monoidal
functors, together with data ðn; 1; gnÞ as specified below, and subject to the following con-
ditions. The permutative structure of CðxÞ will be denoted

�
CðxÞ;l; 0x; gl

�
.

(1) There are composition functors

n : CðxÞ � CðyÞ ! Cðxþ yÞ

for all x; y A J, that are natural in x and y. More explicitly, for each pair of objects
a A CðxÞ, b A CðyÞ there is an object an b in Cðxþ yÞ, and for each pair of morphisms
f : a! a 0, g : b! b 0 there is a morphism f n g : an b! a 0n b 0, satisfying the usual as-
sociativity and unitality requirements. For each pair of morphisms k : x! z, l : y! w in
J the diagram

CðxÞ � CðyÞ ���!n Cðxþ yÞ

CðkÞ�CðlÞ

???y
???yCðkþlÞ

CðzÞ � CðwÞ ���!n Cðzþ wÞ

commutes.

(2) There is a unit object 1 A Cð0Þ such that

1n ð�Þ : CðyÞ ! CðyÞ and ð�Þn 1 : CðxÞ ! CðxÞ

are the identity functors for all x; y A J. More precisely, the inclusion

f1g � CðyÞ ! Cð0Þ � CðyÞ
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composed with n : Cð0Þ � CðyÞ ! Cð0þ yÞ ¼ CðyÞ equals the projection isomorphism
f1g � CðyÞGCðyÞ, and likewise for the functor from CðxÞ � f1g.

(3) For each pair of objects a A CðxÞ, b A CðyÞ there is a twist isomorphism

gn¼ ga;b
n : an b! Cðwy;xÞðbn aÞ

in Cðxþ yÞ, where wy;x : yþ x! xþ y is the commutativity isomorphism in J, such that

an b
ga; b
n

Cðwy;xÞðbn aÞ

fng

???y
???yCðwy; xÞðgnf Þ

a 0n b 0 ���!ga 0 ; b 0
n

Cðwy;xÞðb 0n a 0Þ

����!

commutes for any f , g as above, and

Cðk þ lÞðga;b
n Þ ¼ g

CðkÞðaÞ;CðlÞðbÞ
n ;

for any k, l as above. We require that Cðwy;xÞðgb;a
n Þ � g

a;b
n is equal to the identity on an b

for all objects a and b,

an b ���������������!idanb

Cðwy;xÞCðwx;yÞðan bÞ

Cðwy;xÞðbn aÞ;
ga; b
n

Cðwy; xÞðgb; a
n Þ ����

��  ���������

and that ga;1
n and g1;a

n are equal to the identity on a for all objects a.

(4) The composition n is strictly associative, and the diagram

an bn c Cðwz;xþyÞðcn an bÞ

idngb; c

???y
???yCðw z; xþyÞðg c; anidÞ

Cðidþ wz;yÞðan cn bÞ Cðwz;xþyÞCðwx; z þ idÞðan cn bÞ

�������������!ganb; c
n

commutes for all objects a, b and c (compare [10], p. 254, (7a)).

(5) Multiplication with the zero object 0x annihilates everything, for each x A J.
More precisely, the inclusion

f0xg � CðyÞ ! CðxÞ � CðyÞ

composed with n : CðxÞ � CðyÞ ! Cðxþ yÞ is the constant functor to 0xþy, and likewise
for the composite functor from CðxÞ � f0yg.

(6) Right distributivity holds strictly, i.e.,
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�
CðxÞ � CðxÞ

�
� CðyÞ CðxÞ � CðyÞ

D

???y�
CðxÞ � CðyÞ

�
�
�
CðxÞ � CðyÞ

�
n�n

???y
Cðxþ yÞ � Cðxþ yÞ Cðxþ yÞ

??????????y
n

������!l�id

��������!l

commutes, wherel is the monoidal structure and D is the diagonal on CðyÞ combined with
the identity on CðxÞ � CðxÞ, followed by a twist. We denote these instances of identities by
dr, so dr ¼ id :l� ðn�nÞ � D!n� ðl� idÞ.

(7) The left distributivity transformation, dl, is given in terms of dr and gn as

dl ¼ gn � dr � ðgnl gnÞ:

(Here we suppress the twist CðwÞ from the notation.) More explicitly, for all x; y A J and
a A CðxÞ, b; b 0 A CðyÞ the following diagram defines dl:

an bl an b 0 Cðwy;xÞðbn aÞlCðwy;xÞðb 0n aÞ

dl

???y
����

an ðbl b 0Þ Cðwy;xÞðbn al b 0n aÞ����
???yCðwy; xÞðdrÞ¼id

Cðwy;xÞCðwx;yÞ
�
an ðbl b 0Þ

�
Cðwy;xÞ

�
ðbl b 0Þn a

�
:

�������������!ga; b
n lga; b 0

n

 ������������Cðwy; xÞðgblb 0 ; a
n Þ

(8) The diagram

ðan bÞl ðan b 0Þ ���!dl
an ðbl b 0Þ

gl

???y
???yidngl

ðan b 0Þl ðan bÞ ���!dl
an ðb 0l bÞ

commutes for all objects. The analogous diagram for dr also commutes. Due to the
definition of dl in terms of gn and the identity dr, it su‰ces to demand that
gl � ðgnl gnÞ ¼ ðgnl gnÞ � gl and ðgln idÞ � gn¼ gn � ðidn glÞ.

(9) The distributivity transformations are associative, i.e., the diagram

ðan bn cÞl ðan bn c 0Þ

dl

???y dl

an
�
ðbn cÞl ðbn c 0Þ

� ���!
idndl

an bn ðcl c 0Þ

 �������
�����

commutes for all objects.
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(10) The following pentagon diagram commutes:�
an ðbl b 0Þ

�
l

�
a 0n ðbl b 0Þ

�

ðan bÞl ðan b 0Þl ða 0n bÞl ða 0n b 0Þ

idlgllid

???????y ðal a 0Þn ðbl b 0Þ

ðan bÞl ða 0n bÞl ðan b 0Þl ða 0n b 0Þ

�
ðal a 0Þn b

�
l

�
ðal a 0Þn b 0

�

 �������������
 ���

�����
�����

 �������������
 �������������

dlldl

dr

drldr

dl

for all objects a; a 0 A CðxÞ and b; b 0 A CðyÞ.

Remark 2.2. In Definition 2.1, condition (1) says that we have a binatural transfor-
mation

n : C� C) C � ðþÞ

of bifunctors J � J ! Cat, where Cat denotes the category of small categories. Condition
(3) demands that there be a modification [10], p. 278,

C� C ðC� CÞ � twJwww€n V

gn

www€n

C � ðþÞ (
CðwÞ

C � ðþÞ � twJ ;

)
cCat

where cCat is the symmetric structure on Cat (with respect to product) and twJ is the inter-
change of factors on J � J.

In the following we will denote a J-graded bipermutative category C : J ! Strict
by C� if the category J is clear from the context. For the one-morphism category J ¼ 0, a
J-graded bipermutative category is the same as a bipermutative category. Thus every
J-graded bipermutative category C� comes with a bipermutative category Cð0Þ, and C�

can be viewed as a functor J ! Cð0Þ-modules.

Example 2.3. We consider the small bipermutative category of finite sets, whose ob-
jects are the finite sets of the form n ¼ f1; . . . ; ng for nf 0, and whose morphisms m! n
are all functions f1; . . . ;mg ! f1; . . . ; ng.

Disjoint union of sets gives rise to a permutative structure

nlm :¼ n tm

and we identify n tm with nþm. For functions f : n! n 0 and g : m! m 0 we define f l g

as the map on the disjoint union f t g which we will denote by f þ g. The additive twist cl
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is given by the shu¿e maps

wðn;mÞ : nþm! mþ n

with

wðn;mÞðiÞ ¼ mþ i for ie n;

i � n for i > n:

�

Multiplication of sets is defined via

nnm :¼ nm:

If we identify the element ði � 1Þ �mþ j in nm with the pair ði; jÞ with i A n and j A m, then
the function f n g is given by

ði; jÞ 7!
�

f ðiÞ; gð jÞ
�
;

and the multiplicative twist

cn : nnm! mn n

sends ði; jÞ to ð j; iÞ. The empty set 0 is a strict zero for the addition and the singleton set 1 is
a strict unit for the multiplication. Right distributivity is the identity and the left distribu-
tivity law is given by the resulting permutation

dl ¼ cn � dr � ðcnl cnÞ:

For later reference we denote this instance of dl by x.

Considering only the subcategory of bijections, instead of arbitrary functions, results
in the bipermutative category of finite sets E that we referred to in the introduction. Later,
we will make use of the zeroless bipermutative category of finite nonempty sets and surjec-
tive functions.

Definition 2.4. A J-graded strictly bimonoidal category is a functor C : J ! Strict to
the category of permutative categories and strict symmetric monoidal functors, satisfying
the conditions of Definition 2.1, except that we do not require the existence of the natural
isomorphism gn, and the left distributivity isomorphism dl is not given in terms of dr.
Axiom (7) of Definition 2.1 has to be replaced by the following condition:

(7 0) The diagram

an bn cl an b 0n c ���!dr ðan bl an b 0Þn c

dl

???y
???ydlnid

an ðbn cl b 0n cÞ an ðbl b 0Þn c������!idndr

commutes for all objects.

