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1 General Information

1.1 Initiators

Name Field of research within the Priority Program Institution
Prof. Dr. Hélène Esnault algebraic geometry Freie Universität Berlin
Prof. Dr. Marc Levine algebraic geometry, motivic homotopy theory Universität Duisburg-Essen
Prof. Dr. Birgit Richter derived algebraic geometry, homotopy theory Universität Hamburg
Prof. Dr. Stefan Schwede derived algebraic geometry, homotopy theory Universität Bonn

1.2 Theme

The cross-fertilization of homotopy theory and algebraic geometry, especially through motivic homotopy theory,
derived algebraic geometry and di↵erential homotopy theory.

1.3 Fields involved

Mathematics: homotopy theory, algebraic geometry, motivic homotopy theory, derived algebraic geometry, dif-
ferential homotopy theory.

1.4 Keywords

Algebraic geometry, homotopy theory, motivic homotopy theory, derived algebraic geometry, rigid analytic
spaces, K-theory, algebraic cycles, algebraic cobordism, string cobordism, Gromov-Witten theory.

1.5 Expected duration

6 years, divided into two 3 year periods.

1.6 Commencement of support

1. half-year 2015

2 Introduction

2.1 Overview

The Priority Program in homotopy theory and algebraic geometry will build upon recent developments in two
central pillars of modern mathematics, algebraic geometry and homotopy theory, to bring the synergistic interac-
tions between these two disciplines to a new level, to draw in mathematicians from both disciplines to profit from
and contribute to these interactions, and to exploit these interactions to further both fields. The ideas, methods
and techniques that spring from these interactions lead to new and innovative mathematics, going beyond the
well-established research in each of the individual fields and breaking down the classical boundaries between
homotopy theory and algebraic geometry.

As its name suggests, algebraic geometry has its roots in two classical areas of mathematics, algebra and
geometry. Algebraic geometry is concerned with the study of the solution sets of algebraic equations, that is to
say, polynomial equations, using not only techniques of algebra, but relying as well on geometric considerations.
This two-sided approach to the study of equations can be traced back to Descartes, and is familiar to us all when
we graph the solutions to an equation in variables x and y to yield a curve (for example, a circle or parabola) in
the plane. Of course, modern algebraic geometry has come a long way since Descartes and now applies methods
from all branches of mathematics, from algebra, analysis and topology, and has wide-ranging applications to
other branches of mathematics as well as to physics, engineering and even logic.

Homotopy theory is a considerably newer area of mathematics, being an important branch of algebraic
topology, the modern development of what is popularly known as “rubber-sheet geometry”, that is, the study of
the properties of curves, surfaces and objects of higher dimension which are preserved under operations such as
bending and stretching; in homotopy theory one allows additional modifications by “continuous deformation”.
Since its creation in the late 19th and early 20th centuries by Poincaré and others, algebraic topology has become
an essential component of modern mathematics. Homotopy theory has numerous applications both in and out
of mathematics, including aspects of physics such as string theory.

1



Algebraic geometry and homotopy theory are both recognized as being in the forefront of modern mathemat-
ics. These two fields together account for more than a third of all Fields Medals (the mathematician’s equivalent
of the Nobel Prize) awarded since 1945, and are well represented at research centers throughout the world.

Algebraic geometry and topology have both profited from a long history of fruitful interaction. This Priority
Program is based on several recent expressions of this interaction:

• Motivic homotopy theory, which for the first time brought the full weight of homotopy theory into the realm
of algebraic geometry,
• Derived algebraic geometry and the introduction of modern algebraic geometry into homotopy theory
• Di↵erential homotopy theory and Arakelov theory, which uses analytic methods to relate and conjoin arithmetic
and algebraic invariants

Besides these main fields, this program will rely a great deal on support from classical homotopy theory, as
well as having connections with numerous other fields, such as algebraic stacks and moduli problems, represen-
tation theory, formal groups, computer algebra, quadratic forms, Gromov-Witten theory and tropical geometry.

2.2 Pathways between algebraic geometry and homotopy theory

2.2.1 Motivic homotopy theory

One basic setting for homotopy theory is the stable homotopy category; this is the mathematical universe in
which the modern homotopy-theorist works. The initial breakthrough leading to the creation of the subject
of motivic homotopy theory was the construction by Morel-Voevodsky [79] of new versions of this category,
which brought the “classical” versions from homotopy theory together with inputs from algebraic geometry.
Voevodsky’s construction of the motivic stable homotopy category enabled one for the first time to work with the
basic material of algebraic geometry, solutions of polynomial equations, with the flexibility and power previously
only available in homotopy theory.

The motivic theory has been a notable success. The Fields Medalist Voevodsky used these homotopical
methods in his proof of the celebrated Milnor conjecture [108], and motivic homotopy theory played an even
more central role in his contribution to the proof of the Bloch-Kato conjecture [106], the successful culmination
of thirty years of intensive research. Besides these quite spectacular applications, the fact that one could now use
the ideas and methods of homotopy theory to solve problems in algebraic geometry has drawn in mathematicians
from both fields and has led to a wealth of new constructions and applications, such as classification results for
algebraic vector bundles (for example, Asok-Fasel [4, 5]), Vishik’s work [104] on the Kaplansky conjecture on
quadratic forms (1953), Tzeng’s solution [103] of the Göttsche conjecture in Gromov-Witten theory and parts of
the so-called MNOP conjectures in Donaldson-Thomas theory (Levine and Pandharipande [71]).

Motivic homotopy theory has been useful for the classical homotopy theorists as well. The recent work of
Hill, Hopkins and Ravenel [44] on the Kervaire invariant one conjecture, settling one of the main open problems
in stable homotopy theory, used in an essential way the “slice filtration” in equivariant stable homotopy theory,
which in turn was inspired by Voevodsky’s slice filtration in motivic stable homotopy theory (see section PA1
below).

2.2.2 Derived algebraic geometry

From the point of view of modern algebra, the fundamental object in local algebraic geometry is the commutative
ring; these are glued together to form the basic objects of global algebraic geometry. Passing from algebra to
stable homotopy theory, one replaces a commutative ring with a commutative ring spectrum. Driven forward
by contributions of the Fields Medalist Kontsevich and many others, the field of derived algebraic geometry is
devoted to broadening this transformation from commutative ring to commutative ring spectrum by tranferring
the constructions of local and global algebraic geometry to the setting of stable homotopy theory.

Besides giving a better understanding of aspects of algebraic geometry, derived algebraic geometry has been
essential to some of the most important recent developments in homotopy theory. A large portion of research
in stable homotopy theory in the last two decades has been devoted to elliptic cohomology theories, which relate
stable homotopy groups, manifolds and modular forms, and have close ties to string theory in mathematical
physics. Results from derived algebraic geometry have quite recently enabled researchers in elliptic cohomology
to achieve two of their main goals: the construction of a certain universal spectrum called “topological modular
forms” (TMF ) and the construction of the String orientation of a closely related construction, tmf (the connected
cover of TMF ). This String orientation refines the Witten genus [116] from cobordism to elliptic cohomology,
by which Witten describes the index of the operator known as the supercharge of the supersymmetric nonlinear
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sigma model. The original construction of TMF , due to Goerss-Hopkins-Miller [39, 46], has recently been revised
by Lurie from a point of view that is very appealing to algebraic geometers, as it represents TMF as coming from
a derived version of an object that is of central importance in algebraic geometry, the moduli stack of elliptic
curves. Current research suggests that there are similar results and constructions related to higher dimensional
versions of elliptic curves, involving derived versions of some other familiar and important objects from algebraic
geometry, such as abelian varieties, p-divisible groups and automorphic forms.

