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ABSTRACT. We explicitly determine Gamma homology in the important ex-
amples of group algebras in terms of homology groups of Eilenberg-MacLane
spectra. From this result we obtain a complete answer for smooth algebras. In
the cases of polynomial algebras and truncated polynomial algebras we prove
that the Gamma homology groups do not depend on the module structure on
the coefficients. Finally we show that Gamma cohomology of the algebra of
cooperations vanishes for Lubin-Tate spectra.

1. Introduction

Gamma homology or I'-homology (denoted HT) is a homology theory for com-
mutative algebras and for E-algebras. It is defined in [RoWh] as the homology
of a homotopical variant of the cotangent complex, and can be regarded as an ana-
logue for “brave new rings” of André-Quillen homology. For commutative algebras
which are flat modules it is isomorphic to topological André-Quillen homology of
commutative algebras, as was proven in [BMC].

T. Pirashvili and the first author proved in [PR] that I'-homology of a commu-
tative k-algebra A with coefficients in an A-module M is isomorphic to the stable
homotopy of a certain spectrum. This spectrum is the realization |£| of the I'-
module £ due to J.-L. Loday [L] which assigns to each finite based set S; = SL{0}
the A-module £(S;) = M ® A®5. Since L is a T-object of A-modules, |£| is a mod-
ule spectrum over the Eilenberg-MacLane spectrum HA.

We use the theorem of [PR] to calculate the I'-homology of commutative group
algebra, polynomial algebras and truncated polynomial algebras. These particular
algebras are in some sense defined over the sphere spectrum. More precisely, the
cotangent complex in these cases is not only a complex of A-modules, but is actually
the chain complex of a simplicial set. Therefore its homology, the I'-homology
HT,(A|k; A), is a comodule over the relevant dual Steenrod coalgebra HA,HA =
m(HA N HA), if this is flat over A.

The algebra of cooperations E,E of a ring spectrum E gives information on its
multiplicative structures. In particular with the obstruction theory developed in
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[Ro], one can deduce existence and uniqueness of E-structures on ring spectra: if
Gamma cohomology of the algebra E, E vanishes for some homotopy commutative
ring spectrum FE, then one can refine the given multiplication to a unique F.-
structure (see [Ro, Theorem 5.6]). We prove that Lubin-Tate spectra for Honda
formal group laws have this vanishing property. That these spectra possess a unique
E-structure is known by work of Goerss and Hopkins [GH]; our result gives an
elementary proof for this fact.

2. Gamma homology of integral group rings

There is a direct way to prove that I'-homology of an integral group ring on an
abelian group G has a concise description. We will denote the composition in the
group G multiplicatively.

Let T be the skeleton of the category of finite pointed sets. A functor from T’
to the category of k-modules for a commutative ring k is called I'-module. For a
commutative k-algebra A with unit and an A-module M let £ be Loday’s [-module.
On an object [n] = {0, 1,...,n} this functor is M ® A®™ with tensor products taken
over the ring k. A pointed function f : [n] — [m] sends a generator ag®a1 Q- - -Qay,
with ag € M and a; € Afor i Z0to by Q@ b1 ® -+ - ® by, with b; = Hf(j):z. a; (resp.
b; = 1if f71(i) = 0).

For this section £ will denote the functor for the commutative ring Z[G] with
coefficients in the integers. To give Z a Z[G]-module structure, we use the standard
augmentation € : Z[G] — Z which sends every group element g € G to 1. We will
identify this I'-module with the one which gives the classical cubical construction
of Eilenberg and MacLane. To this end we will use the identification of the first
Taylor derivative of I'-modules as a cubical construction of these functors as it was
developed in [R2].

There is a functor Z{G{—}} from the category T to abelian groups defined in
[R2, 3.2] which sends a finite pointed set [n] to the free abelian group on the set
G™. A pointed map f : [n] = [m] induces internal multiplication on the generators,
ie.,

fulgts--ign) = (b1, hm)  with  hi= ] g
fFG)=i
Note that elements whose index is sent to zero have no effect on the final element.
If a preimage of i is empty, the neutral element 1 € G is inserted in the ith place.
The first Taylor approximation of Z{G{—}} is the cubical construction Q(G) of the
abelian group G.