In the J-graded bipermutative case condition (7 0) follows from the other axioms.
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Definition 2.5. A lax morphism of bipermutative categories, F : C! D, is a pair of
lax symmetric monoidal functors

ðC;l; 0C; clÞ ! ðD;l; 0D; clÞ and ðC;n; 1C; cnÞ ! ðD;n; 1D; cnÞ;

with the same underlying functor F : C! D, that respect the left and right distributivity
laws.

In other words, we have a binatural transformation from l� ðF � FÞ to F �l:

hl¼ hlða; bÞ : FðaÞlFðbÞ ! Fðal bÞ

for a; b A C, as well as a binatural transformation from n� ðF � FÞ to F �n:

hn¼ hnða; bÞ : FðaÞnFðbÞ ! Fðan bÞ

for a; b A C, plus morphisms 0D ! Fð0CÞ and 1D ! Fð1CÞ. We require that these commute
with cl and cn, respectively, and that the following diagram (and the analogous one for dl)
commutes:

FðaÞnFðbÞlFða 0ÞnFðbÞ dr¼id �
FðaÞlFða 0Þ

�
nFðbÞ ���!hlnid

Fðal a 0ÞnFðbÞ

hnlhn

???y
???yhn

Fðan bÞlFða 0n bÞ Fðan bl a 0n bÞ F
�
ðal a 0Þn b

��������!
hl FðdrÞ¼id

for all objects a; a 0; b A C, i.e., we have

hl � ðhnl hnÞ ¼ hn � ðhln idÞ

and

F
�
gn � ðgnl gnÞ

�
� hl � ðhnl hnÞ ¼ hn � ðidn hlÞ � gn � ðgnl gnÞ:

For a lax morphism of strictly bimonoidal categories we demand that F be lax mono-
idal with respect to n, lax symmetric monoidal with respect to l, and that

FðdlÞ � hl � ðhnl hnÞ ¼ hn � ðidn hlÞ � dl

and

FðdrÞ � hl � ðhnl hnÞ ¼ hn � ðhln idÞ � dr:

Definition 2.6. A lax morphism of J-graded bipermutative categories, F : C� ! D�,
consists of a natural transformation F from C� to D� that is compatible with the bifunctors
l,n and the units. Additively, we require a transformation hl froml� ðF � FÞ to F �l:

CðxÞ � CðxÞ CðxÞ

Fx�Fx

???y
???yFx

DðxÞ �DðxÞ ���!l DðxÞ

���!l
hx
l
¼)
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that commutes with gl, is binatural with respect to morphisms in CðxÞ � CðxÞ, and is nat-
ural with respect to x. Multiplicatively, we require a transformation hn from n� ðF � FÞ
to F �n:

CðxÞ � CðyÞ Cðxþ yÞ

Fx�Fy

???y
???yFxþy

DðxÞ �DðyÞ ���!n Dðxþ yÞ

���!n
h

x; y
n
¼)

that commutes with gn, is binatural with respect to morphisms in CðxÞ � CðyÞ, and is nat-
ural with respect to x and y. The functor F must respect the distributivity constraints in
that it fulfills

hl � ðhnl hnÞ ¼ hn � ðhln idÞ

and

FðdlÞ � hl � ðhnl hnÞ ¼ hn � ðidn hlÞ � dl:

For a lax morphism of J-graded strictly bimonoidal categories there is no requirement
on (F and) hn concerning the multiplicative twist gn.

3. A cubical construction on (bi-)permutative categories

We remodel the Grayson–Quillen construction [8] of the group completion of a per-
mutative category to suit our multiplicative needs. The naı̈ve product ðacl bd; ad l bcÞ

of two pairs ða; bÞ and ðc; dÞ in their model will be replaced by the quadruple
ac ad

bc bd

� �
,

where no order of adding terms is chosen. This avoids the ‘‘phoniness’’ of the multiplica-
tion [17] but requires that we keep track of n-cubical diagrams of objects, of varying dimen-
sions nf 0. We start by introducing the indexing category I

Ð
Q for all of these diagrams,

and then describe the I
Ð
Q-shaped diagram GM associated to a permutative category M. If

we start with a bipermutative category R, the result will be an I
Ð
Q-graded bipermutative

category GR.

3.1. An indexing category. Let I be the usual skeleton of the category of finite sets
and injective functions, i.e., its objects are the finite sets n ¼ f1; . . . ; ng for nf 0, and its
morphisms are the injective functions j : m! n. We define the sum of two objects n and
m to be nþm and use the twist maps wðn;mÞ defined in Example 2.3. Then ðI ;þ; 0; wÞ is
a permutative category.

For each nf 0 let Qn be the category whose objects are subsets T of

fG1; . . . ;Gng ¼ f�n; . . . ;�1; 1; . . . ; ng

such that the absolute value function T ! Z is injective. In other words, we may have i A T

or �i A T , but not both, for each 1e ie n. Morphisms in Qn are inclusions S LT of sub-
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sets. (The objects could equally well be described as pairs ðT ;wÞ where T L n and w is a
function T ! fG1g, and similarly for the morphisms.) Let PnLQn be the full subcate-
gory generated by the subsets of n ¼ f1; . . . ; ng, i.e., the T with only positive elements.

For example, the category Q2 can be depicted as:

f�1; 2g f2g f1; 2gx???
x???

x???
f�1g j f1g???y

???y
???y

f�1;�2g  ��� f�2g ���! f1;�2g

 ���� ����!

 ������ ������!

and P2 is given by the upper right-hand square. We shall use Pn and Qn to index
n-dimensional cubical diagrams with 2n and 3n vertices, respectively.

For each morphism j : m! n in I we define a functor Qj : Qm! Qn as follows.
First, let Cj ¼ nnjðmÞ be the complement of the image of the injective function j. Then
extend j to an odd function fG1; . . . ;Gmg ! fG1; . . . ;Gng, which we also call j, and
let

ðQjÞðSÞ ¼ jðSÞ t Cj

for each object S A Qm. For example, if j : 1! 2 is given by jð1Þ ¼ 2, then Cj ¼ f1g and
Qj is the functor

f�1g j f1g???y
???y

???y
f1;�2g  ��� f1g ���! f1; 2g

 ���� �����!

embedding Q1 into the right-hand column of Q2. Similarly, the function j : 1! 2 with
jð1Þ ¼ 1 embeds Q1 into the upper row of Q2.

If S LT , then clearly ðQjÞðSÞL ðQjÞðTÞ. If c : k! m is a second morphism in I ,
we see that Qj � Qc ¼ QðjcÞ, and so n 7! Qn defines a functor Q : I ! Cat. Restricting
to sets with only positive entries, we get a subfunctor PLQ that may be easier to grasp:
if j : m! n A I , then Pj : Pm! Pn is the functor sending S Lm to jðSÞ t Cj, where
Cj ¼ nnjðmÞ is the complement of the image of j.

Our main indexing category will be the Grothendieck construction J ¼ I
Ð
Q. This is

the category with objects pairs x ¼ ðm;SÞ with m A I and S A Qm, and with morphisms
x ¼ ðm;SÞ ! ðn;TÞ ¼ y consisting of pairs ðj; iÞ with j : m! n a morphism in I and
i : ðQjÞðSÞLT an inclusion. To give a functor C from I

Ð
Q to any category is equivalent

to giving a functor Cn from Qn for each nf 0, together with natural transformations
Cj : Cm ) Cn � Qj for all j : m! n in I , which must be compatible with identities and
composition in I .
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Consider the functor þ : Qn� Qm! QðnþmÞ defined as follows. The injective func-
tions in1 : n! nþm and in2 : m! nþm are given by in1ðiÞ ¼ i and in2ð jÞ ¼ nþ j. Ex-
tending to odd functions we define T þ S to be the disjoint union of images

in1ðTÞ t in2ðSÞL fG1; . . . ;GðnþmÞg:

For example, if T ¼ f�1; 2gL fG1;G2;G3g and S ¼ f1;�2gL fG1;G2g, then we have
T þ S ¼ f�1; 2; 4;�5gL fG1; . . . ;G5g.

These functors, for varying n;mf 0, combine to an addition functor on I
Ð
Q. For

each pair of objects ðn;TÞ; ðm;SÞ A I
Ð
Q we define ðn;TÞ þ ðm;SÞ ¼ ðnþm;T þ SÞ, and

likewise on morphisms.

Lemma 3.1. Addition makes I
Ð
Q and I

Ð
P into permutative categories.

Proof. The zero object is ð0; 0Þ, and the isomorphism

�
wðn;mÞ; id

�
: ðnþm;T þ SÞ ! ðmþ n;S þ TÞ

provides the symmetric structure. r

3.2. The cube construction. Let M be a permutative category (with zero). Define a
functor

Mn : Pn! Strict

for each nf 0, by sending a subset T L n to MnðTÞ ¼MPT , the permutative category of
functions from the set PT of subsets of T to M, i.e., the product of one copy of M for each
subset of T . If i : S LT , we get a strict symmetric monoidal functor MnðiÞ : MPS !MPT

by sending the object a ¼ ðaU jU LSÞ A MPS to ðaVXS jV LTÞ, and likewise with mor-
phisms. These are diagonal functors, since each aU gets repeated once for each V with
V XS ¼ U .

For n ¼ 0; 1; 2 the diagrams Mn have the following shapes:

M; M!M�M and

M�M ���! M�4x???
x???