2.2.3 Di↵erential homotopy theory and Arakelov theory

Di↵erential homotopy theory is based on refining the restriction to manifolds of classical homotopy invariants
of spaces by incorporating additional structures, such as di↵erential forms or connections. In one direction, this
approach appears in algebraic geometry through Arakelov theory, while index theory forms another important
direction. Recently this theory has taken on a “motivic” character, in that objects are constructed as presheaves
on various categories of smooth manifolds, just as the motivic theory is based on presheaves on the category
of smooth schemes. From both points of view, the exchange of ideas and methods between motivic homotopy
theory and di↵erential homotopy is both natural and desirable.

Ordinary di↵erential cohomology has been introduced by Cheeger and Simons [27] as a refinement of ordinary
cohomology with integral coe�cients, and serves as a target for refined characteristic classes and characteristic
forms. This approach is based on an explicit description of the relevant groups by cycles and relations. Using a
more homotopy theoretic approach, Hopkins and Singer [49] show how one can refine a generalized cohomology
theory, such as K-theory, to a di↵erential one. Connections to physics are discussed in [35] and a uniqueness
theorem for di↵erential cohomology theories is achieved in [23]. In [21], a general setup using infinity categories
is developed to define di↵erential extensions as a sheaf of spectra on the category of smooth manifolds and is
applied to the construction of di↵erential algebraic K-theory of number rings. Generalizations to regular schemes
over the integers are given in [24]. Work of Holmstrom-Scholbach [43] uses aspects of motivic homotopy theory
to construct Arakelov motivic cohomology and Arakelov K-theory; a similar approach is used by Hopkins-Quick
[48] in their construction of “Deligne”-cobordism.

2.3 Building upon success

Recent developments (see §4 for details) have made possible an exchange of ideas and methods between these
areas at a level that is unique in the history of the subject. E↵ective application of these developments requires
mathematicians working in algebraic geometry, motivic homotopy theory, homotopy theory, di↵erential homotopy
theory and derived algebraic geometry to come together, to learn from one another and to work with each other
on common projects. Many individual researchers and research groups throughout the world have contributed
to these recent advances and are now starting to use these new results to make the leap to the next level in their
respective fields. However, there is at present no single group of researchers that brings together experts in all
the fields that are taking part in these exciting developments. The long-term goal of this Priority Program is
the creation of just such a collaborative research network. This network, comprised of top researchers in all five
fields: algebraic geometry, homotopy theory, motivic homotopy theory di↵erential homotopy theory and derived
algebraic geometry, will be unique among mathematical research groups world-wide.

This Priority Program in homotopy theory and algebraic geometry sets up a framework, via targeted pro-
gram areas, promotion of young researchers through summer schools and workshops, and conferences on the
international level, that will promote collaboration, encourage the participation of new groups of young mathe-
maticians, create new mathematics of interest to the wider mathematical community, and in doing so, build the
links needed to form an e↵ective mathematical network.

We have identified key program areas which build upon recent progress in algebraic geometry and homotopy
theory and which hold promise of significant progress in the near and middle term. In our detailed scientific
program (see §5), we outline specific goals for short- and middle-term progress in these areas. This Priority
Program will focus e↵orts, coordinate individual projects and facilitate larger collaborations through the use of
planning workshops held at the start of each of the three-year funding period. This coordination and exchange
of ideas will continue through the funding period, aided by frequent workshops, summer schools and conferences,
allowing us to link together the e↵orts of individuals and smaller groups in a way that up to now has been
either non-existent or at best accidental. At the same time we will be making our activities known to the
international mathematics community through our individual contacts, exchange programs supported by the
Priority Program and yearly conferences held by this Priority Program. This will encourage mathematicians
from outside of Germany, especially early career researchers, to come and take part in the research activities of
the Priority Program.
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Ultimately, this Priority Program will establish in Germany a vibrant and long-lasting network, forming a
community of researchers within Germany that will be unique in the mathematical world, and resulting in the
creation of new and exciting mathematics that will continue to draw in young researchers for a long time to
come. We believe that the creation of such a collaborative network is the most e↵ective way for mathematics in
Germany to rise to the forefront of this exciting field of mathematics and this Priority Program is an excellent
vehicle for accomplishing this task.

3 Summary of the Research Topics

This Priority Program comprises areas of algebraic geometry and homotopy theory which import ideas, methods
or results from one field to advance the other, or which develop methods of interaction between these fields. The
interactive links between algebraic geometry and homotopy theory have been built up in the areas of motivic
homotopy theory, di↵erential homotopy theory and derived algebraic geometry. Progress in motivic homotopy
theory and derived algebraic geometry over the past ten years have made possible a number of new directions
in these fields, as well as applications to algebraic geometry and homotopy theory.

The goal of this Priority Program is to further research in algebraic geometry and homotopy theory by using
this interplay between these fields. As a further goal, this Priority Program seeks to promote the development
of classical homotopy theory, motivic homotopy theory, di↵erential homotopy theory and derived algebraic
geometry, including the cross-fertilization of these areas.

To focus the activities of this Priority Program in particularly promising directions, and to describe more
precisely the recent work upon which this Priority Program will build, we have delineated five separate program
areas (PA). These main program areas are

PA 1 Chromatic amd motivic aspects of stable homotopy theory
PA 2 Equivariant homotopy theory
PA 3 Classification problems
PA 4 Cobordism
PA 5 Unstable homotopy theory

In the description of the scientific program, §5, we briefly illustrate a total of 24 separate example project
directions. The following chart describes the expected contributions of the main research groups to the various
projects described here:

Table of program areas
PA 1. PA 2. PA 3. PA 4. PA 5.

1 2 3 4 5 1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 3 4 5 6

Motivic homotopy theory x x x x x x x x x x x x x x x x x x x x x x x x
Derived algebraic geometry x x x x x x x x x x x
Di↵erential homotopy thy. x x x x x x x x x

Algebraic geometry x x x x x x x x x x x x x x x x x x x
Classical homotopy theory x x x x x x x x x x x x x x x x x x x x x x x

Other fields1 x x x x x x x x x x x x x x x x x x x x x x

4 Reasons for funding this Priority Program

The main points arguing for the establishment of the Priority Program in homotopy theory and algebraic geom-
etry are briefly stated as follows:

• Both algebraic geometry and homotopy theory are central areas of modern mathematics. Both areas are
historically and currently well-represented in Germany. There is at present no German network devoted to
aspects of homotopy theory.

• The area of concentration of this Priority Program, namely, the links between algebraic geometry and
homotopy theory represented by motivic homotopy theory, di↵erential homotopy theory and derived algebraic
geometry, has seen striking developments in recent years, with researchers in Germany making significant con-
tributions. These results form the basis for the next surge in activity in these areas. Research in these areas will

1
such as: number theory, formal groups, representation theory, computer algebra, tropical geometry
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continue to lead to new and innovative mathematics, going beyond the well-established research in each of the
individual fields and breaking down the classical boundaries between homotopy theory and algebraic geometry.

• International interest in these recent developments is evidenced by recent conferences and workshops, as
well as several group programs and individual funded projects in the U.S. and Europe. There are several large
networks in the US and Europe devoted to these topics.

• The planned Priority Program will e↵ectively channel e↵orts to utilize these recent developments by bringing
researchers from the di↵erent areas together via joint projects as well as through workshops, conferences summer
schools and exchange programs. The particular problem areas delineated in this program have been carefully
chosen to maximize this cooperation and at the same time take advantage of the existing interests and skills of
researchers in Germany.

• The program will heighten the international stature of this area of research in Germany and will draw in
researchers from outside Germany.

• The development program, workshops, summer schools, conferences, will further a long lasting establish-
ment of this area in the German research landscape, as well as drawing in potential new researchers to this field
at the doctoral and post-doctoral levels.