LeEMMA 2.1. The functor L from I’ to abelian groups is isomorphic to the func-
tor Z{G{—}}.

PRrROOF. The Loday functor evaluated on an element [n] gives Z[G]®" = Z[G"]
and the structure maps are given by multiplication and insertion of units. The only
point that remains to be checked is the behaviour of £ with respect to maps f with
a non-trivial preimage of 0. If ¢ # 0 is sent to zero then an action of Z[G] on the
integers via the augmentation map is induced. On a generator as above this just
results in the disappearance of the variable. a

PROPOSITION 2.2. Gamma homology of an integral group ring on an abelian
group G is isomorphic to the integral homology of the Eilenberg-MacLane spectrum
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of the group G
HI.(Z|G)|Z;Z) = HZ.HG.

ProOOF. Gamma homology of Z[G] with coefficients in the integers is stable
homotopy of the functor £ (see [PR]) and this in turn is by [R2, Theorem 4.5]
isomorphic to the homology of the first layer in the Taylor tower which is the cubical
construction Q(L) of £. But as the Loday functor £ is isomorphic to the functor
Z{G{-}}, we obtain

QL) = Q(Z{G{-}}) = Q(G).
But it is well-known that the homology of the cubical construction on an abelian
group gives the integral homology of the Eilenberg-MacLane spectrum on G

H.(Q(G)) = HZ,HG.

This fact was proved by Eilenberg and MacLane in the fifties; for an easy proof see
[P]. O

3. The smooth case

From the proof of Proposition 2.2 it is obvious that the statement can be
generalized to an arbitrary commutative ring with unit k. We obtain by analogy:

PROPOSITION 3.1. Gamma homology of an group algebra k[G] for an abelian
group G is the k-homology of the FEilenberg-MacLane spectrum of G.

From this result one can read off a lot of I'-homology groups. It is known
by [RoWh, Theorem 6.8 (3)] that I'-homology vanishes for étale algebras. For a
triple-sequence of algebra maps, I'-homology gives a long exact sequence. Thus we
can deduce the following fact:

PROPOSITION 3.2. If A is a commutative augmented k-algebra and some abelian
group algebra k[G] is étale over A, then I'-homology of A is isomorphic to that of
k[G], thus

HI.(A|k;k) 2 Hk HG.

In particular, T'-homology of a polynomial algebra k[x] is isomorphic to the k-
homology of HZ because k[x,x~] = k[Z] is étale over k[z].

Let k£ be a noetherian ring and let A be a commutative k-algebra which is
essentially of finite type, i.e., A is the localization of a finitely generated k-algebra.
Then A is smooth if it has étale factorization, i.e., if for every prime ideal p in A
there is an f ¢ p such that there is a factorization of the unit map k — Ay as

k= kg, zm] 5 Ay
with ¢ an étale map. Thus, for I'-homology smooth algebras are as good as poly-
nomial algebras.

THEOREM 3.3. Let A be smooth and augmented over k. Then T'-homology of
A consists of as many copies of Hk.HZ as the dimension of the module of Kdihler
differentials th L ®ak

HIL(A|kk) = @  HkHZ = QY ®iHkHL.
dim; (Q} |, ®ak)
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PROOF. We consider the triple k — k[z1,...,2m] = Aj. The localized algebra
Ay relative to A and the algebra Ay relative to the polynomial algebra both have
vanishing I’-homology, because they are étale. Hence I'-homology of A relative to
k coincides with the one for k[z1, ..., Zn,] relative to k. As I'-homology is additive
[RoWh, Theorem 6.8 (2)] it gives m copies of Hk,HZ. The number of generators
m of the polynomial algebra k[z1,...,z,,] is determined by the module of K&hler
differentials which is isomorphic to HIH(A | k; k). O

The calculation of I'-homology of polynomial algebras allows us to show that
a spectral sequence which was developed in [RoWh, 4.5] for the calculation of
I-homology of E..-algebras becomes stationary at the E2-level in the case of a
polynomial algebra over F». For a prime p let us denote by S’

S’: (H]FQ)*HZ = ]Fz[§%,£z,£3,]lfp:2
(H]Fp)*HZ = Fp[€17§27§33-"]®A]Fp(7'1,7'2,...)ifp is odd.