M M�M;����!
where the morphisms are the appropriate diagonals. Note that the two diagonals
M�M!M�4 in M2 di¤er by a twist map. One of the diagonals sends the pair

ðaj; af1gÞ to
aj af1g
aj af1g

� �
, and the other sends ðaj; af2gÞ to

aj aj
af2g af2g

� �
.

In general, MnðnÞ is the product of 2n copies of M, viewed as spread out over the
corners of an n-dimensional cube.
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For j : m! n we define a natural transformation Mj : Mm )Mn �Pj: for S A Pm
we let MjðSÞ be the composite

MmðSÞ ¼MPS GMPðjðSÞÞ !MPðjðSÞtCjÞ ¼Mn

�
ðPjÞðSÞ

�
;

where the isomorphism is just the reindexation induced by the morphism j, and the functor
MPðjðSÞÞ !MPðjðSÞtCjÞ is the identity on factors indexed by subsets of jðSÞ and zero on
the factors that are not hit by j. Explicitly,

MjðSÞð f ÞV ¼
fj�1ðVÞ if V L jðSÞ;
0 otherwise;

�

for any morphism f : a! b A MPS and V L jðSÞ t Cj. These are extension by zero func-
tors, not diagonals. Each fU gets repeated exactly once, as MjðSÞð f ÞV for V ¼ jðUÞ.

For instance, if j : 1! 2 is given by jð1Þ ¼ 2, then

M1ðjÞ ¼M!M�M ¼M2ðf1gÞ and M1ð1Þ ¼M�M!M�4 GM2ð2Þ

are given by appropriate inclusions onto factors in products. For both morphisms j : 1! 2

the associated functors M!M�M are the inclusion onto the j-factor, whereas the two
functors M�M!M�4 include onto either the j and f1g factors, or the j and f2g fac-
tors, depending on j.

We see that for all S LT Lm and j : m! n, the diagram

MPS MPT

MjðSÞ

???y
???yMjðTÞ

MPðjðSÞtCjÞ ���! MPðjðTÞtCjÞ

��������!

commutes, sending a A MPS both ways to W 7! aj�1ðW ÞXS if W L jðTÞ and 0 otherwise.

If c : k! m A I , then we have an equality MjMc ¼Mjc of natural transformations
Mk )Mn �PðjcÞ:

Pk

Pc

???y +Mc

PðjcÞ Pm ���!Mm
Strict

Pj

???y +Mj

Pn

¼

Pk

PðjcÞ +Mjc Strict:

Pn

Mk Mk

Mn Mn

Both natural transformations are represented by the functors MPS !MPðjcðSÞtCðjcÞÞ

sending a to V 7! aðjcÞ�1V
if V L jcðSÞ and 0 otherwise. Thus M can be viewed as a left

lax transformation from the functor P : I ! Cat to the constant functor at Strict. (We re-
call the definition of a left lax transformation in Section 4.1 below.)
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This left lax transformation M : P) Strict is extended to a left lax transformation
M : Q) Strict by declaring that MnðTÞ ¼ 0 if T contains negative elements.

The first three diagrams now look like

M; 0 M!M�M and

0  ��� M�M ���! M�4x???
x???

x???
0 M M�M???y

???y
???y

0 0 0:

 ����� ����!
 ����� �������!

Another way of saying that we have a left lax transformation Q) Strict is to say that we
have a functor I

Ð
M : I

Ð
Q! I

Ð
StrictG I � Strict (over I ). Projecting to the second fac-

tor, I
Ð
M gives rise to a functor

GM : I
Ð
Q! Strict:

Explicitly, GMðn;TÞ ¼MnðTÞ, which is MPT if T contains no negatives and 0 oth-
erwise. If j : m! n A I and i : ðQjÞðSÞLT A Qn, then GMðj; iÞ : MmðSÞ !MnðTÞ is the
composite of

GMðj; idÞ ¼MjS : MmðSÞ !Mn

�
ðQjÞðSÞ

�
and

GMðid; iÞ ¼MnðiÞ : Mn

�
ðQjÞðSÞ

�
!MnðTÞ:

3.3. Multiplicative structure. Since the diagram GM : I
Ð
Q! Strict is so simple,

only consisting of diagonals and inclusions onto factors in products, algebraic structure
on M is easily transferred to GM.

Proposition 3.2. If R is a strictly bimonoidal category, then GR is an I
Ð
Q-graded

strictly bimonoidal category. If R is a bipermutative category, then GR is an I
Ð
Q-graded

bipermutative category.

Proof. We must specify composition functors

n : GRðn;TÞ � GRðm;SÞ ! GRðnþm;T þ SÞ

for all ðn;TÞ; ðm;SÞ A I
Ð
Q. Let a A GRðn;TÞ and b A GRðm;SÞ. If S and T only contain

positive elements, then an b A GRðnþm;T þ SÞ is defined by

ðan bÞVþU ¼ aV n bU ;

where the n-product on the right is formed in R. As V and U range over all the subsets
of T and S, respectively, V þU ranges over all the subsets of T þ S. If T or S contain
negative elements, we set an b ¼ 0. The definition of n on morphisms is similar. These
composition functors are clearly natural in ðn;TÞ and ðm;SÞ.
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The unit object 1 of GRð0; 0ÞGR corresponds to the unit object 1R of R. In the bi-
permutative case, the twist isomorphism

gn : an b! GR
�
wðm; nÞ; id

�
ðbn aÞ

has components

ðan bÞVþU ¼ aV n bU !
gRn

bU n aV ¼ ðbn aÞUþV

for all V LT and U LS, where gRn is the twist isomorphism in R.

Since everything is defined pointwise, the multiplicative structure on R forces all the
axioms of an I

Ð
Q-graded strictly bimonoidal category (or I

Ð
Q-graded bipermutative cat-

egory) to hold for GR. r

4. Hocolim-lemmata

We recall Thomason’s homotopy colimit construction in the case of a J-shaped dia-
gram of zeroless permutative categories, and then construct a derived version of this con-
struction for permutative categories with zero.

4.1. The case without zeros. Let Permnz be the category of permutative categories
without zero objects, and lax symmetric monoidal functors. Let Strictnz be the subcate-
gory with the same objects but with strict symmetric monoidal functors as morphisms.
There are forgetful functors V : Strictnz ! Permnz and U : Permnz ! Cat, with composite
W ¼ UV : Strictnz ! Cat.

For any small category J let CatJ be the category of functors J ! Cat and left

lax transformations. Recall that for functors C;D : J ! Cat, a left lax transformation
F : C! D assigns to each object x A J a functor Fx : CðxÞ ! DðxÞ, and to each mor-
phism k : x! y in J a natural transformation nk : DðkÞ � Fx ) Fy � CðkÞ of functors
CðxÞ ! DðyÞ:

CðxÞ ���!CðkÞ
CðyÞ

Fx

???y nk

???yFy

DðxÞ ���!
DðkÞ

DðyÞ:

)

These must be compatible with composition in J, so that n id ¼ id and nlk ¼ nlCðkÞ �DðlÞnk

for l : y! z in J. If each nk ¼ id, we have a natural transformation in the usual sense.

Similarly, let PermJ
nz be the category of functors J ! Permnz and left lax transforma-

tions. In this case, the categories CðxÞ, CðyÞ, DðxÞ, DðyÞ etc. are symmetric monoidal with-
out zero, the functors CðkÞ, DðkÞ, Fx, Fy etc. are lax symmetric monoidal, and nk is a
natural transformation of lax symmetric monoidal functors. Finally, let StrictJ

nz be the cat-
egory of functors J ! Strictnz and left lax transformations. In this case, all of the symmet-
ric monoidal functors are strict.
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Let D : Cat! CatJ be the constant J-shaped diagram functor. Given a functor
C : J ! Cat, the Grothendieck construction J

Ð
C is a model for the homotopy colimit in

Cat [16]. We recall that an object in J
Ð
C is a pair ðx;X Þ where x A J and X A CðxÞ are

objects, while a morphism ðx;X Þ ! ðy;Y Þ is a pair ðk; f Þ where k : x! y A J and
f : CðkÞðX Þ ! Y A CðyÞ are morphisms. This construction defines a functor

J
Ð
ð�Þ : CatJ ! Cat;

which is left adjoint to D : Cat! CatJ . Here it is, of course, important that we are allow-
ing left lax transformations as morphisms in CatJ , since otherwise the left adjoint would be
the categorical colimit.

Thomason’s homotopy colimit of permutative categories [18] is constructed to have a
similar universal property with respect to the composite DV : Strictnz ! PermJ

nz, where V

is as above and D : Permnz ! PermJ
nz is the constant J-shaped diagram functor. We briefly

recall the explicit description.

Definition 4.1. Let C : J ! Permnz be a functor. An object in hocolimJ C is an
expression

n½ðx1;X1Þ; . . . ; ðxn;XnÞ�

where nf 1 is a natural number, each xi is an object of J, and each Xi is an object of CðxiÞ.
A morphism from n½ðx1;X1Þ; . . . ; ðxn;XnÞ� to m½ðy1;Y1Þ; . . . ; ðym;YmÞ� consists of three
parts: a surjective function c : n! m, morphisms li : xi ! ycðiÞ in J for each 1e ie n,
and morphisms %j :

L
i Ac�1ð jÞ

CðliÞðXiÞ ! Yj in CðyjÞ for each 1e j em. We will write

ðc; li; %jÞ to signify this morphism.