In more detail:

• Recent breakthroughs form the basis for new development. A surprising number of recent break-
throughs and successful completions of foundational programs in the boundary areas between algebraic geometry
and homotopy theory set the stage for a new surge of activity. These recent developments include:

1. The construction of a geometric theory of algebraic cobordism [70], and its application to problems in
Donaldson-Thomas theory [71] and Gromov-Witten theory [63], for example, the proof of Göttsche’s conjecture
by Tzeng [103].
2. Vishik’s symmetric operations in algebraic cobordism and their application to Kaplansky’s 1953 conjecture
on the u-invariant of quadratic forms [104]

3. The computation of the essential dimension of p-groups by Karpenko-Merkurjev [58]
4. Ayoub’s construction of Grothendieck’s six operations in the motivic stable homotopy category [10] and the
motivic homotopy category for rigid analytic spaces [11].
5. Voevodsky’s introduction of the slice tower in motivic homotopy theory [109, 110] and the verification of
nearly all of Voevodsky’s conjectures concerning the slice tower [47, 52, 65, 67, 86, 87, 98, 99, 107, 111].
6. The solution of the Kervaire invariant one conjecture by Hill-Hopkins-Ravenel [44], relying on equivariant
homotopy theory and ideas taken from Voevodsky’s slice tower construction.
7. Work of Lawson-Naumann on Brown-Peterson theory [62].
8. Morel’s computation of motivic stable ⇡0 of the sphere spectrum [78], followed by first computations of
motivic unstable ⇡1 (Asok-Morel [7]) and higher motivic homotopy groups, with applications to vector bundles
(Asok-Fasel [4, 5])

• The area is actively pursued on an international level. The interaction of homotopy theory and
algebraic geometry is one of the key areas of research at many of the top mathematics departments throughout
the world, seen for example, in the work of Harvard professors Michael Hopkins (ICM2 speaker 1994, ICM ple-
nary speaker 2002, National Academy of Sciences Award in Mathematics, 2012) and Jacob Lurie (ICM speaker
2010), who are recognized leaders in this area.

These topics form the subject of several high-level workshops and special programs, in the recent past as well
as planned for the near future. Programs discussing these and related works include the special program in “A1-
Homotopy Theory and its Recent Developments” at the Institute for Advance Study (Princeton, 2009-10), the
week-long program in algebraic K-theory and equivariant homotopy theory at the Ban↵ Institute (Feb. 2012),
and the upcoming semester program in Algebraic Topology at the MSRI3, Berkeley (2014).

The NSF has recently funded Focused Research Groups in Homotopical methods in Algebra (Friedlander,
Haesemeyer, Walker, Weibel) and Homotopy Theory: Applications and New Dimensions (Hopkins, Lurie, Miller,
Barwick, Behrens), both of which deal with topics closely paralleling those selected for this Priority Program, as
well as numerous individual grants in this same area. There are also networks devoted to such research areas in
France and Norway (see §8 for details and possible collaborations).

2
International Congress of Mathematics

3
Mathematical Sciences Research Center
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• The Priority Program creates value beyond individual projects. Although homotopy theory and
algebraic geometry share to a large extent a common background, the problems, constructions and methods
in one area are often not familiar to those in another. Central goals of this Priority Program are to broaden
this common background, to accelerate the already existing cross-fertilization and collaboration between these
areas, and to promote the exchange of ideas, methods and problems between algebraic geometers and homotopy
theorists, on the level of both junior and senior researchers.

The areas covered by this Priority Program are actively pursued in Germany, however, researchers are scat-
tered in small groups throughout the country, with no concentration at any one university. This Priority Program
will link these geographically scattered groups, intensifying their activities in spite of their small size.

This Priority Program is designed to create new collaborations and break down existing barriers between
fields. The program areas identified in our scientific program form an emerging field that draws from five
di↵erent established fields: algebraic geometry, classical homotopy theory, motivic homotopy theory, di↵erential
homotopy theory and derived algebraic geometry. Due to the complexity of the methods in these established
fields, cooperation among experts in each of these fields is necessary for further progress. The coordinated
planning of projects, combined with the workshop, summer school and conference program and the exchange of
students and post-docs between the various research locations will create a community of researchers from what
is now largely a collection of isolated groups. This will foster the exchange of ideas between these groups and
the di↵erent fields they represent far more than would occur if researchers would continue to work in isolation.

This Priority Program will thereby create a collaborative network of researchers in algebraic geometry, clas-
sical homotopy theory, motivic homotopy theory, di↵erential homotopy theory and derived algebraic geometry,
which will be distinguished from other international research groups working in these areas in that it will ac-
tively promote collaborations between researchers in these fields. This network will be the unique collection of
researchers that can draw upon expertise in all these research fields, creating value far beyond a collection of
isolated individual projects.

• Long-term development, sustainability and international visibility The Initiators of this Priority
Program have had a wide experience in organizing conferences at the international level, both inside and outside
Germany, they have received numerous grants for research visits at top-level research institutions throughout
the world, and are active as editors of highly respected mathematical journals.

Due to its unique nature, this Priority Program will significantly heighten the visibility of this internationally
active area of research in Germany. Combined with selection of research areas and the program of conferences,
workshops and summer schools, the Priority Program will be able to attract excellent young mathematicians
from within and from outside Germany and build up the existing groups in Germany. The prospects for securing
this area as a lasting component of the German mathematical landscape are excellent.

The program can draw from researchers located at more than 20 universities throughout Germany for active
participation in the Priority Program. In addtion to senior researchers, a sizable number a junior researchers
have also expressed interest in this program, giving a career-stage distribution suitable for both both stability
and long-term sustainability of the Priority Program.

• Suitability of the program. The Initiators form a body of experts for a wide range of research areas
covered by this Priority Program.

Professor Esnault: Hélène Esnault is a leading expert in areas of algebraic geometry such as: rational points
on algebraic varieties, algebraic cycles, algebraic vector bundles, flat connections and motives. She has a wide
knowledge of many other fields in algebraic and arithmetic geometry. Her expertise will be invaluable in helping
guide the aspects of this Priority Program that deal with connection with and applications to algebraic geometry.

Professor Levine: Marc Levine has worked in various aspects of algebraic geometry, dealing with algebraic
cycles and higher algebraic K-theory, since the beginning of his career. In the last twenty years, he has concen-
trated his research in the study of motivic cohomology and motivic categories and more recently in the area of
motivic stable homotopy theory. Together with Fabien Morel, he is the originator of algebraic cobordism.

Professor Richter: Birgit Richter works on stable homotopy theory with a focus on structured ring spectra
and their algebraic properties. She studies these via algebraic K-theory and related invariants such as Picard
and Brauer groups. Her focus in the Priority Program will be on derived algebraic geometry, in particular on
the transfer of methods from algebraic geometry to stable homotopy theory and the investigation of properties
of algebraic K-theory such as Galois descent.
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Professor Schwede: Stefan Schwede works in algebraic topology, specifically in stable homotopy theory and
equivariant homotopy theory. Schwede studies foundational questions about structured spectra and structured
ring spectra; he is interested in triangulated categories that arise from topology, and how they compare to tri-
angulated categories that arise in algebra and algebraic geometry. He brings expertise in homotopy theory and
derived algebraic geometry to this Priority Program.

This Priority Program has been planned with the active participation of a large majority of the prospective
participants and as such accurately reflects the research interests of its potential project applicants. The type of
activities planned for this Priority Program, and the number of internationally respected participants, located
at more than 15 universities through Germany, all fit perfectly into the concept of the Priority Program, as set
out by the DFG.

5 Scientific Program

PA1 Chromatic and motivic aspects of stable homotopy theory

Chromatic homotopy theory refers to various aspects of the Adams-Novikov spectral sequence, and its inter-
play with the theory of formal group laws. This is a central part of modern stable homotopy theory (see
e.g. [90]). Recently, aspects of chromatic homotopy theory have been introduced into the motivic setting,
see [34, 54, 64, 80, 85]. Additional information comes from the point of view of di↵erential homotopy theory
through recent work of Bunke-Naumann [22]. Recent developments in motivic homotopy theory point to a new
point of view on chromatic homotopy theory, incorporating one of the central themes in algebraic geometry:
Grothendieck’s coniveau filtration.

