An involution on the K-theory of (some) bimonoidal categories arXiv:0804.0401

Birgit Richter

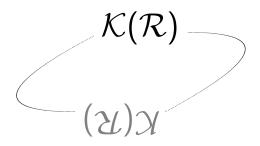
Arolla 2008

Extra structure

K-theory of bimonoidal categories

Anti-involutions on bimonoidal categories

Involutions on K-theory



Let R be a ring, then its algebraic K-theory groups, $K_*(R)$, can be described as the homotopy groups of a spectrum K(R). A space model is

$$\Omega B(\sqcup BGL_n(R)) \sim BGL(R)^+ \times \mathbb{Z}.$$

Up to equivalence this is the K-theory spectrum of the Eilenberg-MacLane spectrum of the ring, HR.

Let R be a ring, then its algebraic K-theory groups, $K_*(R)$, can be described as the homotopy groups of a spectrum K(R). A space model is

$$\Omega B(\sqcup BGL_n(R)) \sim BGL(R)^+ \times \mathbb{Z}.$$

Up to equivalence this is the *K*-theory spectrum of the Eilenberg-MacLane spectrum of the ring, *HR*. If \mathcal{O} is the ring of integers in a number field, then $K_0(\mathcal{O}) \cong \mathbb{Z} \oplus Cl(\mathcal{O}), K_1(\mathcal{O}) \cong \mathcal{O}^{\times}$, the Brauer group of the ring is related to the higher *K*-groups.

Let R be a ring, then its algebraic K-theory groups, $K_*(R)$, can be described as the homotopy groups of a spectrum K(R). A space model is

$$\Omega B(\sqcup BGL_n(R)) \sim BGL(R)^+ \times \mathbb{Z}.$$

Up to equivalence this is the *K*-theory spectrum of the Eilenberg-MacLane spectrum of the ring, *HR*. If \mathcal{O} is the ring of integers in a number field, then $\mathcal{K}_0(\mathcal{O}) \cong \mathbb{Z} \oplus Cl(\mathcal{O}), \mathcal{K}_1(\mathcal{O}) \cong \mathcal{O}^{\times}$, the Brauer group of the ring is related to the higher *K*-groups.

The sphere spectrum S is the initial object in the category of ring spectra. Its K-theory is equivalent to Waldhausen's A-theory of a point

Let R be a ring, then its algebraic K-theory groups, $K_*(R)$, can be described as the homotopy groups of a spectrum K(R). A space model is

$$\Omega B(\sqcup BGL_n(R)) \sim BGL(R)^+ \times \mathbb{Z}.$$

Up to equivalence this is the *K*-theory spectrum of the Eilenberg-MacLane spectrum of the ring, *HR*. If \mathcal{O} is the ring of integers in a number field, then $\mathcal{K}_0(\mathcal{O}) \cong \mathbb{Z} \oplus Cl(\mathcal{O}), \mathcal{K}_1(\mathcal{O}) \cong \mathcal{O}^{\times}$, the Brauer group of the ring is related to the higher *K*-groups.

The sphere spectrum S is the initial object in the category of ring spectra. Its K-theory is equivalent to Waldhausen's A-theory of a point

$$K(S) \sim A(\text{pt}).$$

More generally, for X connected, A(X) is the K-theory of the spherical group ring $S[\Omega X]$.

More generally, for X connected, A(X) is the K-theory of the spherical group ring $S[\Omega X]$.

Let ku be a connective version of complex *K*-theory. Then K(ku) has an interpretation in terms of 2-vector bundles (Baas-Dundas-Rognes 04).

More generally, for X connected, A(X) is the K-theory of the spherical group ring $S[\Omega X]$.

Let ku be a connective version of complex *K*-theory. Then K(ku) has an interpretation in terms of 2-vector bundles (Baas-Dundas-Rognes 04).

In general, K of a ring spectrum should tell us something about its 'arithmetic'.

Sometimes there's extra structure that one can try to exploit:

Sometimes there's extra structure that one can try to exploit:

► Group actions:

If R is a ring spectrum with a (naive) G-action, then naturality of the K-construction gives a G-action on K(R).