See [18], 3.22, for the definition of composition in the category hocolimJ C. This cat-
egory is permutative, without a zero, if one defines addition to be given by concatenation
[18], p. 1632. Each left lax transformation F : C! D induces a strict symmetric mono-
idal functor hocolimJ F : hocolimJ C! hocolimJ D, so this construction defines a functor
hocolimJ : PermJ

nz ! Strictnz.

The universal property in [18], 3.21, says that hocolimJ : PermJ
nz ! Strictnz is left ad-

joint to DV : Strictnz ! PermJ
nz. Again, it is critical that we are allowing left lax transfor-

mations as morphisms in PermJ
nz.

Recall Definition 1.1 of unstable equivalences in Cat and stable equivalences in
Permnz and Strictnz. We use the corresponding pointwise notions in diagram categories
like CatJ and PermJ

nz, so a left lax transformation F : C! D between functors
C;D : J ! Permnz is a stable (resp. unstable) equivalence if every one of its components
Fx : CðxÞ ! DðxÞ is a stable (resp. unstable) equivalence, for x A J.

Lemma 4.2. Let F : C! D be a stable (resp. unstable) equivalence in PermJ
nz. Then

hocolimJ F : hocolimJ C! hocolimJ D

is a stable (resp. unstable) equivalence in Strictnz.
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If C : J ! Permnz is a constant functor and J is contractible, then CðxÞ !@ hocolimJ C
is an unstable equivalence for each x A J.

Proof. The stable case follows from [18], 4.1, since homotopy colimits of spectra
preserve stable equivalences. The unstable case follows by the same line of arguments, see
[18], p. 1635, for an overview.

First consider the strict case, when F : C!@ D is a left lax transformation and unsta-
ble equivalence of functors J ! Strictnz. The doubly forgetful functor W : Strictnz ! Cat
has a left adjoint, the free functor P : Cat! Strictnz, with PC ¼

‘
nf1

eSnSn �Sn
C�n, where eSnSn is

the translation category of the symmetric group Sn.

The free-forgetful adjunction ðP;WÞ generates a simplicial resolution

ðPWÞ�þ1C ¼ f½q� 7! ðPWÞqþ1Cg

of C by free zeroless permutative categories. See [18], 1.2, for details. By Thomason’s argu-
ment [18], pp. 1641–1644, the augmentation ðPWÞ�þ1C! C induces an unstable equiv-
alence

hocolimJ VðPW Þ�þ1C!@ hocolimJ VC;

and similarly for D and F . Hence it su‰ces to prove that hocolimJ VðPW Þqþ1
F is an un-

stable equivalence, for each qf 0.

Consider the functors

C 0;D 0 : J ! Cat

given by C 0 ¼WðPW ÞqC and D 0 ¼WðPW ÞqD, and let F 0 ¼W ðPWÞqF be the resulting
left lax transformation C 0 ! D 0. Then F 0 is an unstable equivalence, by q applications of
Lemma 4.3 below. We must prove that VPF 0 : VPC 0 ! VPD 0 induces an unstable equiv-
alence of homotopy colimits. This follows from Lemma 4.4 below, the fact that the
Grothendieck construction J

Ð
F 0 : J

Ð
C 0 ! J

Ð
D 0 respects unstable equivalences, and one

more application of Lemma 4.3.

Finally consider the lax case, when F : C!@ D is a left lax transformation and un-
stable equivalence of functors J ! Permnz. For each x A J let ĈCðxÞ ¼ hocolim0 CðxÞ be
the homotopy colimit of the functor 0! Permnz taking the unique object of 0 to CðxÞ.
By the universal property of hocolim0 this defines a functor ĈC : J ! Strictnz, and a natural
transformation C! VĈC. It is an unstable equivalence by [14], 4.3. Summation in the per-
mutative categories CðxÞ induces a left lax natural transformation VĈC! C such that the
composite C! VĈC! C equals the identity transformation.

By naturality of these constructions with respect to F , we see that F : C! D is a re-
tract of VF̂F : VĈC! VD̂D as a morphism in PermJ

nz, where F̂F : ĈC!@ D̂D is a left lax transfor-
mation and unstable equivalence of functors J ! Strictnz. By functoriality, hocolimJ F is a
retract of hocolimJ VF̂F , which is an unstable equivalence by the first case of the proof ap-
plied to F̂F : ĈC! D̂D. It follows that hocolimJ F is also an unstable equivalence.

The claim in the case of a constant diagram follows by the same argument. r
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Lemma 4.3. The free functor P : Cat! Strictnz sends unstable equivalences to un-

stable equivalences.

Proof. This follows from the natural homeomorphism of classifying spaces

jPCjG
‘

nf1

ESn �Sn
jCj�n

and the fact that j eSnSnj ¼ ESn is a free Sn-space. r

Lemma 4.4. Let C 0 : J ! Cat be any functor. There is a natural unstable equiv-

alence

PðJ
Ð
C 0Þ !@ hocolimJ VPC 0:

Proof. Thomason proved this in [18]. There the statement appears in the second
paragraph on page 1639, in rather di¤erent-looking notation, and the proof starts with
the last paragraph on page 1637. r

Lemma 4.5. Let I be the category of finite sets and injective functions, and let m A I .

If C : I ! Permnz is a functor that sends each j : m! n A I to a stable (resp. unstable)
equivalence CðjÞ : CðmÞ ! CðnÞ, then the canonical functor CðmÞ ! hocolimI C is a stable

(resp. unstable) equivalence.

Proof. This is a weak version of Bökstedt’s lemma [6], 9.1, which holds for homo-
topy colimits in Cat since it holds for homotopy colimits in simplicial sets. By the argu-
ment above, using the resolution by free permutative categories, it also holds in Permnz.

r

4.2. The case with zero. We shall need a version of the homotopy colimit for dia-
grams of permutative categories with zero. Thomason comments that such a homotopy
colimit with zero is not a homotopy functor unless the category is ‘‘well based’’. Hence we
must derive our functor to get a homotopy invariant version. We do this by means of an-
other simplicial resolution, this time generated by the free-forgetful adjunction between per-
mutative categories with and without zeros.

The functor R : Strict! Strictnz that forgets the special role of the zero object has
a left adjoint L : Strictnz ! Strict, given by adding a disjoint zero object: LN ¼Nþ for
N A Strictnz. Likewise, the forgetful functor R 0 : PermJ ! PermJ

nz has a left adjoint
L 0 : PermJ

nz ! PermJ , given by adding disjoint zeros pointwise: L 0C : x 7! CðxÞþ for
C : J ! Permnz and all x A J.

Let Strictiz H Strict be the full subcategory generated by objects of the form
LN ¼Nþ, i.e., the permutative categories with an isolated zero object. Similarly, let
PermJ

iz HPermJ be the full subcategory generated by objects of the form L 0C ¼ Cþ.

In the statement and proof of the following lemma we omit the forgetful functors R

and R 0 from the notation, and write Nþ and Cþ for LN and L 0C, respectively. Note that
DVðNþÞ ¼ DVðNÞþ, where DV : Strictnz ! PermJ

nz is as in Section 4.1.
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Lemma 4.6. The functor ðDVÞiz : Strictiz ! PermJ
iz, taking Nþ to the constant dia-

gram x 7!Nþ for x A J, has a left adjoint hocolimiz
J : PermJ

iz ! Strictiz, satisfying

hocolimiz
J ðCþÞ ¼ ðhocolimJ CÞþ

for all zeroless diagrams C : J ! Permnz.

Proof. To define the functor hocolimiz
J , we must specify a strict symmetric monoidal

functor

hocolimiz
J F : ðhocolimJ CÞþ ! ðhocolimJ DÞþ

for each left lax transformation F : Cþ ! Dþ. The morphism

hþ : Dþ !
�
DVðhocolimJ DÞ

�
þ ¼ DV

�
ðhocolimJ DÞþ

�
;

where h : id! DV � hocolimJ is the adjunction unit, induces a function

PermJðCþ;DþÞGPermJ
nzðC;DþÞ ! PermJ

nz

�
C;DV

�
ðhocolimJ DÞþ

��
G Strictnz

�
hocolimJ C; ðhocolimJ DÞþ

�
G Strict

�
ðhocolimJ CÞþ; ðhocolimJ DÞþ

�
:

We declare the image of F : Cþ ! Dþ to be hocolimiz
J F . A diagram chase shows that

hocolimiz
J ðGFÞ ¼ hocolimiz

J G � hocolimiz
J F for each G : Dþ ! Eþ, so hocolimiz

J is a
functor.

The adjunction property follows from the chain of natural bijections

Strict
�
hocolimiz

J ðCþÞ;Nþ
�
¼ Strict

�
ðhocolimJ CÞþ;Nþ

�
G StrictnzðhocolimJ C;NþÞ

GPermJ
nz

�
C;DVðNþÞ

�
¼ PermJ

nz

�
C; ðDVÞizðNþÞ

�
GPermJ

�
Cþ; ðDVÞizðNþÞ

�
: r

Definition 4.7. For each permutative category with zero M A Perm let

ZM A PermDop

iz HPermDop

be the simplicial object in permutative categories with isolated zeroes given by

½q� 7! ZqM ¼ ðLRÞqþ1ðMÞ:

The face and degeneracy maps are induced by the adjunction counit LR! id and unit
id! RL, as usual. The counit also induces a natural augmentation map e : ZM!M of
simplicial permutative categories with zero, where M is viewed as a constant simplicial
object.