PA1. Previous work
One of the most powerful computational tools to compute the stable homotopy of spheres is the Adams-Novikov
spectral sequence [89]. Its E2-term is the quasi-coherent cohomology of the stack of formal groups with coe�-
cients all twists of the canonical line bundle. Once localized at a prime, the structure of the abelian category
of quasi-coherent sheaves is governed by the height filtration of the stack, and this has been discovered in the
guise of structural results for BP⇤BP -comodules in the 1970s by Landweber, Miller, Ravenel, Morava and others
[77]. Ravenel went on to formulate precise conjectures which roughly speaking say that this structure should
be visible on the level of (finite, p-local) spectra. All except one of these conjectures were settled by Hopkins
and others in the mid 1980s and constitute what now is commonly referred to as the chromatic approach to
stable homotopy [90]. This circle of ideas received new attention in the early 1990s with Goerss’s and Hopkins’s
multiplicative ring spectrum project, which tries to explain the above results by directly lifting the algebra of
the stack of formal groups into the homotopy category (of E1-ring spectra) [38]. One of the first successes of
this approach, due to Hopkins-Miller-Goerss and Devinatz is that the local rings of the stack can be lifted. This
leads to an E1-action of the Morava stabilizer group on Lubin-Tate theory [33].

Replacing spaces and spectra with presheaves on the category Sm/S of smooth schemes over a chosen base-
scheme S, performing the appropriate localization, and replacing S1 with P1, one arises at the motivic version of
classical homotopy theory. Voevodsky defined the slice tower in motivic stable homotopy theory as an analog to
the classical Postnikov tower, with P1-connectivity replacing the usual notion. He presented a series of conjectures
[109] on the layers of the slice tower for a number of objects of interest, such as the algebraic K-theory spectrum
K, the algebraic cobordism spectrum MGL and the sphere spectrum, as well as some conjectures regarding the
convergence of the slice tower for finite spectra and a general structure result for the layers. Through work of
Voevodsky [111], Levine [67], Hopkins-Morel and Hoyois [47, 52], Naumann, Panin, Röndigs, Østvær [86, 98],
most of these conjectures have been proven in varying levels of generality. This foundational work sets the stage
for the next phase of development. At present, the full range of the classical chromatic theory is not available in
the motivic setting.

Hu-Kriz-Ormsby [54, 55] and Dugger-Isaksen [34] have constructed and studied motivic liftings of the Adams,
Adams-Novikov and May spectral sequences. Besides proving convergence properties, they have made extensive
explicit computations, relying in part on the extra grading to give limitations on the di↵erentials, which makes
computations significantly easier. Playing the motivic and classical spectral sequence o↵ each other, Dugger-
Isaksen have extended the range of the explicit computations for the di↵erentials in the classical sequences.
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PA1. Scientific goals
1. A motivic version of the chromatic package. This is a long-term goal, to recast the entire chromatic
theory in the motivic setting. There are obstructions to a straightforward translation of the classical theory into
a motivic version, and it is not clear what reasonable expectations one should have. However, using the classical
theory as a guide one can certainly uncover interesting properties of the motivic stable homotopy category. The
motivic version of parts of the Goerss-Hopkins multiplicative ring spectrum project are discussed more fully in
§PA3.

One expects that the classical theory is most closely reflected in the motivic setting for the base scheme an
algebraically closed field, for instance, results of Levine [64] show that the motivic theory of torsion objects is
very closely related to that of their Betti realizations in the algebraically closed case in characteristic zero.The
next step is to fields of finite cohomological dimension, with the most di�cult and most interesting case being
that of fields with a real embedding, leading to non-torsion elements in the Witt group. One can hope to study
the case of fields of finite cohomological dimension by comparison with the theory over the algebraic closure,
which brings one to the equivariant theory discussed in §PA2. For fields with a real embedding, the homotopy
theory acquires a completely new character, which one already sees in the ⇡0 of the sphere spectrum, through
Morel’s identification of this with the Grothendieck-Witt group of the field [78].

In the case of fields of finite cohomological dimension, one knows that the distinction between motivic stable
homotopy theory and motivic “homology theory” come down to essentially torsion phenomena; this may be
viewed as an analog of Serre’s theorem that the higher stable homotopy groups of spheres are all torsion. As this
is no longer the case if the field admits a real embedding, one can ask if this torsion principle still holds for the
higher homotopy sheaves of the sphere spectrum. This is probably the first question that needs to be answered
in the study of the motivic stable homotopy category over such fields.

2. The algebraic geometry of the Adams-Novikov spectral sequence. As mentioned above, it is now
known that the Adams-Novikov spectral sequence agrees with the slice spectral sequence for the weight zero part
of the sphere spectrum. The next step is to investigate in more detail the underlying algebraic geometry of the
Adams-Novikov spectral sequence and the chromatic tower as reflected by this connection.

One should also use the classical structures to help understand the motivic side. It has up to now been
very di�cult to compute the layers in the slice tower for the suspension spectrum of a given variety X, even for
smooth projective X. Using the various base-change functors, the essential case is the sphere spectrum over an
arbitrary field, where Voevodsky’s (by now verified) conjecture [109] on the slices of the sphere spectrum give the
answer. The motivic versions of the May spectral sequence and the motivic chromatic filtration give a structure
to the slices for the sphere spectrum that is not at all apparent from the original construction. Using Ayoub’s
four-functor formalism [10], one can hope to extend this “Adams-Novikov package” on the Tate-Postnikov layers
from fields to a general variety.

3. Arithmetic aspects of classical homotopy theory. Since classical homotopy theory sits as a full sub-
category of the motivic stable homotopy category over Q̄, one should be able to utilize the arithmetic structure
inherent in SH(Q̄) to attack problems in classical homotopy theory. For instance, the natural action of Z⇥

p on
BP (p)-theory should arise from the cyclotomic character of Gal(Q); it would be of interest to see how the p-local
actions fit together to give an action of the full Galois group on the integral spectral sequence. One would like
to apply some of the more arithmetic aspects of formal groups (e.g. p-divisible groups) to chromatic homotopy
theory in a direct way via motivic homotopy theory.

4. Analytic invariants. Di↵erential homotopy theory has been already used by Bunke-Naumann [22] to
construct invariants detecting parts of the chromatic tower. One would like to reinterpret and extend these
invariants as realization functors in Deligne-type cohomology theories. Bunke-Tamme [24] have constructed
cycle class maps into di↵erential algebraic K-theory for quite general schemes over number rings; following the
recent work of Spitzweck [97], there should be an extension of this construction to motivic cohomology for
regular schemes over number rings. There is at present very little use of classical index theory in the study
of motivic invariants; this is an area ripe for development. For instance, one should extend the role played by
analytic torsion in the Arakelov Riemann-Roch theorem to a wider range of motivic theories, such as algebraic
cobordism.

5. Computations. The works of Dugger-Isaksen [34] and Isaksen-Shkembi [57] point out the computational
advantage flowing from the motivic aspects of classical homotopy theory. New aspects of the chromatic theory
now seems approachable by this method, leading to numerous projects in homotopy theory. There would also
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be algebraic, algorithmic and computer aided aspects to these types of computations, touching on fields such
formal groups, representation theory and computer algebra.

PA2 Equivariant homotopy theory

Equivariant stable homotopy theory studies spaces with group actions, up to suspension by the spheres of or-
thogonal representations. The most successful and widely used frameworks apply to actions of finite groups
and compact Lie groups. The corresponding motivic foundations, based on actions of finite group schemes or
algebraic groups on motivic spaces, are currently under investigation.

PA2. Previous work
One recent push for equivariant stable homotopy theory came when in 2009 Hill, Hopkins and Ravenel announced
a proof that there do not exist manifolds with Kervaire invariant 1 in dimensions 2k � 2 for any k � 8. Their
proof makes serious use of equivariant stable homotopy theory, in particular a C2-equivariant refinement of the
complex bordism spectrum, the multiplicative norm construction and a slice filtration inspired by Voevodsky’s
slice filtration in motivic stable homotopy theory.