Here Ap, denotes the exterior algebra and the degree of ; is 2¢ — 1 for p = 2 and
2p* — 2 for odd primes, whereas the degree of 7; is 2p* — 1.

COROLLARY 3.4. The spectral sequence of [RoWh, 4.5]
EZ,q = Untorﬁq(]Fg,]Fz) = HIp1(F2[t] | F2; F2)

collapses with E?> = E*™. Here Unto* denotes torsion products of 1-allowable
unstable modules over the Dyer-Lashof algebra R.

PROOF. The calculation in [M, 3.3] shows that the E?-term has the same
Poincaré series as the abutment &' = Fy[£2, &, £3,...]. (The very similar example
given in 3.3.12 of [M] makes this virtually explicit.) All the differentials must
therefore be zero. O

This Corollary verifies a conjecture made in [RoWh], and is consistent with re-
sults in an otherwise-defined E,-homology theory which are quoted in unpublished
work of Igor Kriz.

4. Independence of module structures

The result in this part is that I'-homology for smooth and truncated polynomial
algebras is independent of the given module structure on the coefficients. Suppose
first that A is a polynomial algebra. By additivity of I'-homology [RoWh, 6.8(2)]
it suffices to consider the case A = k[t], and we take any k[t]-module M as the
coefficients. For the algebra k[t] there is a description of Loday’s T'-module £ given
in [R1]. Let L be the reduced free k-module functor defined (as in [PR]) by
L(S}) = K%+ /k = k5 and let Sym be the symmetric algebra functor over k. Then
there is an isomorphism of functors

;C(S+) =M ®k[t] Sym(k5+).

where the action identifies k[t] with the summand of the symmetric algebra gen-
erated by the basepoint. As an k-module £(S,) is isomorphic to M ® Sym(k®),
but this tensor product is twisted in the sense that whenever a morphism maps
something to the basepoint +, an action of ¢ on M is induced.
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As a second example, take A to be the truncated polynomial algebra k[t]/(t").
There is an analogous formula

L(Sy) = M ®a Tym(Sy)

where Tym(S) is notation for the truncated algebra obtained by imposing upon
Sym L(S) the relations s™ = 0, s € S. If k has characteristic p and n = p® these
relations are equivalent to y?* = 0 for all y € Sym L(S4), because the pth power
map is a homomorphism.

Our results are consequences of the following theorem.

THEOREM 4.1. Let k be a commutative ring (with uwnit), A a commutative
k-algebra and M a A-module.

o If A is k[t] or k[t,t™!] then
HI.(A|k; M) = HM.(HZ).

o If k has characteristic p, and A is k[t]/ (tP%) where £ is a positive integer,
then

HI,(A|k; M) = HM,(H(Z/p'Z)).

PROOF. In each case we must calculate the stable homotopy of the correspond-
ing abelian spectrum. The rth term of this spectrum is obtained by applying Lo-
day’s I-module degreewise to a based simplicial r-sphere S” (see [PR]). The free
k-module functor L there gives the simplicial module of reduced k-chains on S”.