Lemma 4.8. Let M be a permutative category. The augmentation map e : ZM!@ M
is an unstable equivalence.
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Proof. The map Re : RZM! RM of simplicial zeroless permutative categories ad-
mits a simplicial homotopy inverse, induced by the adjunction unit. Hence the map of clas-
sifying spaces jej : jZMj ! jMj admits a homotopy inverse, since the classifying space only
depends on the underlying category. r

We extend Z pointwise to define a simplicial resolution e : ZC!@ C for any functor
C : J ! Perm, with ZC : x 7! ZCðxÞ for all x A J. This allows us to define a derived homo-
topy colimit for permutative categories with zero.

Definition 4.9. The derived homotopy colimit

DhocolimJ : PermJ ! StrictD
op

iz H StrictD
op

is defined by

DhocolimJ C ¼ hocolimiz
J ðZCÞ ¼ f½q� 7! hocolimiz

J ðLRÞqþ1Cg:

The construction deserves its name:

Lemma 4.10. Let C! D be a stable (resp. unstable) equivalence in PermJ . Then

ZqC! ZqD is a stable (resp. unstable) equivalence for each qf 0, so the induced functor

DhocolimJ C! DhocolimJ D

is a stable (resp. unstable) equivalence, too.

Proof. The functor LR adds a disjoint base point to the classifying space, and the
counit LR! id induces a stable equivalence of spectra [18], 2.1. Hence LR preserves both
stable and unstable equivalences. Iterating ðqþ 1Þ times yields the assertion for Zq. r

Lemma 4.11. Let I be the category of finite sets and injective functions, and let m A I .

If C : I ! Perm is a functor that sends each j : m! n A I to a stable (resp. unstable) equiv-

alence CðjÞ : CðmÞ ! CðnÞ, then the canonical functors

CðmÞ  @ ZCðmÞ ! DhocolimI C

are stable (resp. unstable) equivalences.

Proof. This follows from Lemmas 4.5 and 4.8. r

5. The homotopy colimit of a graded bipermutative category

We are now ready for a key proposition. To emphasize the graded nature of our con-
structions, we again use the notation Cx for the value of C at x, where we have previously
written CðxÞ.

Proposition 5.1. Let J be a permutative category, and let C� be a J-graded bipermu-

tative category. Then DhocolimJ C
� is a simplicial bipermutative category, and

C0  @ ZC0 ! DhocolimJ C
�
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are lax morphisms of simplicial bipermutative categories. The same statements hold when re-

placing ‘‘bipermutative’’ by ‘‘strictly bimonoidal ’’.

Furthermore, for each x A J, the canonical functors

Cx  @ ZCx ! DhocolimJ C
�

are maps of ZC0-modules.

Proof. Recall the adjoint pair ðL 0;R 0Þ from Section 4.2. If C� is a J-graded
bipermutative category, then so is L 0R 0C� ¼ C�þ, and ZC� becomes a simplicial J-graded
bipermutative category. By Lemma 5.2, which we will prove below, we get that
hocolimJ R 0ðL 0R 0ÞqC� becomes a zeroless bipermutative category for each qf 0. Hence

hocolimiz
J ZqC

� ¼ L hocolimJ R 0ðL 0R 0ÞqC�

is a bipermutative category, and all the simplicial structure maps are lax morphisms of
bipermutative categories. Therefore DhocolimJ C

� becomes a simplicial bipermutative
category.

Likewise, for each qf 0, Lemma 5.2 below guarantees that

ZqC
0 ! hocolimiz

J ZqC
�

is a lax morphism of bipermutative categories and that each

ZqC
x ! hocolimiz

J ZqC
�

is a map of ZqC
0-modules, so we are done by functoriality. r

We omit the forgetful functors R and R 0 in the statement and proof of the following
lemma, which contains the most detailed diagram chasing required in this paper.

Lemma 5.2. Let J be a permutative category. If C� is a J-graded bipermutative cate-

gory, then Thomason’s homotopy colimit of permutative categories hocolimJ C
� is a zeroless

bipermutative category. The canonical functor C0 ! hocolimJ C
� is a lax morphism of zero-

less bipermutative categories. Furthermore, for each x A J, the canonical functor

Cx ! hocolimJ C
�

is a map of zeroless C0-modules.

If C� is a J-graded strictly bimonoidal category, then hocolimJ C
� is a zeroless strictly

bimonoidal category with a lax morphism of zeroless strictly bimonoidal categories

C0 ! hocolimJ C
�;

and zeroless C0-module maps Cx ! hocolimJ C
�.
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Proof. Thomason showed that the homotopy colimit is a permutative category
without zero. The additive twist isomorphism

tl : n½ðx1;X1Þ; . . . ; ðxn;XnÞ�lm½ðy1;Y1Þ; . . . ; ðym;YmÞ�

!G m½ðy1;Y1Þ; . . . ; ðym;YmÞ�l n½ðx1;X1Þ; . . . ; ðxn;XnÞ�

is given by
�
wðn;mÞ; id; id

�
, where wðn;mÞ A Snþm is as in Example 2.3. Let ½X � and ½Y � be

shorthand notations for the objects n½ðx1;X1Þ; . . . ; ðxn;XnÞ� and m½ðy1;Y1Þ; . . . ; ðym;YmÞ�,
respectively. The twist isomorphism for l then appears as

tl : ½X �l ½Y � !G ½Y �l ½X �:

In order to distinguish the multiplicative structure of C� from the one on the homo-
topy colimit, we shall simply denote the composition functor n on C� by juxtaposition of
objects, or by ‘�’. The multiplicative bifunctorn on the homotopy colimit is then defined at
the object level by

n½ðx1;X1Þ; . . . ; ðxn;XnÞ�nm½ðy1;Y1Þ; . . . ; ðym;YmÞ�

:¼ nm½ðx1 þ y1;X1Y1Þ; . . . ; ðx1 þ ym;X1YmÞ; . . . ; ðxn þ y1;XnY1Þ; . . . ; ðxn þ ym;XnYmÞ�;

where the entries are ordered lexicographically. We will use the shorthand notation
½X �n ½Y � for this object.

The object 1 :¼ 1½ð0; 1Þ� is a unit for n. With these definitions, as extended below to
the morphism level, ðhocolimJ C

�;n; 1Þ is a strict monoidal category.

We will define the multiplicative twist map tn : ½X �n ½Y � !G ½Y �n ½X � as a compos-
ite of two morphisms. First, we apply the twist map gn for the multiplication in C� to every
entry of the form XiYj. The triple ðidnm; w

xi;yj ; gnÞ defines a morphism

nm½ðx1 þ y1;X1Y1Þ; . . . ; ðx1 þ ym;X1YmÞ; . . . ; ðxn þ y1;XnY1Þ; . . . ; ðxn þ ym;XnYmÞ�

! nm½ðy1 þ x1;Y1X1Þ; . . . ; ðym þ x1;YmX1Þ; . . . ; ðy1 þ xn;Y1XnÞ; . . . ; ðym þ xn;YmXnÞ�:

(Here w is the twist map in J. To be precise, the third coordinate of the morphism is really
Cðwxi;yjÞðgnÞ, but we omit Cðwxi;yjÞ from the notation.) Second, we use the permutation
sn;m A Snm that induces matrix transposition, that is, transposition in the lexicographic or-
dering of the entries. The triple ðsn;m; idyjþxi

; idÞ defines a morphism

nm½ðy1 þ x1;Y1X1Þ; . . . ; ðym þ x1;YmX1Þ; . . . ; ðy1 þ xn;Y1XnÞ; . . . ; ðym þ xn;YmXnÞ�

! mn½ðy1 þ x1;Y1X1Þ; . . . ; ðy1 þ xn;Y1XnÞ; . . . ; ðym þ x1;YmX1Þ; . . . ; ðym þ xn;YmXnÞ�:

Let the twist map for n be the composite morphism

tn¼ ðsn;m; idyjþxi
; idÞ � ðidnm; w

xi;yj ; gnÞ:

As matrix transposition squares to the identity, wyj ;xi � wxi;yj ¼ id and g2
n¼ id, we ob-

tain that t2
n¼ id. If ½X � ¼ 1 is the multiplicative unit, then we have that s1;m is the identity
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in Sm and w0;yj is the identity as well, so tn : 1n ½Y � ! ½Y �n 1 is the identity. Similarly
one shows that tn gives the identity morphism if ½Y � ¼ 1 is the multiplicative unit.

We have now verified properties (1), (2) and (3) of Definition 2.1, at the level of ob-
jects. We leave it to the reader to check property (4). Property (5) is disregarded in the zero-
less situation.

Writing out ð½X �n ½Y �Þl ð½X 0�n ½Y �Þ and ð½X �l ½X 0�ÞnY , we get the same ob-
ject, and we define the right distributivity dr to be the identity morphism between these
two expressions. The left distributivity dl involves a reordering of elements. It is a mor-
phism

dl : ð½X �n ½Y �Þl ð½X �n ½Y 0�Þ ! ½X �n ð½Y �l ½Y 0�Þ:

The source is

ðnmþ nm 0Þ½ðx1 þ y1;X1Y1Þ; . . . ; ðxn þ ym;XnYmÞ; ðx1 þ y 01;X1Y 01Þ; . . . ; ðxn þ y 0m 0 ;XnY 0m 0 Þ�;

while the target is

nðmþm 0Þ½ðx1 þ y1;X1Y1Þ; . . . ; ðx1 þ y 0m 0 ;X1Y 0m 0 Þ; . . . ;

ðxn þ y1;XnY1Þ; . . . ; ðxn þ y 0m 0 ;XnY 0m 0 Þ�:

The same terms ðxi þ yj;XiYjÞ and ðxi þ y 0j ;XiY
0

j Þ occur in both the source and target, but
their ordering di¤ers by a suitable permutation x A Snmþnm 0 . Thus we define the morphism
dl by the triple ðx; id; idÞ. Note that x is the left distributivity isomorphism in the bipermu-
tative category of finite sets and functions, as defined in Example 2.3.

