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Let R be a ring, then its algebraic K-theory groups, K.(R), can be
described as the homotopy groups of a spectrum K(R). A space

model is
QB(UBGL,(R)) ~ BGL(R)™ x Z.

Up to equivalence this is the K-theory spectrum of the
Eilenberg-MacLane spectrum of the ring, HR. If O is the ring of
integers in a number field, then Ko(O) = Z® CI(O), K1(0O) = O,
the Brauer group of the ring is related to the higher K-groups.

The sphere spectrum S is the initial object in the category of ring
spectra. Its K-theory is equivalent to Waldhausen's A-theory of a
point

K(S) ~ A(pt).
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More generally, for X connected, A(X) is the K-theory of the
spherical group ring S[Q2.X].

Let ku be a connective version of complex K-theory. Then K (ku)
has an interpretation in terms of 2-vector bundles
(Baas-Dundas-Rognes 04).

In general, K of a ring spectrum should tell us something about its
"arithmetic’.
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Sometimes there's extra structure that one can try to exploit:

» Group actions:
If R is a ring spectrum with a (naive) G-action, then
naturality of the K-construction gives a G-action on K(R).
For instance, complex conjugation gives rise to a (»-action on
ku and hence on K(ku).
If A— B is a G-Galois extension of commutative S-algebras
in the sense of Rognes, then one could try to compare K(A)
and K(B)"® (Galois descent).

» Involutions: Burghelea-Fiedorowicz constructed an involution
on K(Ry), if R, is a simplicial ring with anti-involution.

» Steiner and others constructed an involution on A(X).
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Bimonoidal categories

» Roughly speaking, a (strict) bimonoidal category R is a
category with two binary operations, ® and &, that let R
behave like a rig — a ring without additive inverses.

» More precisely, for each pair of objects A, B there are objects
A® B and A® B. We assume strict associativity for both
operations. There are objects Og € R and 1z € R that are

strictly neutral wrt addition resp. muItipIication There are
isomorphisms C@ :A® B — B® A with ces Ao cEB =id.
Everything in sight is natural and satisfies coherence
conditions. Addition and multiplication are related via
distributivity laws.
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K-theory definition (Baas-Dundas-Rognes 2004)

» For any bimonoidal category R its K-theory (of the
2-category of finitely generated free modules over R) is

K(R) = QB(| | IBGL,R|).
n>0

» Ingredients

Mu(R): category of matrices over R. For A € M,(R) let [A]
be its class in Mp(mo(R)).

GLn(R): weakly invertible matrices. Those A € M,(R) such
that [A] € Mp(mo(R)) is actually in GL,(mo(R)):

GLn(T('()R) —_— GLn(Gr(TroR))

I |

Mp(moR) —— M,(Gr(moR))
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The inner 'B’ is a suitable bar construction:

» BGL,(R) is a simplicial category with g-simplices of the form

AOL o ADg
Ad—1lq

plus isos ¢'J:K: AV . Ak — Ak 35 objects.
» Theorem(Baas-Dundas-Richter-Rognes)

For nice R
K(R) ~ K(HR)

where HR is the spectrum associated to K.
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Examples
» R aring:
K(R) ~ K(HR) ~ K(R).

> & the category of finite sets and bijections:

K(E) ~ K(HE) ~ K(S) ~ A(pt).

» V the category of complex vector spaces and unitary
morphisms:

K(V) ~ K(HV) ~ K(ku).

» Vg the category of real vector spaces and orthogonal
morphisms:
K(Vr) ~ K(HVR) ~ K(ko).
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Bimonoidal categories with anti-involution

An anti-involution in a strictly bimonoidal category R consists of a
functor (: R — R with ( o { = id and such that there are natural
isomorphisms

pag: C(A® B) — ((B) ®((A)
forall A,B € R and
> ((A® B) = C(A) @ ((B) for all A, B € R and ¢(0) = O
> ((1r) = 1r and p1, A = ide(ay = w(A, 1r).

» The u are 'associative':

HA®B,C

(A B® C)

MA,B®C\L

((Be C)a((A)

((O)@c(A® B)

J{id®ﬂA,B

((C)ed(B)@((A)

1B, c®id

commutes for all A,B, C € R.