Another current strand of research is a systematic study of global equivariant stable homotopy theory. Here
‘global’ refers to simultaneous and compatible actions of a whole class of groups, for example all finite groups
or all compact Lie groups, on a spectrum. A rigorous framework is given by the category of orthogonal spectra,
endowed with a new ‘global’ model structure that takes the Mackey functor valued homotopy groups for all
groups in the desired class into account. This gives a natural refinement of traditional stable homotopy theory;
one aim here is the definition and study of ‘hyper-commutative’ ring spectra, where ‘hyper-commutative’ refers
to the expectation that the global model structure should lift to the category of commutative orthogonal ring
spectra.

The topological complex bordism spectrum has two universal properties: on the one hand, it is the universal
multiplicative complex oriented cohomology theory; on the other hand, its coe�cient ring carries the universal
1-dimensional commutative formal group law. The equivariant and motivic extensions and refinements of these
properties are still under investigation. In equivariant homotopy theory, one has to distinguish between geometric
equivariant bordism (made from bordism classes of stably almost complex G-manifolds) and homotopical bordism
(represented by an equivariant Thom spectrum over Grassmannians in a complete G-universe). This di↵erence
also occurs in motivic homotopy theory, in the form of homotopical versus algebraic bordism. The homotopical
equivariant bordism is the universal equivariant cohomology theory that is complex oriented, but there is not
yet a really satisfactory theory of equivariant formal group laws.

One approach to an equivariant motivic homotopy theory has been discussed in [26]. The slice filtration as
exploited in [53] is one connection between equivariant and motivic homotopy theory. Another connection comes
from the observation that the topological realization function from the motivic homotopy category of a field has
a natural lift to an equivariant homotopy category with action of the Galois group. This has been exploited in
the study of hermitian K-theory and Real algebraic K-theory (see for instance [18, 53]).

Real homotopy theory concentrates on the Z/2-action coming from complex conjugation,and is thus related
to aspects of algebraic geometry over the real numbers.

PA2. Scientific goals
1. Foundations for equivariant homotopy theory. Well-known structures in classical and motivic homotopy
theory, such as algebraic K-theory, should have natural extensions to the setting of global stable homotopy
theory. For such constructions, one requires a new framework for global stable homotopy theory: the category of
orthogonal spectra, endowed with a new ‘global’ model structure that takes the Mackey functor valued homotopy
groups for all groups in the desired class into account. An obvious questions to settle is the precise relationship
between the frameworks for global homotopy theory by Greenlees-May and Bohmann and the approach via
orthogonal spectra.

One should see that the well-known smash product for orthogonal spectra can also be derived globally. More-
over, the global model structure should lift to the category of commutative orthogonal ring spectra; the fibrant
objects there may be thought of as ‘hyper commutative ring spectra’, as they refine commutative equivariant ring
spectra and possess a host of structures, such as a global Green functor with power operations and norm maps on
the homotopy groups. Global algebraic K-theory ought to be a prominent example of such a hyper-commutative
ring spectrum, introducing derived algebraic geometry into the picture.

There should be a corresponding di↵erential/analytic version of this global stable homotopy theory as well.

2. Equivariant motivic cohomology theories. Concerning equivariant motivic homotopy theory, there
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should be a reasonable motivic stable model structure on linear spectra which is similar to the one for topological
orthogonal spectra. The equivariant version of this model structure should then be a particularly useful strictly
monoidal model for doing equivariant stable motivic homotopy theory. It would be interesting to see how
existing explicit constructions of equivariant (co-)homology theories such as equivariant algebraic K-theory
and K-homology relate to the corresponding equivariant (co-)homology theories represented in the equivariant
stable motivic homotopy category. Finally, one should establish the correct Bredon-style equivariant motivic
cohomology theory, including a spectral sequence relating it to equivariant algebraic K-theory, which then should
be compared to the one of Levine and Serpé [72], or a G-equivariant version of the Grayson spectral sequence
[41].

3. Real homotopy theory. The special case of Real homotopy theory and its motivic counterpart have been
used by Kriz-Hu-Ormsby [53] to study hermitian K-theory. One should extend their method by constructing
an equivariant version of the slice tower, which would give a better understanding of the relation of hermitian
K-theory and Chow-Witt theory.

The extension of di↵erential invariants of K-theory to the setting of hermitian K-theory, as well as a general
extension to a theory of real di↵erential homotopy theory would be desirable.

4. Real and tropical enumerative geometry. Computations (Hoyois-Fasel-Levine) of Euler characteristics
in the motivic stable homotopy category of homogeneous spaces for reductive groups give an example of an
interesting connection between motivic homotopy theory over the reals, real enumerative geometry and tropical
geometry. In fact, one can make the computation of this Euler characteristic, which turns out to be the rank of
the Chow groups of even codimension minus the rank of the Chow groups of odd codimension, by a homotopy-
theoretic approach, by a tropical approach, and by computing an intersection product in the Chow-Witt groups.
This confluence points the way to a three-pronged approach to problems in real enumerative geometry, in
which the techniques available to motivic stable homotopy theory complement those arising from the more
well-understood methods from real intersection theory and tropical geometry.

Similarly, using analytic invariants arising from equivariant realization functors would introduce methods
from equivariant di↵erential homotopy theory into the picture.

One could also shift the emphasis from the reals to other interesting fields, such as p-adic fields, using the
motivic approach to replace classical real enumerative geometry with information arising from quadratic forms,
and then specializing back to the Grothendieck-Witt rings of p-adic fields.

5. Hermitian K-theory and Chow-Witt groups. The use of the slice filtration in the equivariant case
by Hu-Kriz-Ormsby [53] has given one of the first applications of this technique to the study of Hermitian K-
theory. The Chow-Witt groups of a scheme, defined as the cohomology of the Chow-Witt sheaves, are thought
to be a “Witt”-pendant to the classical Chow groups. As such, one would like to establish a close relation with
hermitian K-theory, the Witt-pendant to algebraic K-theory and the Chow-Witt theory. Although the slice
tower for algebraic K-theory does give a close relation with motivic cohomology, the situation for hermitian
K-theory is much more complicated and unclear. Investigating an equivariant version, relying on the connection
between hermitian K-theory and real algebraic K-theory, would be a promising approach.

In another direction, Chow-Witt groups could be used to give a “motivic” viewpoint on real enumerative
geometry; this is related to the project PA2.4. The idea here would be reinterpret results in real enumerative
geometry as computations in Chow-Witt groups for varieties over the rationals and then specializing to identities
in the Witt groups of Qp. This would yield some interesting p-adic interpretations of results from real enumerative
geometry. As a test case, one could try to give such a treatment of the recent results of Okonek-Teleman [83, 84].

PA3 Classification problems

Via surgery the classification of manifolds can be achieved if one understands bordism relations in various forms.
These bordisms are again to be understood via homotopy theory with the help of various spectra like KO (real
K-theory), or TMF (topological modular forms). The latter can only be constructed by using derived algebraic
geometry, that is, algebraic geometry over enriched ring spectra. Other ways of understanding the subtleties of
such theories is via the K-theory of ring spectra; this too requires the use of derived algebraic geometry.

This gives two main points of contact between algebraic geometry and topology: the use of derived algebraic
geometry to accomplish the goals of topology, and the extension of the methods of topology to the motivic level,
in order to better understand the algebraic geometry of smooth varieties.

PA3. Previous work
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A String structure on a smooth manifold M is a lift of the classification map of its stable tangent bundle to the
7-connected cover of BO. String structures on M are related to Spin structures on the free loop space LM . The
bordism ring of String manifolds coincides up to dimension 7 with the homotopy groups of the spheres and also
plays a role in surgery theory, that is, in the classification of manifolds. However, a complete calculation has not
been established yet.

