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UNIQUENESS OF E∞ STRUCTURES
FOR CONNECTIVE COVERS

ANDREW BAKER AND BIRGIT RICHTER

(Communicated by Paul Goerss)

Abstract. We refine our earlier work on the existence and uniqueness of
E∞ structures on K-theoretic spectra to show that the connective versions of
real and complex K-theory as well as the connective Adams summand � at
each prime p have unique structures as commutative S-algebras. For the p-
completion �p we show that the McClure-Staffeldt model for �p is equivalent as

an E∞ ring spectrum to the connective cover of the periodic Adams summand
Lp. We establish a Bousfield equivalence between the connective cover of the
Lubin-Tate spectrum En and BP〈n〉.

Introduction

The aim of this short note is to establish the uniqueness of E∞ structures on
connective covers of certain periodic commutative S-algebras E, most prominently
for the connective p-complete Adams summand. It is clear that the connective
cover of an E∞ ring spectrum inherits an E∞ structure; there is even a functorial
way of assigning a connective cover within the category of E∞ ring spectra [10,
VII.4.3]. But it is not obvious in general that this E∞ multiplication is unique.

Our main concern is with examples in the vicinity of K-theory; we apply our
uniqueness theorem to real and complex K-theory and their localizations and com-
pletions and to the Adams summand and its completions.

The existence and uniqueness of E∞ structures on the periodic spectra KU ,
KO and L was established in [5] by means of the obstruction theory for E∞ struc-
tures developed by Goerss and Hopkins [9] and Robinson [13]. Note however,
that obstruction-theoretic methods would fail in the connective cases. Let e be a
commutative ring spectrum. If e satisfies some Künneth and universal coefficient
properties [13, proposition 5.4], then the obstruction groups for E∞ multiplications
consist of André-Quillen cohomology groups in the context of differential graded
E∞ algebras applied to the graded commutative e∗-algebra e∗e. Besides problems
with non-projectivity of e∗e over e∗, the algebra structures of ku∗ku, ko∗ko and
�∗� are far from being étale, and therefore one would obtain nontrivial obstruction
groups. One would then have to identify actual obstruction classes in these ob-
struction groups in order to establish the uniqueness of the given E∞ structure,
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but at the moment, this seems to be an intractable problem. Thus an alternative
approach is called for.

In Theorem 1.3 we prove that a unique E∞ structure on E gives rise to a unique
structure on the connective cover for spectra E which are obtained from some con-
nective spectrum via a process of Bousfield localization and which satisfy some mild
homotopical conditions (see Assumption 1.2). In particular, we identify the E∞
structure on the p-completed connective Adams summand �p provided by McClure
and Staffeldt in [11] with the one that arises by taking the unique E∞ structure on
the periodic Adams summand L = E(1) developed in [5] and taking its connective
cover.

Our theorem applies as well to the connective covers of the Lubin-Tate spectra
En, and we prove in section 3 that these spectra are Bousfield equivalent to the
truncated Brown-Peterson spectra BP〈n〉. Unlike other spectra that are Bousfield
equivalent to BP〈n〉, such as the connective cover of the completed Johnson-Wilson
spectrum, Ê(n), the connective cover of En is calculationally convenient in the sense
that its coefficients (see (3.1)) are rather small. So far, only BP〈1〉 = � is known
to have an E∞ structure, and we propose the connective cover of En as an E∞
approximation of BP〈n〉.

1. E∞ structures on connective covers

We will give some background on three standard constructions, which we will
need later: namely, the connective covers functor, the bar construction that turns
an E∞-ring spectrum into a commutative S-algebra and Bousfield localization.

• May et al. constructed a connective cover functor in [10, VII.3.2], which we
denote by c(−). For every E∞ ring spectrum E, c(E) is a connective E∞
ring spectrum E which depends functorially on E and which comes with a
morphism of E∞ ring spectra c(E) ε−→ E [10, VII.4.3]. This map induces
an isomorphism on homotopy groups in nonnegative degrees.