Sometimes there's extra structure that one can try to exploit:

► Group actions:

If R is a ring spectrum with a (naive) G-action, then naturality of the K-construction gives a G-action on K(R). For instance, complex conjugation gives rise to a C_2 -action on ku and hence on K(ku).

Sometimes there's extra structure that one can try to exploit:

► Group actions:

If R is a ring spectrum with a (naive) G-action, then naturality of the K-construction gives a G-action on K(R). For instance, complex conjugation gives rise to a C_2 -action on ku and hence on K(ku).

If $A \to B$ is a *G*-Galois extension of commutative *S*-algebras in the sense of Rognes, then one could try to compare K(A) and $K(B)^{hG}$ (Galois descent).

Sometimes there's extra structure that one can try to exploit:

• Group actions:

If R is a ring spectrum with a (naive) G-action, then naturality of the K-construction gives a G-action on K(R). For instance, complex conjugation gives rise to a C_2 -action on ku and hence on K(ku).

If $A \to B$ is a *G*-Galois extension of commutative *S*-algebras in the sense of Rognes, then one could try to compare K(A) and $K(B)^{hG}$ (Galois descent).

► Involutions: Burghelea-Fiedorowicz constructed an involution on K(R_{*}), if R_{*} is a simplicial ring with anti-involution.

Sometimes there's extra structure that one can try to exploit:

• Group actions:

If R is a ring spectrum with a (naive) G-action, then naturality of the K-construction gives a G-action on K(R). For instance, complex conjugation gives rise to a C_2 -action on ku and hence on K(ku).

If $A \to B$ is a *G*-Galois extension of commutative *S*-algebras in the sense of Rognes, then one could try to compare K(A) and $K(B)^{hG}$ (Galois descent).

- ► Involutions: Burghelea-Fiedorowicz constructed an involution on K(R_{*}), if R_{*} is a simplicial ring with anti-involution.
- Steiner and others constructed an involution on A(X).

► Roughly speaking, a (strict) bimonoidal category *R* is a category with two binary operations, ⊗ and ⊕, that let *R* behave like a rig – a ring without additive inverses.

- ▶ Roughly speaking, a (strict) bimonoidal category *R* is a category with two binary operations, ⊗ and ⊕, that let *R* behave like a rig a ring without additive inverses.
- More precisely, for each pair of objects A, B there are objects A ⊕ B and A ⊗ B.

- ► Roughly speaking, a (strict) bimonoidal category *R* is a category with two binary operations, ⊗ and ⊕, that let *R* behave like a rig a ring without additive inverses.
- More precisely, for each pair of objects A, B there are objects A ⊕ B and A ⊗ B. We assume strict associativity for both operations.

- ▶ Roughly speaking, a (strict) bimonoidal category *R* is a category with two binary operations, ⊗ and ⊕, that let *R* behave like a rig a ring without additive inverses.
- More precisely, for each pair of objects A, B there are objects A ⊕ B and A ⊗ B. We assume strict associativity for both operations. There are objects 0_R ∈ R and 1_R ∈ R that are strictly neutral wrt addition resp. multiplication.

- ► Roughly speaking, a (strict) bimonoidal category *R* is a category with two binary operations, ⊗ and ⊕, that let *R* behave like a rig a ring without additive inverses.
- More precisely, for each pair of objects A, B there are objects A ⊕ B and A ⊗ B. We assume strict associativity for both operations. There are objects 0_R ∈ R and 1_R ∈ R that are strictly neutral wrt addition resp. multiplication. There are isomorphisms c_⊕^{A,B}: A ⊕ B → B ⊕ A with c_⊕^{B,A} ∘ c_⊕^{A,B} = id.

- ► Roughly speaking, a (strict) bimonoidal category *R* is a category with two binary operations, ⊗ and ⊕, that let *R* behave like a rig a ring without additive inverses.
- More precisely, for each pair of objects A, B there are objects A ⊕ B and A ⊗ B. We assume strict associativity for both operations. There are objects 0_R ∈ R and 1_R ∈ R that are strictly neutral wrt addition resp. multiplication. There are isomorphisms c_⊕^{A,B} : A ⊕ B → B ⊕ A with c_⊕^{B,A} ∘ c_⊕^{A,B} = id. Everything in sight is natural and satisfies coherence conditions.

