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Structured ring spectra

Slogan: Nice cohomology theories behave like commutative rings.
Brown: Cohomology theories can be represented by spectra:
E"(X) = [X, E]

(Ep): family of spaces with E, ~ QE, ;.

Since the mid 90's: There are (several) symmetric monoidal model
categories whose homotopy categories are Quillen equivalent to the
good old stable homotopy category:

» Symmetric spectra (Hovey, Shipley, Smith)
» S-modules (Elmendorf-Kriz-Mandell-May aka EKMM)

> ...

We are interested in commutative monoids (commutative ring
spectra) and their algebraic properties.



Examples

You all know examples of such commutative ring spectra:

» Take your favorite commutative ring R and consider singular
cohomology with coefficients in R, H*(—; R). The
representing spectrum is the Eilenberg-MaclLane spectrum of
R, HR. The multiplication in R turns HR into a commutative
ring spectrum.

» Topological complex K-theory, KU%(X), measures how many
different complex vector bundles of finite rank live over your
space X. You consider isomorphism classes of complex vector
bundles of finite rank over X, Vectc(X). This is an abelian
monoid wrt the Whitney sum of vector bundles. Then group
completion gives KU%(X):

KU®(X) = Gr(Vectc(X)).



This can be extended to a cohomology theory KU*(—) with
representing spectrum KU. The tensor product of vector bundles
gives KU the structure of a commutative ring spectrum.

» Topological real K-theory, KO°(X), is defined similarly, using
real instead of complex vector bundles.

» Stable cohomotopy is represented by the sphere spectrum S.

Spectra have stable homotopy groups:
» m.(HR) = H *(pt; R) = R concentrated in degree zero.
» m.(KU) = Z[u*1], with |u| = 2. The class u is the Bott class.

» The homotopy groups of KO are more complicated.
m.(KO) = Z[n,y,w™]/2n,n* ny, y* —4w, || =1,|w|=8.

The map that assigns to a real vector bundle its complexified
vector bundle induces a ring map ¢: KO — KU. lts effect on
homotopy groups is 1+ 0, y + 2u?, w — u*. In particular,
m«(KU) is a graded commutative m,(KO)-algebra.



Galois extensions of structured ring spectra

Actually, KU is a commutative KO-algebra spectrum. Complex
conjugation gives rise to a (»-action on KU with homotopy fixed
points KO. In a suitable sense KU is unramified over KO:

KU Ako KU ~ KU x KU.

Rognes '08: KU is a (>-Galois extension of KO.

Definition (Rognes '08) (up to cofibrancy issues..., G finite) A
commutative A-algebra spectrum B is a G-Galois extension, if G
acts on B via maps of commutative A-algebras such that the maps

» i: A— Bh¢ and
» h: BAAB = 1[¢B (%)
are weak equivalences.

This definition is a direct generalization of the definition of Galois
extensions of commutative rings (due to Auslander-Goldman).



Examples

As a sanity check we have:

Rognes '08: Let R — T be a map of commutative rings and let
G act on T via R-algebra maps. Then R — T is a G-Galois
extension of commutative rings iff HR — HT is a G-Galois
extension of commutative ring spectra.

Let Q C K be a finite G-Galois extension of fields and let Ok
denote the ring of integers in K. Then Z — O is never
unramified, hence HZ — HOk is never a G-Galois extension.

Z — Z[i] is wildly ramified at 2, hence Z[i] ®z Z][i] is not
isomorphic to Z[i] x Z[i].
Z[3] — Z[i, 1], however, is C,-Galois.



Examples, continued

We saw KO — KU already.
Take an odd prime p. Then KU, splits as

p—2
2i
KUy ~ \/ =L
i=0

L is called the Adams summand of KU.
Rognes '08:
L, — KU,

is a Cp—_1-Galois extension. Here, the C,_1-action is generated by
an Adams operation.



Connective covers

If we want to understand arithmetic properties of a commutative
ring spectrum R, then we try to understand its algebraic K-theory,
K(R).

K(R) is hard to compute. It can be approximated by easier things
like topological Hochschild homology (THH(R)) or topological
cyclic homology (TC(R)).

There are trace maps

THH(R)

BUT: Trace methods work for connective spectra, these are
spectra with trivial negative homotopy groups.



Connective spectra

For any commutative ring spectrum R, there is a commutative ring
spectrum r with a map j: r — R such that 7.(j) is an
isomorphism for all x > 0.

For instance, we get
ko —~—= ku

i
KO = KU

BUT: A theorem of Akhil Mathew tells us, that if A — B is
G-Galois for finite G and A and B are connective, then
7«(A) = m(B) is étale.

me(ko) = Z[n,y, wl/2n, 1%, ny, y* — dw. = m.(ku) = Z[u]

is certainly not étale.
We have to live with ramification!



Wild ramification

c: ko — ku fails in two aspects:

hC2 (

> ko is not equivalent to ku but closely related to...)