We have to check that the so-defined distributivity transformation dl coincides with
tn � ðtnl tnÞ. The twist terms gn and w occur twice in the composition, so they reduce to
the identity. What is left is a permutation that is caused by tn � ðtnl tnÞ, and this is pre-
cisely x.

We have now verified properties (6) and (7) of Definition 2.1. Since the isomorphisms
tl, dr and dl are all of the form ðs; id; idÞ for suitable permutations s, properties (8), (9)
and (10) all follow from the corresponding ones in the bipermutative category of finite
sets and functions.

This finishes the proof that the zeroless bipermutative category structure works fine
on objects. It remains to establish that l and n are bifunctors on hocolimJ C

�, that the
various associativity and distributivity laws are natural, and that the additive and multipli-
cative twists are natural.

Forl this is straightforward and can be found in [18]: suppose given two morphisms

ðc; li; %jÞ : n½ðx1;X1Þ; . . . ; ðxn;XnÞ� ! n 0½ðx 01;X 01Þ; . . . ; ðx 0n 0 ;X 0n 0 Þ�

and

ðj; ki; pjÞ : m½ðy1;Y1Þ; . . . ; ðym;YmÞ� ! m 0½ðy 01;Y 01Þ; . . . ; ðy 0m 0 ;Y 0m 0 Þ�
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in the homotopy colimit, with c : n! n 0, li : xi ! x 0cðiÞ and %j :
L

cðiÞ¼j

CðliÞðXiÞ ! X 0j , and

j : m! m 0 with corresponding ki and pj. Then there is a surjection cþ j from nþm to
n 0 þm 0, and we can recycle the morphisms li and ki to give corresponding morphisms in
J. In the third coordinate we can use the morphisms %j and pj to get new ones because the
preimages of n 0 and m 0 under cþ j are disjoint. Taken together, this results in a morphism
from the sum ðnþmÞ½ðx1;X1Þ; . . . ; ðym;YmÞ� to the sum ðn 0 þm 0Þ½ðx 01;X 01Þ; . . . ; ðy 0m 0 ;Y 0m 0 Þ�.
It is straightforward to see that l defines a bifunctor, that the associativity law for l is
natural, and that the additive twist tl is natural.

For the remainder of this proof let us denote the elements in the set nm ¼ f1; . . . ; nmg
as pairs ði; jÞ with 1e ie n and 1e j em. The tensor product of the morphisms ðc; li; %jÞ
and ðj; ki; pjÞ has three coordinates. On the first we take the product of the surjections, i.e.,

nm C ði; jÞ 7!
�
cðiÞ; jð jÞ

�
A n 0m 0;

and on the second we take the sum li þ kj : xi þ yj ! x 0cðiÞ þ y 0jð jÞ of the morphisms

li; kj A J. The third coordinate of the morphism ðc; li; %jÞn ðj; ki; pjÞ has to be a morphism

L
ðcðiÞ;jð jÞÞ¼ðr; sÞ

Cðli þ kjÞðXi � YjÞ ¼
L

ðcðiÞ;jð jÞÞ¼ðr; sÞ
CðliÞðXiÞ � CðkjÞðYjÞ ! X 0r � Y 0s

in Cðx 0r þ y 0sÞ, for each 1e re n 0 and 1e sem 0. Here, the sum is taken with respect to
the lexicographical ordering of the indices ði; jÞ. Consider the following diagram:

L
ðcðiÞ;jð jÞÞ¼ðr; sÞ

CðliÞðXiÞ � CðkjÞðYjÞ

L
cðiÞ¼r

L
jð jÞ¼s

CðliÞðXiÞ � CðkjÞðYjÞ
L

jð jÞ¼s

L
cðiÞ¼r

CðliÞðXiÞ � CðkjÞðYjÞ

L
cðiÞ¼r

dl

???y
???y L

jð jÞ¼s

dr

L
cðiÞ¼r

CðliÞðXiÞ �
� L

jð jÞ¼s

CðkjÞðYjÞ
� L

jð jÞ¼s

� L
cðiÞ¼r

CðliÞðXiÞ
�
� CðkjÞðYjÞ

L
cðiÞ¼r

id�ps

???y
???y L

jð jÞ¼s

%r�idL
cðiÞ¼r

CðliÞðXiÞ � Y 0s
L

jð jÞ¼s

X 0r � CðkjÞðYjÞ

dr

???y
???ydl� L

cðiÞ¼r

CðliÞðXiÞ
�
� Y 0s X 0r �

� L
jð jÞ¼s

CðkjÞðYjÞ
�

X 0r � Y 0s :

��������!  ������
��

 ������
�� ��������!

id s

%r�id id�ps

The isomorphism s is an appropriate permutation of the summands. The distributivity laws
in C� are natural with respect to morphisms in C�, and therefore we have the identities
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dr �
� L

cðiÞ¼r

idCðliÞðXiÞ � ps

�
¼

�
ðid L

cðiÞ¼r

CðliÞðXiÞÞ � ps

�
� dr;

dl �
� L

jð jÞ¼s

%r � idCðkjÞðYjÞ

�
¼

�
%r � ðid L

jð jÞ¼s

CðkjÞðYjÞÞ
�
� dl:

Combining these with the generalized pentagon equation

dr �
L

cðiÞ¼r

dl ¼ dl �
L

jð jÞ¼s

dr � s;

we see that the diagram commutes. We define the third coordinate in the tensor product
morphism to be the composition given by either of the two branches.

Note that for ðc; li; %jÞn id the definition reduces to ð%j � idÞ � dr, and similarly the
third coordinate of idn ðj; ki; pjÞ is ðid � pjÞ � dl. In particular, the tensor product of iden-
tity morphisms is an identity morphism.

Compositions of morphisms in the homotopy colimit involve an additive twist (see
[18], p. 1631). For

ðc 0; l 0i ; % 0j Þ : n 0½ðx 01;X 01Þ; . . . ; ðx 0n 0 ;X 0n 0 Þ� ! n 00½ðx 001 ;X 001 Þ; . . . ; ðx 00n 00 ;X 00n 00 Þ�

the morphism
L

c 0cðiÞ¼r

Cðl 0cðiÞliÞðXiÞ ! X 00r is given as a composition. First, one has to per-

mute the summands

s :
L

c 0cðiÞ¼r

Cðl 0cðiÞliÞðXiÞ !
L

c 0ðkÞ¼r

L
cðiÞ¼k

Cðl 0kliÞðXiÞ:

Then, as we assumed that C is a functor to Strict, we know that

L
c 0ðkÞ¼r

L
cðiÞ¼k

Cðl 0kliÞðXiÞ ¼
L

c 0ðkÞ¼r

L
cðiÞ¼k

Cðl 0kÞCðliÞðXiÞ

¼
L

c 0ðkÞ¼r

Cðl 0kÞ
� L

cðiÞ¼k

CðliÞðXiÞ
�
:

Finally, we apply the morphism

L
c 0ðkÞ¼r

Cðl 0kÞð%kÞ :
L

c 0ðkÞ¼r

Cðl 0kÞ
� L

cðiÞ¼k

CðliÞðXiÞ
�
!

L
c 0ðkÞ¼r

Cðl 0kÞðX 0kÞ

and continue with % 0r to end up in X 00r .

In order to prove that the tensor product actually defines a bifunctor, we will show
that

29Baas, Dundas, Richter and Rognes, Ring completion of rig categories

Bereitgestellt von | Staats- und Universitaetsbibliothek Hamburg (Universitätsklinikum )
Angemeldet | 172.16.1.226

Heruntergeladen am | 02.04.12 13:45



ðc; li; %jÞn ðj; ki; pjÞ ¼
�
ðc; li; %jÞn id

�
�
�
idn ðj; ki; pjÞ

�
¼

�
idn ðj; ki; pjÞ

�
�
�
ðc; li; %jÞn id

�
and

�
ðc 0; l 0i ; % 0j Þn id

�
�
�
ðc; li; %jÞn id

�
¼

�
ðc 0; l 0i ; % 0jÞ � ðc; li; %jÞ

�
n id;

and leave the check of the remaining identity to the reader.

The first equation is straightforward to see because
�
ðc; li; %jÞn id

�
�
�
idn ðj; ki; pjÞ

�
corresponds to the left branch of the diagram above and the other composition is given by
the right branch.