Spin-bordism has been calculated. By a theorem of Anderson, Brown and Peterson the Thom spectrumMSpin
splits at the prime 2 into a sum of connective covers of KO and an Eilenberg-Mac Lane part. In particular, two
Spin manifolds are bordant if and only if all KO and Stiefel Whitney classes coincide. A corresponding result
for the Thom spectrum MString is not yet known, but such a splitting would be crucial for the understanding
of String-manifolds. Although KO is not strong enough to detect all String bordism classes, the theory of
topological modular forms, TMF , together with its derivates at various levels, seems to have this property. The
analogy between MSpin and KO on the one hand and MString and TMF on the other hand has been extensively
studied during the last decade by Ando, Hopkins, Laures, Strickland and others [1, 2, 59, 60]. There has been
substantial progress, but a bordism classification and the relation of TMF to index theory and particle physics
is still not completely worked out.

The theory TMF can also lead to a better understanding of the K(2) local homotopy category. There is a
resolution which generalizes the fibre sequence of the self map  g � 1 of KO from the K(1) to the K(2) local
sphere. The resolution involves a spectrum Q which can be viewed as a higher analogue of the J-spectrum and a
duality map which has not been fully understood. Also its relation to the f -invariant still has to be worked out.

For chromatic levels n � 2 Behrens and Lawson [16] investigate higher dimensional abelian varieties and
automorphic forms in homotopy theory which give rise to spectra of topological automorphic forms (TAF ).
These can lead to even higher invariants, resolutions of K(n)-local spheres and possibly to the understanding
of bordism spectra which are yet closer to the sphere spectrum. Other approaches (see [101]) use other moduli
stacks, such as that of polarized K3 surfaces, and other constructions of formal group laws, to construct spectra
applicable to higher chromatic levels.

Another area of research that implements ideas and concepts from algebraic geometry into homotopy theory
is algebraic K-theory of ring spectra. Waldhausen extended the study of algebraic K-theory to ring spectra
and showed that the algebraic K-theory of the sphere spectrum and more general spherical group rings captures
information about geometric topology [113].

In classical stable homotopy, the construction of a spectrum TMF (topological modular forms) was finally
achieved in the last couple of years by Goerss-Hopkins-Miller [15], [39] and Lurie [73]. This spectrum represents
a deep relationship between modular forms and more generally the stack of elliptic curves on the one hand side
and L2S, that is the second chromatic layer in stable homotopy theory on the other side. The construction
of TMF relies (notably in Lurie’s approach) on a number of lifts of constructions in algebraic geometry, such
as the moduli stack of elliptic curves, the cotangent complex and deformation theory, from commutative rings
to commutative (that is E1-) ring spectra. It is natural to ask to what extent these constructions may be
generalized to the motivic setting, cf. [92].

The paper [51] provides the necessary model structures on motivic ring spectra and shows that these satisfy a
motivic version of the axioms of the obstruction theory of [39]. In the considerably easier case of chromatic height
one a motivic generalization of the desired result has been recently established as a combination of [37], [51] and
[100]. The existence of motivic elliptic cohomology theories via a motivic Landweber exactness theorem has been
proved in [80], , but rigidifying this to a diagram in commutative motivic ring spectra remains a challenge.

Symmetric monoidal categories of spectra are available since the 90’s, and several concepts from algebraic
geometry and number theory have successfully been transferred to the setting of structured ring spectra. This
allows one to relate arithmetic properties of ring spectra to their algebraic K-theory. First examples have
been studied by Ausoni and Rognes, who investigated the algebraic K-theory of connective complex K-theory,
ku, and related ring spectra in detail [8, 9]. This helped to show that algebraic K-theory of ku is a form of
elliptic cohomology and classifies categorified vector bundles on spaces [12, 13]. The guiding questions here
were whether applying algebraic K-theory actually raises the chromatic type as predicted by Rognes’ chromatic
red shift conjecture and whether there is a suitable notion of Galois descent for the algebraic K-theory of ring
spectra, cf. [25].

The most successful strategies for computing K-theory use trace maps mapping to topological Hochschild
and topological cyclic homology. Until recently, these trace methods covered only the case of connective ring
spectra, while Galois theory mainly involves non-connective spectra. To remedy this, Rognes and Sagave studied
how to adapt the notion of logarithmic structures to the setup of ring spectra [93].

PA3. Scientific goals
1. Study MString and characteristic classes for String bundles. At the prime 2 one conjectures that
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MString additively splits in a copy of tmf , some suspended copies of tmf with level structures and an Eilenberg-
Mac Lane part. For such a splitting one needs a good understanding of the tmf characteristic classes for String
bundles. A good start for the study of these is the Kitchloo-Laures-Wilson sequence of Hopf algebras

K(2)⇤K(F2, 2) // // K(2)⇤K(Z, 3) // K(2)⇤BO h8i // // K(2)⇤BSpin.

This leads to a computation of TMF (3)⇤BO h8i and TMF 1(3)⇤BO h8i; the first goal is to extend these results
to TMF itself or to its connective version tmf . One could try to approach this problem through methods of
equivariant homotopy or using other approaches to constructing spectra from moduli stacks.

While these are computations in classical homotopy theory, they may benefit from being looked at motivically,
as in the case of the Adams-Novikov spectral sequence discussed in §PA1. The goal here is to construct motivic
liftings of MU hni or even MO hni to learn about the classical Adams spectral sequence computing ⇡⇤MO h8i,
refining the existing motivic lifting MGL of MU . For a start, this requires finding correct connective covers of
⌦1(MGL) = Z⇥BGL and studying the resulting motivic Thom spectra.

2. Towards a motivic lift of TMF. A key observation due to Goerss and Hopkins is that the classical
Landweber exactness theorem can be phrased as lifting the structure sheaf on the stack of formal groups from
a sheaf in rings to a sheaf in commutative ring spectra up to homotopy. The motivic extension of Landweber
exactness is available through [80]. All relevant applications require rigidifying this construction coherently up to
all higher homotopies. The most straightforward approach to this is through obstruction theory and works for
complex K-theory, Lubin-Tate theories and TMF . A motivic variant of this is in its infancy but has already been
applied successfully to the easiest test case of the algebraic K-theory spectrum KGL. It should not be hard to
extend this to obtain the desired sheaf of motivic commutative ring-spectra on the moduli stack of formal groups
of height 1. Lurie’s approach is to observe the classical moduli problems remain meaningful over commutative
ring spectra. The details of this are daunting and a serious prediction of whether this approach will be suitable
in the motivic context will have to await the detailed account of Lurie’s work.

In somewhat more detail, one should investigate the problems of the following list related to the Goerss-
Hopkins-Miller approach:

i) establish a general obstruction theory for motivic ring spectra (à la Robinson [91] and Goerss-Hopkins [39]).
ii) apply this to construct E1-structures on motivic Lubin-Tate spectra and the actions of Morava stabilizer
groups on them.
iii) construct homotopy fixed-point spectra à la Devinatz-Hopkins [33]. That is, construct an action of Z⇤

p on
KGL^p (p-completed motivic K-theory), and analyze the relationship between its homotopy fixed points and
the K(1)-local motivic sphere.
iv) study multiplicative properties of localized quotients of MGL, (non-highly structured and highly-structured),
that is, motivic Morava-K-theories (this would solve a problem of Voevodsky).
v) In recent work [3] it was shown that Morava K-theories admit a unique structure of S-algebra; a surprise
since it has been known for a while there are uncountably many such structures of MU-algebra. One would like a
motivic generalization of this result which should also yield multiplicative properties of Voevodsky’s conjectured
spectral sequence computing algebraic Morava K-theories from motivic cohomology.