> h: ku Ago ku =[], ku is not a weak equivalence
(but ku Ao ku =~ ku v X2ku).

Theorem (Dundas, Lindenstrauss, R)
ko — ku is wildly ramified.

How do we measure ramification?



Relative THH

If we have a G-action on a commutative A-algebra B and if
h: BAa B — [[; B is a weak equivalence, then Rognes shows
that the canonical map

B — THH"(B)

is a weak equivalence.

What is THHA(B)? Topological Hochschild homology of B as an
A-algebra, i.e.,

THHA(B) is the geometric realization of the simplicial spectrum

e ——
==BANBApB==BANB==8B



THHA(B) measure the ramification of A — B!
If B is commutative, then we get maps

B — THHA(B) — B

whose composite is the identity on B.

Thus B splits off THHA(B). If THHA(B) is larger than B, then
A — B is ramified.

We abbreviate 7.( THHA(B)) with THHA(B).



The ko — ku-case

Theorem (DLR)

» As a graded commutative augmented 7, (ku)-algebra
To(ku Ao ku) 2=, (ku)[@]/i? — u?

with |0 = 2.

» The Tor spectral sequence
E2, = Torl, (") (7 (ku), ma(ku)) = THHY (ku)

collapses at the E2-page.

» THH*°(ku) is a square zero extension of 7, (ku):
THH (k) = . (ku) 7. (ku)/2u{y0, . ..

with |yj| = (1+ |u])(2 + 1) = 3(2j + 1).



Comparison to Z — Z|i]

The result is very similar to the calculation of
HH,(Z[i]) = THHHZ(HZ[i]) (Larsen-Lindenstrauss):

Z|i], for x =0,
HHZ(Z[i) = THHPZ(HZ[i]) = { Z[i]/2i, for odd x,
0, otherwise.

Hence
HHZ(Z[i]) = Z[i] x (Z[i]/2i){y;,j > 0)

with |y;| =2/ + 1.



Idea of proof for ko — ku:
Use an explicit resolution to get that the E?-page is the homology
of

2y, (ku) 22, k)~ (Ku).

As T, (ku) splits off THH®(ku) the zero column has to survive and
cannot be hit by differentials and hence all differentials are trivial.
Use that the spectral sequence is one of . (ku)-modules to rule
out additive extensions.

Since the generators over 7, (ku) are all in odd degree, and their
products cannot hit the direct summand 7, (ku) in filtration degree
zero, their products are all zero.



Contrast to tame ramification
Consider and odd prime p and

b kup)

ji I

L= KU

W*(f) = Z(p)[vl] — Z(p)[u] = TF*(kU(p)), vy — uP~t already looks
much nicer.
> Rognes: ku(p) — THH (ku(p)) is a K(1)-local equivalence.
» Sagave: The map ¢ — kuy,) is log-étale.

» Ausoni proved that the p-completed extension even satisfies
Galois descent for THH and algebraic K-theory:

THH(kup)"“-1 ~ THH(C,),  K(kup) =t ~ K(£p).



Tame ramification is visible!

¢ — ku(p) behaves like a tamely ramified extension:

Theorem (DLR)

THHf(kU(p)) = W*(kU(p))* X W*(kU(p))<yo,y1, .. .>/up_2
where the degree of y; is 2pi + 3.

p — 1 is a p-local unit, hence no additive integral torsion appears in
THHf(ku(p)).



Other important examples

There are ring spectra E(n), called Johnson-Wilson spectra.
m(E(n)) = Zpylvs - -5 Va1, viil], [vil = 2p" — 2.

These are synthetic spectra: For almost all n and p there is no
geometric interpretation for E(n).

Exceptions: At an odd prime: E(1) = L, E(2) at 2 can be
constructed out of tmf;(3)(2) by inverting a3. (Similar: E(2) at 3,
using a Shimura curve)

All the E(n) for n > 1 carry a Cy-action that comes from complex
conjugation on complex bordism.

Are the E(n)"© — E(n) C,-Galois extensions?

Yes, for n =1,p = 2. That's the example KOsy — KU(3).
Tmfy(3) — Tmfi(3) is Co-Galois (Mathew, Meier) and closely
related to E(2)"¢> — E(2).

We can control certain quotient maps, e.g. tmfi(3)(2) — ku(2).



Open questions

» Problem: We do not know whether the E(n) are commutative
ring spectra for all n and p. (Motivic help?)

> Is there more variation than just tame and wild ramification?

» Can there be ramification at chromatic primes rather than
integral primes?

» How bad is tmfy(3) — tmfi(3)?

» Can we understand the ramification for the extentions
BP(n)"® — BP(n) for higher n? Here,
e (BP(n)) = Zp)[va, - - -, va)-
BP(2) has commutative models at p = 2,3 (Hill, Lawson,
Naumann)

> Are ku, ko and ¢ analogues of rings of integers in their
periodic versions, i.e., ku = Oky, ko = Oko, £ = O 7 What
is a good notion of Ok for periodic ring spectra K7

> 777