• For any E∞ ring spectrum E, there is a weakly equivalent commutative
S-algebra B(E), with an equivalence

λ : B(E)
ρ−→ E,

in the E∞ category [8, II.3.6].
• For a commutative S-algebra R and an R-module M , we let LR

M (−) denote
Bousfield localization at M in the category of R-modules and we denote the
localization map by σ : E −→ LR

M (E) for any R-module E [8, chapter VIII].
The case that will be most relevant to us is M = R[X−1], where an element
X ∈ π∗R is inverted. The case R = S corresponds to ordinary Bousfield
localization.

A ring spectrum for us is a homotopy notion, i.e., it is an object in the homotopy
category of spectra with a monoid structure in the homotopy category. We will use
the following notion of uniqueness for E∞ structures.

Definition 1.1. An E∞ structure on some homotopy commutative and associative
ring spectrum E is unique if the following holds. For every E∞ ring spectrum
E′ and every map of ring spectra ϕ : E′ −→ E that induces an isomorphism on
homotopy groups, there is a morphism in the homotopy category of E∞ ring spectra
ϕ′ : E′ −→ E such that ϕ′ is homotopic to ϕ as maps of ring spectra.
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In the appendix to this paper, we relate this notion to the one used in obstruction
theory.

For the rest of the paper we assume the following.

Assumption 1.2. Let E be a periodic commutative S-algebra with periodicity
element v ∈ E∗ of positive degree. We assume that E is obtained from a connective
commutative S-algebra e by Bousfield localization at e[v−1] in the category of e-
modules, i.e., E = Le

e[v−1](e) = e[v−1]. Furthermore we assume that the localization
map induces an isomorphism between the homotopy groups of e and the homotopy
groups of the connective cover c(E) of E and that E satisfies a universal coefficient
theorem.

Theorem 1.3. Assume that we know that the E∞ structure on E is unique. Then
the E∞ structure on c(E) is unique.

Proof. Each commutative S-algebra can be viewed as an E∞ ring spectrum. Let
e′ be a model for the connective cover c(E), i.e., e′ is an E∞ ring spectrum with
a map of ring spectra ϕ to c(E), such that π∗(ϕ) is an isomorphism. Write v ∈ e′∗
for the isomorphic image of v under the inverse of π∗(ϕ). The universal property
of e[v−1] [8, V.1.13] asserts that the ring map ε ◦ϕ ◦ ρ : B(e′) −→ E = e[v−1] gives
rise to a map from B(e′)[v−1] to E. Due to the presence of a universal coefficient
theorem for E, the homotopy classes of maps from B(e′)[v−1] to E are in bijective
correspondence to the E∗-module maps from E∗(B(e′)[v−1]) to E∗. As we started
with a ring map ϕ, we obtain a map of E∗-algebras from E∗(B(e′)[v−1]) to E∗, and
this corresponds to a map of ring spectra from B(e′)[v−1] to E.

As the E∞ structure on E is unique by assumption, this ring map can be replaced
by an equivalent equivalence, ξ, of E∞ ring spectra. We consider the following
diagram whose dotted lines provide a zigzag of E∞ equivalences and hence a map
in the homotopy category of E∞ ring spectra.

c(B(e′))

c(σ)

��

ε

��

c(e)

c(σ)

��

ε

��
B(e′)

ρ
��

σ

��

e′ �� �������������� e

σ

��

c(LB(e′)
B(e′)[v−1](B(e′)))

c(ξ)
��

ε

��������������
c(E)

ε

������������

B(e′)[v−1]
ξ

�� E = e[v−1]

�

Real and complex K-theory, ko and ku, have E∞ structures obtained using
algebraic K-theory models [10, VIII, §2]. The connective Adams summand � has
an E∞ structure because it is the connective cover of the Johnson-Wilson spectrum
E(1) with E(1)∗ = Z(p)[v±1 ], |v1| = 2p − 2. In the following we will refer to these
models as the standard ones. The E∞ structures on KO, KU and E(1) are unique
by [5, theorems 7.2, 6.2]. In all of these cases, the periodic versions are obtained
by Bousfield localization [8, VIII.4.3].
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Corollary 1.4. The E∞ structures on ko, ku and � are unique.