Lurie’s approach for defining TMF uses a derived algebraic geometry construction of the sheaf of E1-ring
spectra on the moduli stack of elliptic curves. Although the details of this approach have not yet appeared, it
would still be interesting to see if portions of Lurie’s constructions go through in the context of motivic derived
algebraic geometry. Here one considers (cellular) motivic E1-ring spectra for building blocks of motivic derived
algebraic schemes and more generally (Deligne-Mumford) stacks. There are already candidates for the basic
concepts of the theory, e.g. of motivic derived algebraic groups. The main steps on the motivic side will be the
construction of the stack of pre-oriented motivic derived elliptic curves and the control over the passage from
this stack to the stack of oriented motivic derived elliptic curves.

Many of the problems encountered in the construction of motivic versions of TMF concern motivic general-
izations of chromatic homotopy theory in general, which is of independent interest (as noted in §PA1.5). There
has been some work in that direction (see for example the section on previous work above and [19], [50]) but
most of the interesting problems remain open so far.

3. Aspects of derived algebraic geometry in connection with algebraic K-theory. The homotopy cofiber
sequences for logarithmic topological Hochschild homology developed in work in progress by Rognes, Sagave, and
Schlichtkrull give a promising tool for understanding algebraic K-theory for such examples as non-connective
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ring spectra such as the periodic complex K-theory spectrum KU , the spectrum of real topological K-theory,
ko, its hypothetical residue field, and its periodic version KO. In addition, work by Baker and Richter [14]
shows that C2-Galois extensions of KO[1/2] are purely algebraic, thus an understanding of Galois descent in
these cases should be within reach.

Further examples include the algebraic K-theory of Galois extensions of finite fields: If ` ! k is a finite
G-Galois extension, then K(`) ! K(k) is not Galois in general, but one should investigate whether the K(1)-
localized extension LK(1)K(`) ! LK(1)K(k) is G-Galois. These will serve as testing devices for the Galois
condition and lead to an approximation of the algebraic K-theory.

PA4 Cobordism

Bordism theories are a central aspect of homotopy theory and its application to the study of di↵erentiable mani-
folds. The analogous algebraic/motivic theory has up to now been developed mainly in the setting corresponding
to complex cobordism.

The topological theory of (co)bordism is at present much more extensive and flexible than its motivic coun-
terpart and thus there is much that needs to be done on the motivic side. The bordism theory of manifolds
with corners developed in the 1960’s and 70’s has had a wide range of applications, including giving a geometric
interpretation of the Adams-Novikov spectral sequence (for details see [61]). The theory of framed bordism gives
a direct connection of the homotopy groups of spheres with the theory of di↵erentiable manifolds, and the theory
of h-cobordism and s-cobordism is similarly central to the problem of homotopy-theoretic classification of di↵er-
entiable manifolds. At present, none of these theories have a good motivic counterpart; in light of the manifold
applications of bordism theories in topology, the development of algebraic versions is an area ripe for development.

PA4. Previous work
There is a well-developed motivic theory of complex cobordism, starting from [94]. From the homotopy-theoretic
side, Voevodsky [109, 112] has defined a direct motivic analog MGL of the Thom spectrum MU as an object in
the motivic stable homotopy category over a general base-scheme S. The structural properties of MGL have been
studied (see [80, 82, 81, 85]): MGL enjoys the analogous universal property for oriented cohomology theories as
does MU, as well as a Landweber exactness theorem and a Conner-Floyd theorem for algebraic K-theory.

On the geometric side, one has the Levine-Morel theory of algebraic cobordism, X 7! ⌦⇤(X), defined as an
oriented cohomology theory (in the sense of [70]) on smooth varieties over a field of characteristic zero, and, in
analogy with MU⇤, ⌦⇤ is the universal such theory. In addition, ⌦⇤ is equal to the “geometric part” MGL2⇤,⇤ of
MGL-theory [66]; a concrete description of the rest of MGL-theory is not known.

The motivic Steenrod operations and Landweber-Novikov operations [20, 70, 85, 107] have been successfully
applied to problems in quadratic forms and the study of homogeneous spaces over non-algebraically closed fields.
Vishik [105] has defined a number of operations that do not as yet fit into the general theory, but have had
significant applications to quadratic forms. Recent work of Levine and Dai-Levine [29, 69] have laid open the
way for a study of operations on other theories, such as connective algebraic K-theory.

The algebraic cobordism of a point is a model for a number of problems in Gromov-Witten theory and
Donaldson-Thomas theory. In these theories one constructs generating functions that encode the enumerative
information to be found in virtual fundamental classes associated to certain Hilbert schemes or moduli problems.
Via the work of Levine-Pandharipande [71], a connection has been established between the generating functions
for some classes of problems in Donaldson-Thomas theory (see [75, 76]) and the Levine-Morel theory of algebraic
cobordism. This has been extended by work of Lee-Pandharipande [63] and applied to give a positive answer to
a conjecture of Göttsche by Tzeng [103].

There has been a series of works on the homotopy theory of moduli spaces of algebraic curves and more
generally cobordism categories. Work of Galatius-Madsen-Tillmann-Weiss [36, 74, 102] has given a systematic
description of the infinite loop spaces that arise from cobordism categories, generalizing the Madsen-Tillmann-
Weiss weak equivalence Z⇥B�+

1 ⇠ (⌦1CP1)�1, which in turn is the essential identity used to prove Mumford’s
conjecture on the stable homology of the moduli spaces of curves.

PA4. Scientific goals
1. Develop new theories of algebraic cobordism. One needs to develop both the motivic homotopy theory
and the algebro-geometric theory for “manifolds with corners”, as well as bordism theories for other structures,
such as framed bordism. We expect that this would have applications to both a better understanding of the
motivic sphere spectrum as well as to Gromov-Witten theory. On the geometric side, one should try to develop
theories along the lines of the Levine-Pandharipande double-point cobordism description of algebraic cobordism.
One should also look for the motivic homotopy theory side of the extensions of double-point cobordism found

13



by Lee-Pandharipande [63], and use decomposition phenomena arising in Gromov-Witten theory to guide the
construction of new motivic theories.

2. Landweber exact theories and their truncations. Recent work of Dai-Levine [29] computes the geometric
part of connective algebraicK-theory in terms of algebraic cobordism, in spite of the fact that connective algebraic
K-theory is not a Landweber exact theory, and give a description of the connective algebraic K0 in terms of
the Grothendieck groups of coherent sheaves with support in bounded codimension. There should be a similar
theory for all “slice-connective” versions of Landweber exact theories, and with it a corresponding collection of
interesting degree formulas. There should be numerous applications of this extension of algebraic cobordism to
problems such as incompressibility, canonical dimension and essential dimension of algebraic groups.

3. Motivic cobordism categories. The gluing construction used in the definition of cobordism categories does
not have an evident algebraic counterpart. However, the motivic tubular neighborhood constructions of Ayoub
[10] and Levine [68] could possibly be used to give some motivic analog of stable homology of the moduli spaces
of curves. It would be interesting to construct in this way a general motivic version of cobordism categories and
see if one can use these to give a motivic version of the space (B�1)+ as well as the Madsen-Tillmann-Weiss
weak equivalence Z⇥B�+

1 ⇠ (⌦1CP1)�1.
The approach via rigid analytic motivic homotopy theory (see §PA5 below) could be fruitful, as one can hope

that the necessary gluing construction can be done at the unstable level and possibly for higher dimensional
varieties as well, where the purely algebraic approach seems to present numerous technical di�culties.

4. Deligne cobordism and Arakelov motivic cohomology. The recent works of Holmstrom-Scholbach [43]
and Hopkins-Quick [48] define extensions of Deligne cohomology to the setting of motivic cohomology and alge-
braic cobordism; Holmstrom-Scholbach [43] define an Arakelov motivic cohomology as well. One should refine
the Hopkins-Quick theory to a good integral theory, and extend the construction to a Arakelov-like arithmetic
theory. This should help in applications, where one would like to detect interesting elements in algebraic cobor-
dism. In its current state, the Arakelov motivic theory does not detect classes that are topologically non-trivial;
an extension of this theory and its cobordism counterpart to cover the topologically non-trivial classes would be
very desirable, especially as the major uses of classical Arakelov theory involve exactly these classes.