- ► Roughly speaking, a (strict) bimonoidal category *R* is a category with two binary operations, ⊗ and ⊕, that let *R* behave like a rig a ring without additive inverses.
- More precisely, for each pair of objects A, B there are objects A ⊕ B and A ⊗ B. We assume strict associativity for both operations. There are objects 0_R ∈ R and 1_R ∈ R that are strictly neutral wrt addition resp. multiplication. There are isomorphisms c_⊕^{A,B}: A ⊕ B → B ⊕ A with c_⊕^{B,A} ∘ c_⊕^{A,B} = id. Everything in sight is natural and satisfies coherence conditions. Addition and multiplication are related via distributivity laws.

► For any bimonoidal category R its K-theory (of the 2-category of finitely generated free modules over R) is

$$\mathcal{K}(\mathcal{R}) = \Omega B(\bigsqcup_{n\geq 0} |BGL_n\mathcal{R}|).$$

► For any bimonoidal category *R* its *K*-theory (of the 2-category of finitely generated free modules over *R*) is

$$\mathcal{K}(\mathcal{R}) = \Omega B(\bigsqcup_{n\geq 0} |BGL_n\mathcal{R}|).$$

Ingredients

► For any bimonoidal category *R* its *K*-theory (of the 2-category of finitely generated free modules over *R*) is

$$\mathcal{K}(\mathcal{R}) = \Omega B(\bigsqcup_{n\geq 0} |BGL_n\mathcal{R}|).$$

Ingredients

 $M_n(\mathcal{R})$: category of matrices over \mathcal{R} .

 For any bimonoidal category R its K-theory (of the 2-category of finitely generated free modules over R) is

$$\mathcal{K}(\mathcal{R}) = \Omega B(\bigsqcup_{n\geq 0} |BGL_n\mathcal{R}|).$$

Ingredients

 $M_n(\mathcal{R})$: category of matrices over \mathcal{R} . For $A \in M_n(\mathcal{R})$ let [A] be its class in $M_n(\pi_0(\mathcal{R}))$.

► For any bimonoidal category *R* its *K*-theory (of the 2-category of finitely generated free modules over *R*) is

$$\mathcal{K}(\mathcal{R}) = \Omega B(\bigsqcup_{n\geq 0} |BGL_n\mathcal{R}|).$$

Ingredients

 $M_n(\mathcal{R})$: category of matrices over \mathcal{R} . For $A \in M_n(\mathcal{R})$ let [A] be its class in $M_n(\pi_0(\mathcal{R}))$. $GL_n(\mathcal{R})$: weakly invertible matrices.

► For any bimonoidal category *R* its *K*-theory (of the 2-category of finitely generated free modules over *R*) is

$$\mathcal{K}(\mathcal{R}) = \Omega B(\bigsqcup_{n\geq 0} |BGL_n\mathcal{R}|).$$

Ingredients

 $M_n(\mathcal{R})$: category of matrices over \mathcal{R} . For $A \in M_n(\mathcal{R})$ let [A] be its class in $M_n(\pi_0(\mathcal{R}))$.

 $GL_n(\mathcal{R})$: weakly invertible matrices. Those $A \in M_n(\mathcal{R})$ such that $[A] \in M_n(\pi_0(\mathcal{R}))$ is actually in $GL_n(\pi_0(\mathcal{R}))$:

► For any bimonoidal category *R* its *K*-theory (of the 2-category of finitely generated free modules over *R*) is

$$\mathcal{K}(\mathcal{R}) = \Omega B(\bigsqcup_{n\geq 0} |BGL_n\mathcal{R}|).$$

Ingredients

 $M_n(\mathcal{R})$: category of matrices over \mathcal{R} . For $A \in M_n(\mathcal{R})$ let [A] be its class in $M_n(\pi_0(\mathcal{R}))$.