For the second equation we have to check that

��
ð% 0 � %Þ � id

�
� dr

�
s
¼

�
ð% 0 � idÞ � dr � ð% � idÞ � dr

�
s
:

Both morphisms have source

L
c 0cðiÞ¼s

Cðl 0cðiÞli þ idÞðXi � YjÞ ¼
L

c 0cðiÞ¼s

Cðl 0cðiÞliÞðXiÞ � Yj

and the left-hand side corresponds to the left branch of the following diagram and the
right-hand side to the right branch:

L
c 0cðiÞ¼s

Cðl 0cðiÞliÞðXiÞ � Yj

L
c 0cðiÞ¼s

Cðl 0cðiÞli þ idÞðXi � YjÞ

dr

???y
???ys� L

c 0cðiÞ¼s

Cðl 0cðiÞliÞðXiÞ
�
� Yj

L
c 0ðkÞ¼s

L
cðiÞ¼k

Cðl 0cðiÞ þ idÞCðli þ idÞðXi � YjÞ

s�id

???y
����� L

c 0ðkÞ¼s

L
cðiÞ¼k

Cðl 0cðiÞÞCðliÞðXiÞ
�
� Yj

L
c 0ðkÞ¼s

Cðl 0k þ idÞ
� L

cðiÞ¼k

Cðli þ idÞðXi � YjÞ
�

����
???y L

c 0ðkÞ¼s

Cðl 0kþidÞðð%k �idÞ�drÞ� L
c 0ðkÞ¼s

Cðl 0kÞ
� L

cðiÞ¼k

CðliÞðXiÞ
��
� Yj

L
c 0ðkÞ¼s

Cðl 0kÞðX 0kÞ � Yj

� L
c 0ðkÞ¼s

Cðl 0k Þð%kÞ
	
�id

???y
???ydr� L

c 0ðkÞ¼s

Cðl 0kÞðX 0kÞ
�
� Yj

� L
c 0ðkÞ¼s

Cðl 0kÞðX 0kÞ
�
� Yj

X 00s � Yj:

 ������
�� ��������!

% 0s �id % 0s �id
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Naturality of dr in C� ensures that dr can change place with
L

c 0ðkÞ¼s

Cðl 0k þ idÞð%k � idÞ on the

right branch. That dr � s ¼ ðs � idÞ � dr holds because C� satisfies property (8) from Defini-
tion 2.1, and hence the diagram commutes.

In order to show that the associativity identification is natural, we have to prove
that

�
ðc1; l1

i ; %
1
j Þn ðc2; l2

i ; %
2
j Þ
�
n ðc3; l3

i ; %
3
j Þ ¼ ðc1; l1

i ; %
1
j Þn

�
ðc2; l2

i ; %
2
j Þn ðc3; l3

i ; %
3
j Þ
�

for morphisms in the homotopy colimit. The claim is obvious on the coordinates of the
surjections and the morphisms in J.

For proving the identity in the third coordinate of morphisms, note that the natural-
ity of n implies that we can write

�
ðc1; l1

i ; %
1
j Þn ðc2; l2

i ; %
2
j Þ
�
n ðc3; l3

i ; %
3
j Þ

¼
��
ðc1; l1

i ; %
1
j Þn id

�
n id

�
�
��

idn ðc2; l2
i ; %

2
j Þ
�
n id

�
�
�
ðidn idÞn ðc3; l3

i ; %
3
j Þ
�
:

Therefore, it su‰ces to prove the claim for each of the factors. We will show it for the
middle one and leave the other ones to the curious reader. Recall that idn ðc2; l2

i ; %
2
j Þ

has as third coordinate the composition ðid � %2
j Þ � dl and therefore

�
idn ðc2; l2

i ; %
2
j Þ
�
n id

has third coordinate

��
ðid � %2

j Þ � dl
�
� id

�
� dr ¼ ðid � %2

j � idÞ � ðid � dlÞ � dr:

But ðid � dlÞ � dr ¼ ðdr � idÞ � dl (equation (7 0) of Definition 2.4) holds in C�, and therefore
the third coordinate equals

ðid � %2
j � idÞ � ðid � dlÞ � dr ¼ ðid � %2

j � idÞ � ðdr � idÞ � dl

which is the third coordinate of idn
�
ðc2; l2

i ; %
2
j Þn id

�
.

Naturality of the multiplicative twist map can be seen as follows. We have to show
that

tn �
�
ðc; li; %jÞn ðj; ki; pjÞ

�
¼

�
ðc; li; %jÞn ðj; ki; pjÞ

�
� tn:

On the first coordinate of the morphisms this reduces to the equality

sn 0;m 0 � ðc; jÞði; jÞ ¼
�
jð jÞ;cðiÞ

�
¼ ðj;cÞ � sn;mði; jÞ;

and on the second coordinate we have the equation

w � ðli þ kjÞ ¼ ðkj þ liÞ � w

because w is natural. Thus, it remains to prove that the above equation holds in the third
coordinate, which amounts to showing that the following diagram commutes:
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L
cðiÞ¼r

L
jð jÞ¼s

CðliÞðXiÞ � CðkjÞðYjÞ
L

jð jÞ¼s

L
cðiÞ¼r

CðkjÞðYjÞ � CðliÞðXiÞ???ys�1L
cðiÞ¼r

L
jð jÞ¼s

CðkjÞðYjÞ � CðliÞðXiÞ???y L
cðiÞ¼r

dr

L
cðiÞ¼r

CðliÞðXiÞ �
� L

jð jÞ¼s

CðkjÞðYjÞ
�

::::::::::::X

L
cðiÞ¼r

gn L
cðiÞ¼r

� L
jð jÞ¼s

CðkjÞðYjÞ
�
� CðliÞðXiÞ

L
cðiÞ¼r

id�ps

???y
???y L

cðiÞ¼r

ps�idL
cðiÞ¼r

CðliÞðXiÞ � Y 0s
L

cðiÞ¼r

Y 0s � CðliÞðXiÞ

dr

???y
???ydl� L

cðiÞ¼r

CðliÞðXiÞ
�
� Y 0s Y 0s �

� L
cðiÞ¼r

CðliÞðXiÞ
�

%r�id

???y
???yid�%r

X 0r � Y 0s Y 0s � X 0r :

�������!ðLL
gnÞ�s

�������������������������!gn

L
cðiÞ¼r

dl

???????????y

The top diagram commutes because dl is defined in terms of dr and gn. For the bottom di-
agram we apply the same argument together with the naturality of gn.

We have to check that right distributivity is the identity on morphisms. Consider
three morphisms as above. When we focus on the surjections c1 : n! n 0, c2 : m! m 0,
and c3 : l ! l 0, we see that a condition like ðc1 þ c2Þc3ði; jÞ ¼ ðr; sÞ only a¤ects either
the preimage of n 0l 0 or the preimage of m 0l 0 in ðnþmÞl, but never both. Therefore, the
third coordinate of the morphism

�
ðc1; l1

i ; %
1
j Þl ðc2; l2

i ; %
2
j Þ
�
n ðc3; l3

i ; %
3
j Þ

is either a third coordinate of ðc1; l1
i ; %

1
j Þn ðc

3; l3
i ; %

3
j Þ or of ðc2; l2

i ; %
2
j Þn ðc

3; l3
i ; %

3
j Þ, and

thus right distributivity is the identity on morphisms.

In the J-graded bipermutative case, the naturality of the left distributivity isomor-
phism follows from the one of dr and the multiplicative twist. In both the bipermutative
and the strictly bimonoidal case, left distributivity is given by ðx; id; idÞ. Therefore natural-
ity of dl in the bipermutative setting proves naturality in the strictly bimonoidal setting as
well.

This finishes the proof that hocolimJ C
� is a bipermutative category without zero. We

now prove the remaining statements of the lemma.

There is a natural functor

G : C0 ! hocolimJ C
�
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which sends X A C0 to GðX Þ ¼ 1½ð0;X Þ�. Note that the functor G is strict (symmetric)
monoidal with respect to n, because Gð1Þ ¼ 1½ð0; 1Þ� and

GðXÞnGðYÞ ¼ 1½ð0;XÞ�n 1½ð0;YÞ�

¼ 1½ð0þ 0;X nYÞ�

¼ 1½ð0;X nYÞ� ¼ GðX nY Þ:

However, G is only lax symmetric monoidal with respect to l: there is a binatural trans-
formation hl¼ ðc; id; idÞ from GðX ÞlGðX 0Þ ¼ 1½ð0;XÞ�l 1½ð0;X 0Þ� ¼ 2½ð0;X Þ; ð0;X 0Þ�
to GðX lX 0Þ ¼ 1½ð0;X lX 0Þ�, given by the canonical surjection c : 2! 1 and identity
morphisms in the other two components. This morphism is of course not an isomor-
phism.

We have to show that the functor G respects the distributivity constraints dr ¼ id and
dl. In our situation we have that hn¼ id, so we have to check that

hl¼ hln id

and

G
�
tn � ðtnl tnÞ

�
� hl¼ ðidn hlÞ � tn � ðtnl tnÞ:

The first equation is just stating the fact that

2½ð0;XÞ; ð0;X 0Þ�n 1½ð0;YÞ� ���!hlnid
1½ð0;X lX 0Þ�n 1½ð0;Y Þ�����

����
2½ð0;X nY Þ; ð0;X 0nYÞ� 1


�
0; ðX lX 0ÞnY

�������!hl

commutes, in view of the identity dr : ðX nYÞl ðX 0nYÞ ¼ ðX lX 0ÞnY .