2. The p-complete connective Adams summand

In [11], McClure and Staffeldt construct a model for the p-completed connec-
tive Adams summand using the algebraic K-theory of fields. Let �̃ = K(k′), the
algebraic K-theory spectrum of k′ =

⋃
i Fqpi , where q is a prime which gener-

ates the p-adic units Z×
p . Then the p-completion of �̃ is additively equivalent to

the p-completed connective Adams summand �p [11, proposition 9.2]. For further
details, see also [2, §2]. Note that the p-completion �p inherits an E∞ structure
from � because p-completion is Bousfield localization with respect to the mod p
Moore spectrum [7, proposition 2.5] and therefore preserves commutative S-algebra
structures [8, VIII.2.2].

An a priori different model for the p-completion of the connective Adams sum-
mand can be obtained by taking the connective cover of the p-complete periodic
version L = E(1). For the following we denote the composition B ◦ c by c̄.

Note that p-completion and Bousfield localization of � in the category of �-
modules with respect to L are compatible in the following sense. Consider � = c̄(L)
and its p-completion

λ� : � −→ �p = (c̄(L))p.

The p-completion map λ is functorial in the spectrum; therefore the following dia-
gram of solid arrows commutes.

� = c̄(L)
λ� ��

�����������
�p = c̄(L)p

�����
����

���
�� c̄(Lp)

		��
��

��
��

L
λL �� Lp

The universal property of the connective cover functor ensures that there is a map
in the homotopy category of commutative S-algebras from �p to c̄(Lp) which is a
weak equivalence. In the following we will no longer distinguish �p from c̄(Lp) and
will denote this model simply by �p.

Proposition 2.1. The McClure-Staffeldt model �̃p of the p-complete connective
Adams summand is equivalent as an E∞ ring spectrum to �p.

Remark 2.2. If E is a commutative S-algebra with naive G-action for some group
G, then neither the connective cover functor c̄(−) nor Bousfield localization of
E has to commute with taking homotopy fixed points. As an example, consider
connective complex K-theory ku with the conjugation action by C2. The homotopy
fixed points kuhC2 are not equivalent to ko, but on the periodic versions we obtain
KUhC2 � KO.

Proof of Proposition 2.1. Consider the algebraic K-theory model for connective
complex K-theory, ku = K(k), with k =

⋃
i Fqpi(p−1) . The canonical inclusions

Fqpi ↪→ Fqpi(p−1) assemble into a map j : k′ −→ k. The Galois group Cp−1 of k over
k′ acts on k and induces an action on algebraic K-theory. As k′ is fixed under the
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action of Cp−1 there is a factorization of K(j)p as

K(k′)p

i



����������

K(j)p
�� K(k)p

K(k)hCp−1
p

������������

and i yields a weak equivalence of commutative S-algebras, where K(k)hCp−1
p is a

model for the connective p-complete Adams summand which is weakly equivalent
to �̃p (see [2, §2]).

Consider the composition of the following chain of maps between commutative
S-algebras:

K(k′)p
i−→ (K(k)p)hCp−1 −→ K(k)p −→ KUp.

The target KUp is as well the target of the map c̄(KUp) −→ KUp. Note that
the universal property of c̄(−) yields a zigzag ς : K(k)p � c̄(KUp) of equivalences
between K(k)p and c̄(KUp) in the category of commutative S-algebras.

As KUp is the Bousfield localization of K(k)p in the category of K(k)p-modules
with respect to the Bott element,

KUp = L
K(k)p

K(k)p[β−1]K(k)p,

it inherits the Cp−1-action on K(k)p. The functoriality of the connective cover lifts
this action to an action on c̄(KUp).

The connective cover functor is in fact a functor in the category of commutative
S-algebras with multiplicative naive G-action for any group G. To see this we
have to show that the map c̄(A) −→ A is G-equivariant if A is a commutative
S-algebra with an underlying naive G-spectrum. The functor B(−) does not cause
any problems. Proving the claim for the functor c involves chasing the definition
given in [10, VII, §3].