 $GL_n(\mathcal{R})$: weakly invertible matrices. Those $A \in M_n(\mathcal{R})$ such that $[A] \in M_n(\pi_0(\mathcal{R}))$ is actually in $GL_n(\pi_0(\mathcal{R}))$:

The inner 'B' is a suitable bar construction:

The inner 'B' is a suitable bar construction:

▶ $BGL_n(\mathcal{R})$ is a simplicial category with *q*-simplices of the form

$$\begin{array}{cccc} A^{0,1} & \dots & A^{0,q} \\ & \ddots & \vdots \\ & & A^{q-1,q} \end{array}$$

plus isos $\phi^{i,j,k} \colon A^{i,j} \cdot A^{j,k} \to A^{i,k}$ as objects.

The inner 'B' is a suitable bar construction:

▶ $BGL_n(\mathcal{R})$ is a simplicial category with *q*-simplices of the form

$$\begin{array}{cccc} A^{0,1} & \dots & A^{0,q} \\ & \ddots & \vdots \\ & & & A^{q-1,q} \end{array}$$

plus isos $\phi^{i,j,k} \colon A^{i,j} \cdot A^{j,k} \to A^{i,k}$ as objects.

Theorem(Baas-Dundas-Richter-Rognes)

For nice \mathcal{R}

$$\mathcal{K}(\mathcal{R})\simeq \mathcal{K}(\mathcal{HR})$$

where $H\mathcal{R}$ is the spectrum associated to \mathcal{R} .

 \triangleright R a ring:

 $\mathcal{K}(R) \sim \mathcal{K}(HR) \sim \mathcal{K}(R).$

► R a ring:

$$\mathcal{K}(R) \sim \mathcal{K}(HR) \sim \mathcal{K}(R).$$

 \blacktriangleright ${\cal E}$ the category of finite sets and bijections:

 $\mathcal{K}(\mathcal{E}) \sim \mathcal{K}(\mathcal{HE}) \sim \mathcal{K}(\mathcal{S}) \sim \mathcal{A}(\mathrm{pt}).$

► R a ring:

$$\mathcal{K}(R) \sim \mathcal{K}(HR) \sim \mathcal{K}(R).$$

 \blacktriangleright ${\cal E}$ the category of finite sets and bijections:

$$\mathcal{K}(\mathcal{E}) \sim \mathcal{K}(\mathcal{HE}) \sim \mathcal{K}(\mathcal{S}) \sim \mathcal{A}(\mathrm{pt}).$$

V the category of complex vector spaces and unitary morphisms:

 $\mathcal{K}(\mathcal{V}) \sim \mathcal{K}(H\mathcal{V}) \sim \mathcal{K}(ku).$

► R a ring:

$$\mathcal{K}(R) \sim \mathcal{K}(HR) \sim \mathcal{K}(R).$$

 \blacktriangleright ${\cal E}$ the category of finite sets and bijections:

$$\mathcal{K}(\mathcal{E}) \sim \mathcal{K}(\mathcal{HE}) \sim \mathcal{K}(\mathcal{S}) \sim \mathcal{A}(\mathrm{pt}).$$

V the category of complex vector spaces and unitary morphisms:

$$\mathcal{K}(\mathcal{V}) \sim \mathcal{K}(H\mathcal{V}) \sim \mathcal{K}(ku).$$

▶ V_R the category of real vector spaces and orthogonal morphisms:

$$\mathcal{K}(\mathcal{V}_{\mathbb{R}}) \sim \mathcal{K}(\mathcal{H}\mathcal{V}_{\mathbb{R}}) \sim \mathcal{K}(\mathcal{ko}).$$