We first consider the case A = k[t]. Here the formula given above for £ indicates
that the Loday module evaluated on S” gives M ® k[t]Sym(kSr) and this is the twisted
tensor product with M of the symmetric algebra on the reduced chains C,(S"; k).
This is isomorphic to the simplicial module of reduced chains with coefficients in
M on the infinite symmetric product SP> S". The Steenrod splitting [St, §22]

C.(SP*X) = (PC(SPT X, SP'X)

=0

implies that the face operators in £(S") are identical with those in C,(SP* S"; M);
and that, despite the twisting, they are independent of the action of ¢ on M.
Therefore for r > i

HI;(k[t] | k; M) Tris C(SP®S™; M)
H,;(SP*S"; M)

HM;(HZ)

IR 1R

because SP> S" is an Eilenberg-MacLane complex K (Z,r) by the Dold-Thom the-
orem [DT, §6].

The case of the Laurent algebra A = k[t,t~1] follows as above from the étaleness
of k[t,t=1] over k[t].

The final case is when A = k[t]/(t?*). In characteristic p the formula before the
statement of the theorem shows L£(S) to be isomorphic to the tensor product of
the reduced chains on the free (7 /p‘Z)-module on the set S twisted with M. Since
the free (Z /p*Z)-module functor converts S™ into K (Z/p‘Z, r), the result follows
just as in the first case. |
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COROLLARY 4.2. For a prime p, let A = F,[t]/(t"*), acting upon T, through
the augmentation. Let S be the dual Steenrod coalgebra for the prime p. Then

S when £ =1

HI(A|Fp;Fp) = {3'@3’[—1] when £ > 1.

where S' the comodule HF, (HZ) defined in section 3

PRrOOF. This follows from the second part of Theorem 4.1. When £ > 1, a
standard calculation shows that HF, (H(Z/p*Z)) is the direct sum of a copy of
HF, (HZ) embedded by the surjection Z — Z/p*Z and a (—1)-shifted copy which
is the image of the Bockstein homomorphism. O

By some standard arguments one can prove that I'-homology of group algebras
over fields does not depend on the module structure of the coefficients either. First
suppose that the ground field F is a prime field.

In the characteristic zero case I'-homology is simply Harrison homology and
therefore a natural summand of Hochschild homology. But Hochschild homology
of a commutative group algebra is independent of the module structure because it
can be identified with group homology with trivial coefficients.

So we may assume F has finite characteristic p. When the group G = (z) is
cyclic of order pf, the group ring is a truncated polynomial algebra of height p¢
on x — 1; when G is infinite cyclic, the group algebra is a Laurent algebra. When
G = (z) is cyclic of finite order prime to p, the group ring is étale over F so that the
I'-homology is zero (([RoWh, 6.8(3)]). Every abelian group is the directed colimit of
its finitely-generated subgroups; and I'-homology commutes with directed colimits,
so we have the result for all G. Finally the flat base-change result of [RoWh,
6.8(1)] allows us to replace the prime field F by any extension.

5. The solid case

So far we considered algebras which were flat over the ground ring. In these
cases I'-homology is isomorphic to topological André-Quillen homology [BMC].
But in the non-flat case I-homology has to be defined indirectly [RoWh, §3], because
the Loday functor gives a spectrum which in general has the wrong homotopy type.
We illustrate this with the example of ‘solid’ algebras.

DEFINITION 5.1. A k-algebra A is solid if the algebra-multiplication p : A ®y
A — A is an isomorphism.

Solid rings were classified by Bousfield and Kan in [BK, Prop.3.1]; they are
built out of quotients like Z /nZ and localisations Z[J '] for some set of primes J.

OBSERVATION 5.2. Stable homotopy vanishes for solid algebras.

PROOF. The I'module whose stable homotopy we want to calculate is canon-
ically isomorphic to the constant functor. O

For a commutative ring R and an ideal I C R the first André-Quillen homology
of R/I relative to R is I/I? ([A, p.75, Proposition 1]), hence it is non-trivial in
general. Thus in these cases the stable homotopy is actually smaller than André-
Quillen homology.
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6. Lubin-Tate spectra for Honda formal group laws.