The prespectrum underlying c(A) applied to an inner product space V is de-
fined as T (A0)(V ), where A0 is the zeroth space of the spectrum A and T is a
certain bar construction involving suspensions and a monad consisting of the prod-
uct of a fixed E∞ operad with the partial operad of little convex bodies K. For a
fixed V the suspension ΣV and the operadic term KV are used. As the G-action
is compatible with the E∞ and the additive structure of A, the evaluation map
T (A0)(V ) −→ A(V ) is G-equivariant. For varying V , these maps constitute a map
of prespectra and its adjoint on the level of spectra is c(A) −→ A. As the spectrifi-
cation functor preserves G-equivariance, the claim follows. Therefore the resulting
zigzag ς : K(k)p � c̄(KUp) is Cp−1-equivariant, and we obtain an induced zigzag
on homotopy fixed points,

ςhCp−1 : (K(k)p)hCp−1 � (c̄(KUp))hCp−1 .

As ς is an isomorphism in the homotopy category and is Cp−1-equivariant, ςhCp−1

yields an isomorphism as well. �

3. Connective Lubin-Tate spectra

Goerss and Hopkins proved in [9] that the Lubin-Tate spectra En with

(En)∗ = W (Fpn)[[u1, . . . , un−1]][u±1] with |ui| = 0 and |u| = −2
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possess unique E∞ structures for all primes p and all n � 1. The connective cover
c(En) has coefficients

(3.1) (c(En))∗ = W (Fpn)[[u1, . . . , un−1]][u−1] with |ui| = 0 and |u| = −2.

Of course c̄(En)[(u−1)−1] ∼ En.
The spectra BP〈n〉 can be built from the Brown-Peterson spectrum BP by killing

all generators of the form vm with m > n in BP∗ = Z(p)[v1, v2, . . .]. Using for
instance Angeltveit’s result [1, theorem 4.2], one can prove that the BP〈n〉 are A∞
spectra and from [4] it is known that this S-algebra structure can be improved to an
MU -algebra structure. On the other hand, Strickland showed in [14] that BP〈n〉
with n � 2 is not a homotopy commutative MU -ring spectrum for p = 2. We offer
c(En) as a replacement for the p-completion BP〈n〉p of BP〈n〉.

We also need to recall that in the category of MU -modules, E(n) is the Bous-
field localization of BP〈n〉 with respect to BP〈n〉[v−1

n ]; hence by [8] it inherits the
structure of an MU -algebra and the natural map BP〈n〉 −→ E(n) is a morphism
of MU -algebras. Furthermore, the Bousfield localization of E(n) with respect to
the MU -algebra K(n) is the In-adic completion Ê(n), which was shown to be a
commutative S-algebra in [5], and the natural map Ê(n) −→ En is a morphism of
commutative S-algebras; see for example [6, example 2.2.9]. Thus there is a mor-
phism of ring spectra BP〈n〉 −→ En that lifts to a map BP〈n〉 −→ c(En) in the
homotopy category.

Proposition 3.1. The spectra BP〈n〉 and BP〈n〉p are Bousfield equivalent to
c(En).

Proof. On coefficients, we obtain a ring homomorphism (BP〈n〉p)∗ −→ (c(En))∗,
which is given by

vk �−→
{

u1−pk

uk for 1 � k � n − 1,

u1−pn

for k = n,

extending the natural inclusion of the p-adic integers Zp = W (Fp) into W (Fpn).
This homomorphism is induced by a map of ring spectra.

Recall from [3] that E(n) and Ê(n) are Bousfield equivalent as S-modules, and
it follows that En is Bousfield equivalent to these since it is a finite wedge of
suspensions of Ê(n).