An anti-involution in a strictly bimonoidal category \mathcal{R} consists of a functor $\zeta : \mathcal{R} \to \mathcal{R}$ with $\zeta \circ \zeta = id$ and such that there are natural isomorphisms

$$\mu_{A,B}\colon \zeta(A\otimes B)\to \zeta(B)\otimes \zeta(A)$$

for all $A, B \in \mathcal{R}$ and

An anti-involution in a strictly bimonoidal category \mathcal{R} consists of a functor $\zeta : \mathcal{R} \to \mathcal{R}$ with $\zeta \circ \zeta = \mathrm{id}$ and such that there are natural isomorphisms

$$\mu_{A,B}\colon \zeta(A\otimes B)\to \zeta(B)\otimes \zeta(A)$$

for all $A, B \in \mathcal{R}$ and

► $\zeta(A \oplus B) = \zeta(A) \oplus \zeta(B)$ for all $A, B \in \mathcal{R}$ and $\zeta(0_{\mathcal{R}}) = 0_{\mathcal{R}}$

An anti-involution in a strictly bimonoidal category \mathcal{R} consists of a functor $\zeta : \mathcal{R} \to \mathcal{R}$ with $\zeta \circ \zeta = \mathrm{id}$ and such that there are natural isomorphisms

$$\mu_{A,B}\colon \zeta(A\otimes B)\to \zeta(B)\otimes \zeta(A)$$

for all $A, B \in \mathcal{R}$ and

► $\zeta(A \oplus B) = \zeta(A) \oplus \zeta(B)$ for all $A, B \in \mathcal{R}$ and $\zeta(0_{\mathcal{R}}) = 0_{\mathcal{R}}$ ► $\zeta(1_{\mathcal{R}}) = 1_{\mathcal{R}}$ and $\mu_{1_{\mathcal{R}},A} = \mathrm{id}_{\zeta(A)} = \mu(A, 1_{\mathcal{R}}).$

An anti-involution in a strictly bimonoidal category \mathcal{R} consists of a functor $\zeta : \mathcal{R} \to \mathcal{R}$ with $\zeta \circ \zeta = \mathrm{id}$ and such that there are natural isomorphisms

$$\mu_{A,B}\colon \zeta(A\otimes B)\to \zeta(B)\otimes \zeta(A)$$

for all $A, B \in \mathcal{R}$ and

- $\blacktriangleright \zeta(A \oplus B) = \zeta(A) \oplus \zeta(B) \text{ for all } A, B \in \mathcal{R} \text{ and } \zeta(0_{\mathcal{R}}) = 0_{\mathcal{R}}$
- $\zeta(1_{\mathcal{R}}) = 1_{\mathcal{R}} \text{ and } \mu_{1_{\mathcal{R}},\mathcal{A}} = \mathrm{id}_{\zeta(\mathcal{A})} = \mu(\mathcal{A}, 1_{\mathcal{R}}).$

• The μ are 'associative':

commutes for all $A, B, C \in \mathcal{R}$.

The distributivity isomorphisms d_ℓ and d_r and the isomorphisms μ render the following diagrams commutative

$$\begin{split} \zeta(A \otimes B \oplus A \otimes C) & \xrightarrow{\zeta(d_r)} \zeta(A \otimes (B \oplus C)) \\ \mu_{A \otimes B} \oplus \mu_{A \otimes C} & \downarrow \\ \zeta(B) \otimes \zeta(A) \oplus \zeta(C) \otimes \zeta(A) & \xrightarrow{d_\ell} (\zeta(B) \oplus \zeta(C)) \otimes \zeta(A), \end{split}$$

The distributivity isomorphisms d_ℓ and d_r and the isomorphisms μ render the following diagrams commutative

$$\begin{split} \zeta(A \otimes B \oplus A \otimes C) & \xrightarrow{\zeta(d_r)} \zeta(A \otimes (B \oplus C)) \\ \mu_{A \otimes B} \oplus \mu_{A \otimes C} & \downarrow \\ \zeta(B) \otimes \zeta(A) \oplus \zeta(C) \otimes \zeta(A) \xrightarrow{d_\ell} (\zeta(B) \oplus \zeta(C)) \otimes \zeta(A), \\ \zeta(A \otimes C \oplus B \otimes C) & \xrightarrow{\zeta(d_\ell)} \zeta((A \oplus B) \otimes C) \\ \mu_{A \otimes C} \oplus \mu_{B \otimes C} & \downarrow \\ \zeta(C) \otimes \zeta(A) \oplus \zeta(C) \otimes \zeta(B) \xrightarrow{d_r} \zeta(C) \otimes (\zeta(A) \oplus \zeta(B)). \end{split}$$

Burghelea, Fiedorowicz: Let *R* be a ring with 1. An anti-involution on *R* is a map $\iota: R \to R$ with $\iota(a + b) = \iota(a) + \iota(b)$, $\iota(ab) = \iota(b)\iota(a)$ for all $a, b \in R$, $\iota(\iota(a)) = a$ and $\iota(1) = 1$.