Let E be a Lubin-Tate spectrum and let E,E be its commutative algebra of
cooperations with its left E,.-module structure induced by the left unit nz, : E ~
ErnS Y EAE. We provide a proof for the fact that I'-cohomology of E.FE
vanishes if E is a Lubin-Tate spectrum for a Honda formal group law. In view
of the obstruction theory for commutativity developed by the second author [Ro],
this yields a unique E-structure on these Lubin-Tate spectra.

REMARK 6.1. There is one class of spectra for which it is trivial to prove that the
obstruction groups vanish: Call a ring spectrum solid if the multiplication induces a
weak equivalence A N A —— A . In these cases, such as Moore spectra on Z[J !
for a set of primes J, the algebra of cooperations is isomorphic to the coefficient
ring and the obstruction groups vanish for a trivial reason.

For a fixed but arbitrary height n the coefficient ring for £ = E, is E, =

WFp [[u1,. . ., un—1]][u™] with the u; in degree zero and v in degree two. Here
WEFy denotes the ring of Witt vectors on Fp. The ring WFp [[u1,...,up—1]] has
a maximal ideal m = (p,u1,...,Up—1).

The fact that the Lubin-Tate spectra possess an E,-structure is well-known; in
[GH], Goerss and Hopkins prove a stronger result [GH, theorems 7.9,7.10]: They
obtain a unique E,-structure on each Lubin-Tate spectrum E and they prove that
the space of E,-maps between two Lubin-Tate spectra has weakly contractible
components and 7o is given by the maps of formal groups laws between the re-
spective formal groups. The aim of the following part is to provide an easy and
short proof which uses standard techniques; in particular it gives a proof for [Ro,
Cor.5.7]. We will prove the following

THEOREM 6.2. If E = E, is the Lubin-Tate spectrum for the Honda formal
group low for height n, then T'-cohomology of E,E relative to E, vanishes.

Reduction to the case HI'*(E,E | E,; E,/m). This is the argument given in
Rezk’s paper [Re] adjusted to the cohomology theory HI.

LEMMA 6.3. It suffices to show that H['*(E.E | E.; E./m) vanishes for all s >
0; then HI'*(E.E | E.; E.) vanishes in all degrees.

PrOOF. The short exact sequence
0 = m¢/m¥! = E./m*' = E./m? =0

gives a long exact coefficient sequence for HI'. As m¢/mt! is finite dimensional
over F,/m and as we assume that HI"*(E,E | E.; E./m) vanishes, we obtain that
HI*(E.E | E.; E./m%) vanishes for all s > 0 and all d > 1. The completeness of
E, with respect to m allows us to write E, as

0 B, — [[ B/m® =3 [ Bo/m? — 0.
d>1 d>1
This yields a long exact sequence in I'-cohomology and proves the claim. O
Flat base-change and étaleness. Again, the flat-base-change-arguments are
taken from [Re]. One should note that there is flat base-change for cohomology,

even if the algebra is only flat and not projective (as E.E is over E,) because in
the flat-base-change-arguments in [RoWh, Theorem 6.8] it is actually proved that
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a flat base-change of algebras induces a genuine isomorphism of complexes and not
just a weak-equivalence. We can now proof Theorem 6.2.

PrOOF. We consider the map E. — E,/m. The flatness of E.E over E, yields
an isomorphism

HI'(E,E|E.; Ey/m) = H['(E,E/m | Ey/m; E, /m).

As E,E/m is isomorphic to EoE/m ®g, /m Ex/m and Eg/m — E, /m is the inclu-
sion of the field Fj into the Laurent polynomial algebra F,» [u*!] we obtain

HIr'(E.E/m| E./m; E,/m) =2 H['Y(EgE /m | Ey/m; Ey/m).

The structure of EoE/m is well-known (see for instance [Re, 17.4]). If E is the
spectrum for the Honda formal group law of height n then

E()E/m = ]Fzyt ®]Fp Fﬁt [ag,al, . .]/(agn_l - ].,azljn —ap,.. )

Thus this algebra consists of tensor products of étale algebras and the claim is

proven. O
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