If X is a p-local spectrum with torsion free homotopy groups, then its p-comple-
tion Xp is Bousfield equivalent to X, i.e., 〈Xp〉 = 〈X〉. This follows using the
cofibre triangles (in which M(p) is the mod p Moore spectrum and the circled
arrow indicates a map of degree one)

X
p

�� X

�����
���

���
�

X ∧ M(p)

◦����

�������

Xp
p

�� Xp

�����
���

���
�

X ∧ M(p)

◦����

�������

together with the fact that the rationalization p−1X is a retract of p−1(Xp). In
particular, we have 〈BP〈n〉p〉 = 〈BP〈n〉〉 and 〈E(n)p〉 = 〈E(n)〉.

From [12, theorem 2.1], the Bousfield class of BP〈n〉 is

〈BP〈n〉〉 = 〈E(n)〉 ∨ 〈HFp〉.
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There is a cofibre triangle

Σ2c(En) u−1
�� c(En)

����������������

HW (Fpn)[[u1, . . . , un−1]]

◦							

						

in which HW (Fpn)[[u1, . . . , un−1]] is the Eilenberg-Mac Lane spectrum.
More generally we can construct a family of Eilenberg-Mac Lane spectra with
W (Fpn)[[u1, . . . , uk]] as coefficients for k = 0, . . . , n− 1 which are related by cofibre
triangles

HW (Fpn)[[u1, . . . , uk]]
uk ��HW (Fpn)[[u1, . . . , uk]]

��


















HW (Fpn)[[u1, . . . , uk−1]]

◦��������

����������

such that for k = 0 we obtain HW (Fpn). With the help of these cofibre se-
quences we can identify 〈HW (Fpn)[[u1, . . . , uk]]〉 with 〈HW (Fpn)[[u1, . . . , uk−1]]〉 ∨
〈HW (Fpn)[[u1, . . . , uk]][u−1

k ]〉.
In general, if R is a commutative ring, then the ring of finite tailed Laurent series

R((x)) is faithfully flat over R, and therefore we have

〈HR((x))〉 = 〈HR〉.

Using this auxiliary fact we inductively get that

〈HW (Fpn)[[u1, . . . , uk]]〉 = 〈HW (Fpn)[[u1, . . . , uk−1]]〉.

This reduces the Bousfield class of c(En) to 〈En〉 ∨ 〈HW (Fpn)〉. As W (Fpn) is a
finitely generated free Zp-module and as 〈HZp〉 = 〈HQ〉 ∨ 〈HFp〉, this leads to

〈c(En)〉 = 〈E(n) ∨ HQ ∨ HFp〉
= 〈E(n) ∨ HFp〉 = 〈BP 〈n〉〉. �

4. Appendix: Uniqueness and E∞-mapping spaces

If E and F are spectra whose E∞ structure was provided by the obstruction
theory of Goerss and Hopkins [9], then we can compare our uniqueness notion with
theirs. Note that examples of such E∞ ring spectra include ring spectra such as
En [9, 7.6], KO, KU , L and Ê(n) [5]. In such cases the Hurewicz map

(4.1) π0 HomE∞(E, F ) h−→ HomF∗−alg(F∗E, F∗)

from the connected components of the derived space of E∞-maps between E and F
and the F∗-algebra homomorphisms from F∗E to F∗ is a bijection [9, corollary 4.4,
theorem 4.5]. Assume that we have a mere ring map ϕ as above between E and F .
This gives rise to a map of F∗-algebras from F∗E to F∗ by composing F∗(ϕ) with
the multiplication µ in F∗F . In the presence of a universal coefficient theorem we
have HomF∗−hom(F∗E, F∗) = [E, F ]; therefore the element µ ◦F∗(ϕ) gives rise to a
homotopy class of maps of ring spectra ϕ̃ from E to F . We can assume that we have
a functorial cofibrant replacement Q(−); hence we obtain a ring map Q(ϕ̃) from
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Q(E) to Q(F ). Via the isomorphism of (4.1) this gives a map Φ, of E∞ spectra
from Q(E) to Q(F ); therefore we obtain a zigzag

Q(E) Φ ��

∼
��

Q(F )

∼
��

E
ϕ

�� F

of weak equivalences of E∞ spectra from E to F . Thus in such cases our definition
agrees with the uniqueness notion that is natural in the Goerss–Hopkins setting.
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