Burghelea, Fiedorowicz: Let *R* be a ring with 1. An anti-involution on *R* is a map $\iota: R \to R$ with $\iota(a + b) = \iota(a) + \iota(b)$, $\iota(ab) = \iota(b)\iota(a)$ for all $a, b \in R$, $\iota(\iota(a)) = a$ and $\iota(1) = 1$.

• Fundamental example: $\mathbb{Z}[G]$ with $\iota(g) = g^{-1}$.

Burghelea, Fiedorowicz: Let *R* be a ring with 1. An anti-involution on *R* is a map $\iota: R \to R$ with $\iota(a + b) = \iota(a) + \iota(b)$, $\iota(ab) = \iota(b)\iota(a)$ for all $a, b \in R$, $\iota(\iota(a)) = a$ and $\iota(1) = 1$.

- Fundamental example: $\mathbb{Z}[G]$ with $\iota(g) = g^{-1}$.
- ▶ More general: R a commutative ring, G a group, $w: G \to R^{\times}$ a group homomorphism and

$$\iota(\lambda g) = \lambda w(g)g^{-1}.$$

Burghelea, Fiedorowicz: Let *R* be a ring with 1. An anti-involution on *R* is a map $\iota: R \to R$ with $\iota(a + b) = \iota(a) + \iota(b)$, $\iota(ab) = \iota(b)\iota(a)$ for all $a, b \in R$, $\iota(\iota(a)) = a$ and $\iota(1) = 1$.

- Fundamental example: $\mathbb{Z}[G]$ with $\iota(g) = g^{-1}$.
- ▶ More general: R a commutative ring, G a group, $w: G \to R^{\times}$ a group homomorphism and

$$\iota(\lambda g) = \lambda w(g)g^{-1}.$$

For instance $G = \pi_1(M)$, M a smooth manifold, then $w_1(M) \in H^1(M; \mathbb{Z}/2\mathbb{Z}) = [M, \mathbb{R}P^{\infty}]$ gives $\pi_1(w_1(M)): \pi_1(M) \to \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}^{\times}.$

Braided bimonoidal categories are bimonoidal categories with anti-involution: There is a braided symmetry

 $\beta_{A,B} \colon A \otimes B \to B \otimes A$

which satisfies a Yang-Baxter equation and we can take $\zeta=\mathrm{id}$ and $\mu=\beta.$

Braided bimonoidal categories are bimonoidal categories with anti-involution: There is a braided symmetry

 $\beta_{A,B} \colon A \otimes B \to B \otimes A$

which satisfies a Yang-Baxter equation and we can take $\zeta = \mathrm{id}$ and $\mu = \beta$.

Categories of Hopf-bimodules provide a class of examples of (non-strict) braided bimonoidal categories. Consider a Hopf algebra H in a symmetric monoidal category. An object M is an H Hopf-bimodule if it is a bimodule over H and simultaneously a H right- and left-comodule such that the comodule structure maps are morphisms of H-bimodules.

Braided bimonoidal categories are bimonoidal categories with anti-involution: There is a braided symmetry

 $\beta_{A,B} \colon A \otimes B \to B \otimes A$

which satisfies a Yang-Baxter equation and we can take $\zeta=\mathrm{id}$ and $\mu=\beta.$

Categories of Hopf-bimodules provide a class of examples of (non-strict) braided bimonoidal categories. Consider a Hopf algebra H in a symmetric monoidal category. An object M is an H Hopf-bimodule if it is a bimodule over H and simultaneously a H right- and left-comodule such that the comodule structure maps are morphisms of H-bimodules.