For the left distributivity law we should observe that the multiplicative twist tn on the
homotopy colimit reduces to the morphism ðid; w; gnÞ in the case of elements of length 1 in
the homotopy colimit, and that w0;0 ¼ id. Furthermore, idn ðc; id; idÞ ¼ ðc; id; idÞ holds.
Therefore

ðidn hlÞ � dl ¼
�
idn ðc; id; idÞ

�
� tn � ðtnl tnÞ

¼ ðc; id; idÞ �
�
id; id; gn � ðgnl gnÞ

�
¼

�
id; id; gn � ðgnl gnÞ

�
� ðc; id; idÞ ¼ GðdlÞ � hl:

The claim about the module structure is obvious.

As the left distributivity on the homotopy colimit is of the form ðx; id; idÞ, the above
proof carries over to the strictly bimonoidal case. r
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Lemma 5.3. If F : C� ! D� is a lax morphism of J-graded bipermutative categories

(resp. J-graded strictly bimonoidal categories), then it induces a lax morphism

F� : hocolimJ C
� ! hocolimJ D

�

of zeroless bipermutative categories (resp. zeroless strictly bimonoidal categories).

Proof. Of course, we define F� : hocolimJ C
� ! hocolimJ D

� on objects by

F�
�
n½ðx1;X1Þ; . . . ; ðxn;XnÞ�

�
:¼ n


�
x1;FðX1Þ

�
; . . . ;

�
xn;FðXnÞ

��
:

Note that with this definition F� is strict symmetric monoidal with respect to l even if F

was only lax symmetric monoidal.

Given a morphism

ðc; li; %jÞ : n½ðx1;X1Þ; . . . ; ðxn;XnÞ� ! m½ðy1;Y1Þ; . . . ; ðym;YmÞ�;

we define the induced morphism

ðc; li; %
F
j Þ : F�

�
n½ðx1;X1Þ; . . . ; ðxn;XnÞ�

�
! F�

�
m½ðy1;Y1Þ; . . . ; ðym;YmÞ�

�
as follows: we keep the surjection c and the morphisms li, and for the third coordinate we
take the composition

%F
j :

L
cðiÞ¼j

DðliÞ
�
FðXiÞ

�
¼

L
cðiÞ¼j

F
�
CðliÞðXiÞ

� ��!hl F

� L
cðiÞ¼j

CðliÞðXiÞ
� ��!Fð%jÞ

FðYjÞ:

The naturality of hl ensures that composition of morphisms is well-defined.

Let n½ðx1;X1Þ; . . . ; ðxn;XnÞ� and m½ðy1;Y1Þ; . . . ; ðym;YmÞ� be two objects in the cate-
gory hocolimJ C

�. Applying n� ðF�;F�Þ yields

nm

�

x1 þ y1;FðX1ÞnFðY1Þ
�
; . . . ;

�
xn þ ym;FðXnÞnFðYmÞ

��
whereas the composition F� �n gives

nm

�

x1 þ y1;FðX1 nY1Þ
�
; . . . ;

�
xn þ ym;FðXn nYmÞ

��
:

Thus, we can use ðid; id; hnÞ to obtain a natural transformation h�n from n� ðF�;F�Þ to
F� �n. This transformation inherits all properties from hn. In particular, h�n is lax symmet-
ric monoidal if hn was so.

It remains to check the properties concerning the distributivity laws. As dr is the iden-
tity on the J-graded bipermutative category and on the homotopy colimit, and hl is the
identity on the homotopy colimit, the equalities reduce to

h�nl h�n¼ h�n
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and

F�ðdlÞ � ðh�nl h�nÞ ¼ h�n � dl:

The first equation is straightforward to check.

The left distributivity law in the homotopy colimit is given by dl ¼ ðx; id; idÞ and
h�nl h�n is equal to

h�nl h�n¼ ðidnm; id; hnÞl ðidnm 0 ; id; hnÞ:

As addition in the homotopy colimit is given by concatenation, we can simplify the above
expression to ðidnmþnm 0 ; id; hnÞ. As dl di¤ers from the identity only in the first coordinate,
and h�nl h�n only in the third coordinate, these morphisms commute. r

6. A ring completion device

Recall from Section 3.2 the construction GM : I
Ð
Q! Strict.

Lemma 6.1. Let M be a permutative category. Then

(1) the canonical functor M! hocolimI
Ð
Q GM is a stable equivalence,

(2) hocolimI
Ð
Q GM is group complete (i.e., its monoid of path components is a group),

and

(3) the canonical functor hocolimT AQ1 GMð1;TÞ !@ hocolimI
Ð
Q GM is an unstable

equivalence.

Proof. Recall that spectrification commutes with homotopy colimits [18], Theorem
4.1, i.e., hocolimJ Spt is equivalent to Spt hocolimJ . Given an object n A I , the homotopy
colimit hocolimT AQn Spt GMðn;TÞ can be calculated by taking the homotopy colimit in
each of the n directions of Qn successively. Since all nontrivial maps involved are diagonal
maps, we see that the homotopy colimit in the n-th direction can be identified with the
homotopy colimit hocolimS AQðn�1Þ Spt GMðn� 1;SÞ, through the inclusion n� 1! n that
skips n. By induction it follows that each morphism in the I -shaped diagram
n 7! hocolimT AQn GMðn;TÞ is a stable equivalence. Lemma 4.5 then says that the functor

M! hocolimn A I hocolimT AQn GMðn;TÞ

is a stable equivalence.

The claim that the functor M! hocolimI
Ð
Q GM is a stable equivalence follows since

by extending Thomason’s proof [16] of hocolimI jQjF jI
Ð
Qj ¼ hocolimI

Ð
Q � (for the trivial

functor *) to allow for arbitrary functors from I
Ð
Q, we have an equivalence

hocolimI
Ð
Q Spt GMF hocolimn A I hocolimT AQn Spt GMðn;TÞ:

See also [15], 2.3, for a write-up in the dual situation.
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That p0 of hocolimI
Ð
Q GM is a group can be seen as follows. It is enough to show that

elements of the form 1

�
ðn;SÞ; a

��
have negatives, for nf 1, since all other elements are

sums of ones of this form. If S 3 n, then there is an inclusion S LT A Qn with T contain-
ing a negative number, so there is a path

1

�
ðn;SÞ; a

��
! 1


�
ðn;TÞ; 0

��
 1


�
ð0; 0Þ; 0

��
in the homotopy colimit, and the element represents zero.

If S ¼ n, so that a A MPn, let b A MPn be given by bU ¼ aV , where V ¼ U W fng if
n B U and V ¼ Unfng if n A U , for all U L n. Then al b is isomorphic to MnðiÞðcÞ for
some c A MPS, where S ¼ n� 1 and i : S H n is the inclusion. Hence there is a path

1½ðn; nÞ; a�l 1½ðn; nÞ; b� ! 1½ðn; nÞ; al b� $ 1½ðn; nÞ;MnðiÞðcÞ�  1½ðn;SÞ; c�

in the homotopy colimit, and, as we saw above, the right-hand element represents zero.

Now, since stable equivalences between group complete symmetric monoidal catego-
ries are unstable equivalences, the third claim also follows. r

Lemma 6.2. If M is a permutative category with zero such that all morphisms are iso-

morphisms and each additive translation is faithful, then there is an unstable equivalence

hocolimS AQ1 GMð1;SÞ !@ ð�MÞM:

Proof. This is entirely due to Thomason. Theorem 5.2 in [18] asserts that there is an
unstable equivalence from hocolimS AQ1 GMð1;SÞ to the ‘‘simplified double mapping cylin-
der’’, and his argument on pp. 1657–1658 exhibits an unstable equivalence from the simpli-
fied double mapping cylinder to ð�MÞM. r

Remark 6.3. The unstable equivalence hocolimS AQ1 GMð1;SÞ !@ ð�MÞM is the ad-
ditive extension of the assignment that sends 1½f�1g; 0� and 1½j; a� to ð0; 0Þ A ð�MÞM, and
1½f1g; ða; bÞ� to ða; bÞ. The map on morphisms is straightforward, once one declares that the
morphism 1½j; a� ! 1½f1g; ða; aÞ� is sent to ½ida; a� : ð0; 0Þ ! ða; aÞ A ð�MÞM.

Collecting Proposition 3.2, Lemma 5.2 and Lemma 6.1, we obtain our zeroless ring
completion.

Corollary 6.4. Let R be a bipermutative category (resp. a strictly bimonoidal cate-

gory). The canonical lax morphism

R! hocolimI
Ð
Q GR

is a stable equivalence of zeroless bipermutative categories (resp. zeroless strictly bimonoidal

categories), and

hocolimS AQ1 GRð1;SÞ !@ hocolimI
Ð
Q GR

is an unstable equivalence of R-modules.
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Using Proposition 5.1 to add zeros, and tracing the action of ZR, we have the main
result:

Theorem 6.5. If R is a commutative rig category (resp. a rig category), then

R ¼ DhocolimI
Ð
Q GR

is a simplicial commutative ring category (resp. a simplicial ring category). Here GR is the

I
Ð
Q-graded bipermutative category (resp. I

Ð
Q-graded strictly bimonoidal category) of

Proposition 3.2 applied to the bipermutative category (resp. strictly bimonoidal category) as-

sociated with R.

The simplicial rig maps of Proposition 5.1

R @ ZR! R

are stable equivalences of ZR-modules. Furthermore, if R is a groupoid with faithful additive

translation, then the maps

ð�RÞR @ Zð�RÞR @ Z hocolimS AQ1 GRð1;SÞ !@ R

form a chain of unstable equivalences of ZR-modules.
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