» The distributivity isomorphisms dy and d, and the
isomorphisms p render the following diagrams commutative

dr
(AeBoA® C) —%)

(Ao (Be ()

NA®B@NA®CJ J{#A,B@C
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» The distributivity isomorphisms dy and d, and the
isomorphisms p render the following diagrams commutative

(AeBaAeC)—  ¢ae(Ba )

NA@B@NA(X)CJ J{.L"A,BEDC

C(B) @ C(A) & ¢(C) ® ((A) “— (((B) & ¢(O)) & ((A),

(Ao CaBo ) — L (AeB)® C)

#A@C@HB(@CJ/ L‘LA@B,C

(O @A) & ((C) @ ((B) —¢(C) ® (C(A) & ((B)).
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Discrete case — rings

Burghelea, Fiedorowicz: Let R be a ring with 1. An anti-involution
on Risamapt: R— R with «(a+ b) = «(a) + ¢(b),
t(ab) = «(b)e(a) for all a,b € R, ¢(t(a)) =aand ¢(1) =1.

» Fundamental example: Z[G] with ((g) = g~ L.

» More general: R a commutative ring, G a group, w: G — R*
a group homomorphism and

u(Ag) = Aw(g)g "

For instance G = m1(M), M a smooth manifold, then
wi(M) € HY(M; Z,/2Z) = [M,RP>] gives
m1(wi(M)): m (M) — Z/27 = 7*.
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Examples

» Braided bimonoidal categories are bimonoidal categories with
anti-involution: There is a braided symmetry

ﬂA’B:A®B—>B®A

which satisfies a Yang-Baxter equation and we can take
¢(=1id and p = g.
Categories of Hopf-bimodules provide a class of examples of
(non-strict) braided bimonoidal categories. Consider a Hopf
algebra H in a symmetric monoidal category. An object M is
an H Hopf-bimodule if it is a bimodule over H and
simultaneously a H right- and left-comodule such that the
comodule structure maps are morphisms of H-bimodules.

» For a group G we define the category £G whose objects are
the finite sets n = {1,...,n} for n € Ny with 0 = & and

1%} n+m
EGnm)=¢ L, xG n=m>0
20 n=m=0.
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from £, and on morphisms we define

R oW.e)={ 7009 7

foroce X, 0 €X, g, & € G and e the neutral element in the
group G. Similarly,
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EG is bimonoidal. On objects, we take the bipermutative structure
from £, and on morphisms we define

R oW.e)={ 7009 7

foroce X, 0 €X, g, & € G and e the neutral element in the
group G. Similarly,

(0:8) @ (0", 8') = (e @0, g8").

Let G be abelian. For the anti-involution, take { to be the identity
on objects and on morphisms we define ((o,g) = (c,g1) for all
g € G and permutations o.
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The classifying space BEG has as group completion

QB(((| | BEa) x BG)4) ~ QB(| | BL,) A BG,.

i>1 n=0

This is the zeroth space of the spherical group ring
S[BG] ~ S[Q2BBG] whose algebraic K-theory is A(BBG).
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Involution on the bar construction
» For a matrix of objects A € M,(R) the transpose of A, Af,
has AtJ = A;,; as entries. For a morphism ¢: A — C in

M,(R) we define ¢! as

t _ R t t __ .
ij —¢J,I-Aj,l—Ai,j—’CiJ—CJ7I-

» Note that
n
(A-B)fj= (A B)ji =D Ax®Bri

whereas

(B*-A ,J—@B,tk@)/‘\kd @Bk,i@)Ak
k=1

k=1



> We define the involution 7: BgGLy(R) — ByGLA(R) via

AL A% (C(AT-La)E . ((A%9))

piha .



> We define the involution 7: BgGLy(R) — ByGLA(R) via

AL A% (C(AT-La)E . ((A%9))

pa-ta .

» The corresponding isomorphisms 7(¢)'J"¥ are given by

(@) (AT (G(AT k)t

-

(C(Aqfk,qﬁ' . Aqu,q*i))t
l(((wk"’j""'))t
(C(AT- k)L,



Theorem

The involution 7 gives rise to an involution on IC(R) for every
bimonoidal category with anti-involution (R, (, u).
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Examples

» For a discrete ring with anti-involution our involution on
K(R) = K(R) agrees with Burghelea-Fiedorowicz's involution.

» For £G we get an involution on A(BBG) that agrees with
Steiner’s involution on A(X) for X = BBG.
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Questions

» How can one detect whether the involution gives something
non-trivial?
» Applications? Away from the prime 2, involutions give rise to
a splitting
K(R) ~K(R)? x L(R)*

There is no direct way to transfer the concept of hermitian
K-theory to the K-theory of bimonoidal categories with
anti-involution.
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