▶ For a group *G* we define the category $\mathcal{E}G$ whose objects are the finite sets $\mathbf{n} = \{1, ..., n\}$ for $n \in \mathbb{N}_0$ with $\mathbf{0} = \emptyset$ and

$$\mathcal{E}G(\mathbf{n},\mathbf{m}) = \begin{cases} \varnothing & n \neq m \\ \Sigma_n \times G & n = m > 0 \\ \Sigma_0 & n = m = 0 \end{cases}$$

 $\mathcal{E}G$ is bimonoidal. On objects, we take the bipermutative structure from \mathcal{E} , and on morphisms we define

$$(\sigma,g)\oplus(\sigma',g')=\left\{egin{array}{cc} (\sigma\oplus\sigma',e) & g
eq g'\ (\sigma\oplus\sigma',g) & g=g' \end{array}
ight.$$

for $\sigma \in \Sigma_n, \sigma' \in \Sigma_m$, $g, g' \in G$ and e the neutral element in the group G. Similarly,

$$(\sigma, g) \otimes (\sigma', g') = (\sigma \otimes \sigma', gg').$$

 $\mathcal{E}G$ is bimonoidal. On objects, we take the bipermutative structure from \mathcal{E} , and on morphisms we define

$$(\sigma,g)\oplus(\sigma',g')=\left\{egin{array}{cc} (\sigma\oplus\sigma',e) & g
eq g'\ (\sigma\oplus\sigma',g) & g=g' \end{array}
ight.$$

for $\sigma \in \Sigma_n, \sigma' \in \Sigma_m, g, g' \in G$ and *e* the neutral element in the group *G*. Similarly,

$$(\sigma,g)\otimes(\sigma',g')=(\sigma\otimes\sigma',gg').$$

Let G be abelian. For the anti-involution, take ζ to be the identity on objects and on morphisms we define $\zeta(\sigma, g) = (\sigma, g^{-1})$ for all $g \in G$ and permutations σ . The classifying space $B\mathcal{E}G$ has as group completion

$$\Omega B(((\bigsqcup_{i\geq 1} B\Sigma_n) \times BG)_+) \simeq \Omega B(\bigsqcup_{n\geq 0} B\Sigma_n) \wedge BG_+.$$

The classifying space $B\mathcal{E}G$ has as group completion

$$\Omega B(((\bigsqcup_{i\geq 1} B\Sigma_n)\times BG)_+)\simeq \Omega B(\bigsqcup_{n\geq 0} B\Sigma_n)\wedge BG_+.$$

This is the zeroth space of the spherical group ring $S[BG] \simeq S[\Omega BBG]$ whose algebraic K-theory is A(BBG).

▶ For a matrix of objects $A \in M_n(\mathcal{R})$ the transpose of A, A^t , has $A_{i,j}^t = A_{j,i}$ as entries. For a morphism $\phi: A \to C$ in $M_n(\mathcal{R})$ we define ϕ^t as

$$\phi_{i,j}^t := \phi_{j,i} \colon A_{j,i} = A_{i,j}^t \to C_{i,j}^t = C_{j,i}.$$

▶ For a matrix of objects $A \in M_n(\mathcal{R})$ the transpose of A, A^t , has $A_{i,j}^t = A_{j,i}$ as entries. For a morphism $\phi: A \to C$ in $M_n(\mathcal{R})$ we define ϕ^t as

$$\phi_{i,j}^t := \phi_{j,i} \colon A_{j,i} = A_{i,j}^t \to C_{i,j}^t = C_{j,i}.$$

Note that

$$(A \cdot B)_{i,j}^t = (A \cdot B)_{j,i} = \bigoplus_{k=1}^n A_{j,k} \otimes B_{k,i}$$

▶ For a matrix of objects $A \in M_n(\mathcal{R})$ the transpose of A, A^t , has $A_{i,j}^t = A_{j,i}$ as entries. For a morphism $\phi: A \to C$ in $M_n(\mathcal{R})$ we define ϕ^t as

$$\phi_{i,j}^t := \phi_{j,i} \colon A_{j,i} = A_{i,j}^t \to C_{i,j}^t = C_{j,i}.$$

Note that

$$(A \cdot B)_{i,j}^t = (A \cdot B)_{j,i} = \bigoplus_{k=1}^n A_{j,k} \otimes B_{k,i}$$

whereas

$$(B^t \cdot A^t)_{i,j} = \bigoplus_{k=1}^n B^t_{i,k} \otimes A^t_{k,j} = \bigoplus_{k=1}^n B_{k,i} \otimes A_{j,k}$$

▶ We define the involution $\tau: B_q GL_n(\mathcal{R}) \to B_q GL_n(\mathcal{R})$ via

• We define the involution $\tau \colon B_q GL_n(\mathcal{R}) \to B_q GL_n(\mathcal{R})$ via

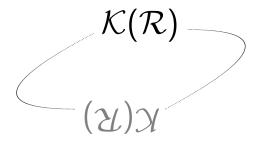
$$\tau: \qquad \begin{array}{cccc} A^{0,1} & \dots & A^{0,q} & (\zeta(A^{q-1,q}))^t & \dots & (\zeta(A^{0,q}))^t \\ \tau: & \ddots & \vdots & \mapsto & \ddots & \vdots \\ & & A^{q-1,q} & & & (\zeta(A^{0,1}))^t. \end{array}$$

• The corresponding isomorphisms $au(\phi)^{i,j,k}$ are given by

$$au(\phi)^{i,j,k} \colon \zeta(A^{q-j,q-i}))^t \cdot (\zeta(A^{q-k,q-j}))^t \ \downarrow^{\mu^{-1}} (\zeta(A^{q-k,q-j} \cdot A^{q-j,q-i}))^t \ \downarrow^{(\zeta(\phi^{q-k,q-j},q-i))^t} (\zeta(A^{q-k,q-i}))^t.$$

Theorem

The involution τ gives rise to an involution on $\mathcal{K}(\mathcal{R})$ for every bimonoidal category with anti-involution $(\mathcal{R}, \zeta, \mu)$.



► For a discrete ring with anti-involution our involution on K(R) = K(R) agrees with Burghelea-Fiedorowicz's involution.

- ► For a discrete ring with anti-involution our involution on K(R) = K(R) agrees with Burghelea-Fiedorowicz's involution.
- ► For *EG* we get an involution on *A*(*BBG*) that agrees with Steiner's involution on *A*(*X*) for *X* = *BBG*.

How can one detect whether the involution gives something non-trivial?

- How can one detect whether the involution gives something non-trivial?
- Applications?

- How can one detect whether the involution gives something non-trivial?
- Applications? Away from the prime 2, involutions give rise to a splitting

 $\mathcal{K}(\mathcal{R})\sim\mathcal{K}(\mathcal{R})^{a}\times\mathcal{K}(\mathcal{R})^{s}$

- How can one detect whether the involution gives something non-trivial?
- Applications? Away from the prime 2, involutions give rise to a splitting

$$\mathcal{K}(\mathcal{R}) \sim \mathcal{K}(\mathcal{R})^{\mathsf{a}} imes \mathcal{K}(\mathcal{R})^{\mathsf{s}}$$

There is no direct way to transfer the concept of hermitian K-theory to the K-theory of bimonoidal categories with anti-involution.

References

- Nils A. Baas, Bjørn Ian Dundas, John Rognes, *Two-vector bundles and forms of elliptic cohomology*, in: Topology, geometry and quantum field theory. Cambridge University Press, London Mathematical Society Lecture Note Series 308, (2004) 18–45.
- Nils A. Baas, Bjørn Ian Dundas, Birgit Richter, John Rognes, Two-vector-bundles define a form of elliptic cohomology theory, preprint arXiv:0706.0531
- Dan Burghelea, Zbigniew Fiedorowicz, Hermitian algebraic K-theory of simplicial rings and topological spaces, J. Math. Pures Appl., IX. Sér. 64, (1985) 175–235.
- Richard J. Steiner, *Infinite loop structures on the algebraic K-theory of spaces*, Math. Proc. Camb. Philos. Soc. 90, (1981) 85–111.