5. Operations. Construction and study of motivic operations on connective algebraic K-theory is a fruitful
direction, possibly following the approach used in [69] for the construction of Steenrod operations via algebraic
cobordism. This should allow one to recover some at present mysterious operations constructed by Vishik in a
more natural way, allowing for a better understanding of their properties, and leading to new applications to the
study of quadratic forms and homogeneous varieties.

PA5 Unstable Homotopy Theory

Many of the methods of di↵erential topology are up to now inapplicable in A1-homotopy theory. The recent
construction by Ayoub of a motivic homotopy theory for rigid analytic spaces opens up the possibility of a more
systematic application of di↵erential topology to the algebraic/analytic setting.

Classical applications of unstable homotopy theory to geometric problems rely on a combination of obstruction
theory and the computations of the homotopy groups of symmetry groups. The versions of obstruction theory
appropriate to the algebraic setting are available, but the corresponding computations of the A1-homotopy groups
of algebraic groups are considerably more di�cult and are only at the beginning stages. Extending these compu-
tations is one of the central problems in the area, both for giving a fundamental understanding of the “structure
constants” in the motivic homotopy categories, as well as having ocnrete applications to problems in the study
of vector bundles and algebraic cycles.

PA5. Previous work
Ayoub [11] has laid some of the foundations for a homotopy theory for rigid analytic varieties over a complete
non-archimedean field. In analogy with the construction of motivic homotopy theory, Ayoub [11] has defined
a rigid analytic motivic homotopy theory. On the one hand, this has connections to motivic homotopy theory:
there exists a reduction functor from rigid analytic varieties to schemes over the residue field. On the other hand,
it is possible to use analytic methods to study rigid analytic geometry. Up to now, the main application of the
rigid analytic theory is to give information on the motivic nearby cycles functor, this being the main result of
[11].

There are many ways that a knowledge of the A1-homotopy groups of a particular variety may be applied,
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including determination of obstructions to rational points, or as receptors for invariants of vector bundles (see
[4, 5]). Such computations are correspondingly di�cult. The works of Morel [78], Asok-Morel [7] and Asok-Fasel
[4] have laid some of the groundwork for the computations of the A1-homotopy groups of special varieties, such
as algebraic groups and their homogeneous spaces.

Starting with work of Chen, Morgan, Hain and others, the methods of rational homotopy theory have been
applied to define mixed Hodge structures on fundamental groups. Through results of Deligne-Goncharov [32],
these constructions have been lifted to categories of motives, if one assumes the underlying varieties are of mixed
Tate type.

PA5. Scientific goals
1. Develop the unstable motivic homotopy theory of non-archimedean analytic spaces. Ayoub con-
structs motivic theories for rigid analytic spaces in the setting of the motivic S1-stable category SHS1(k) and
the motivic stable homotopy category of T -spectra, and well as triangulated categories of motives; the unstable
version still needs to be developed. Many of the results of Ayoub require the base (non-archimedean) field to be
of equal characteristic zero; it would be very useful if this hypothesis could be removed.

For further applications, it would be useful if the motivic tubular neighborhood and punctured tubular
neighborhood constructions given in [68] can be performed in the unstable rigid analytic setting. It is known
that the unstable motivic version of the punctured tubular neighborhood does not exist. However, a rigid analytic
version may be possible; this would enable rigid analytic versions of many of basic constructions of di↵erential
topology that at present are not available in unstable motivic homotopy theory.

There are at present a number of competing theories for “analytic spaces” in algebraic geometry. The various
associated motivic theories should be constructed and compared. Berkovich spaces [17], Huber’s adic-spaces [56]
or Scholze’s perfectoid spaces [95], are natural candidates for these constructions.

2. Develop non-archimedean analytic versions of aspects of classical unstable homotopy theory.
Many aspects of classical unstable homotopy theory are quite di�cult to extend to the motivic setting. However,
in certain cases, an extension to the non-archimedean analytic setting appears to be more promising. For instance:

• One case of the h-principle (in the formulation of Gromov [42]) states that for X a complex manifold with
a spray and U a Stein manifold, the spaces of continuous maps U ! X and of holomorphic maps U ! X
are weakly equivalent. A special case is Oka’s principle which states that on Stein manifolds continuous and
holomorphic classification of vector bundles agree.

An analogue of this case of the h-principle can be formulated in motivic homotopy theory, where the relevant
condition is called the a�ne Brown-Gersten property, cf. [78] or [114]. This property allows one to identify the
motivic and continuous mapping spaces.

Gromov’s h-principle applies to a wide variety of complex manifolds, such as complex Lie groups and their
homogeneous spaces, or spherical varieties, and is stable under excision of codimension � 2 subsets, blowups,
and other operations. In motivic homotopy theory, only rationally trivial homogeneous spaces under (split)
groups are known to have the a�ne Brown-Gersten property. Even in this restricted situation, this property is
very useful. It enables one to identify motivic homotopy groups with unstable K-groups and therefore relates
stabilization properties in Karoubi-Villamayor K-theory to the connectivity of homogeneous spaces [114, 115].

Via non-archimedean analytic geometry, one can study all these things at the same time and compare the
analytic vs. algebraic angles of h-principles. In particular, one can study versions of Gromov’s h-principle in
rigid analytic geometry. Of course, due to the existence of the reduction functor, one cannot expect a much
better h-principle in a given non-archimedean analytic setting than one would have in the usual motivic setting
for the reduction to the residue field. This still leaves a lot of interesting examples.

• In the case of completely degenerate reduction, where one is able to handle the motivic theory of the re-
duction directly, one should be able to introduce a wide range of other methods from di↵erential topology, for
example: Morse theory, leading to a determination of the non-archimedean analytic homotopy type of an analytic
space, or surgery theory. Is there an analytic motivic version of the Hirsch-Smale theorem [45, 96] on immersions,
or its dual counterpart, the Phillips submersion theorem [88]? This latter would be especially relevant for the
development of a motivic version of cobordism categories as discussed in §PA4.

3. Compute the A1-homotopy groups of special varieties. Morel’s connectedness theorem tells us the A1-
connectivity of many varieties, for example An \ {0} is n� 1-connected. One knows ⇡A1

n (An \ {0}) for n = 1, 2;
recent work of Asok-Fasel [4] computes the case n = 3 (up to extensions) and goes on to make the following
general conjecture:
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Conjecture. For n � 4, we have an exact sequence of Nisnevich sheaves

0 // KM
n+1/24 // ⇡A1

n (An \ 0) // GWn
n+1

// 0.

This computation would verify the following conjecture of Asok-Fasel:

Conjecture. Let X be a smooth a�ne d-fold over an algebraically closed field k and let E be a vector bundle of
rank d� 1 over X. Then E ' E0 �OX if and only if cd�1(E) = 0 in CHd�1(X).

One can go in a di↵erent direction, asking for a computation of A1-homotopy groups of other special varieties,
such as algebraic groups. On the topological side, this is the problem of explicit computations of homotopy
groups of compact Lie groups and their homogeneous spaces, which is not di�cult to reduce essentially to the
computation of homotopy groups of spheres, this being of course hopeless. However, some fruitful steps can
nevertheless be taken. The first non-trivial information is the v1-periodic homotopy groups, the first layer in the
chromatic filtration, the part of homotopy of Lie groups that can be detected by K-theory. The portion of the
homotopy of Lie groups detectable by K-theory has been computed over the past 20 years by Bendersky, Davis,
Mahowald, Mimura, etc., [30, 31].

An analogous (partial) computation of the A1-homotopy groups of algebraic groups and their homogeneous
spaces would be more challenging, but should be an approachable problem, and would have numerous applica-
tions, for instance, to the classification of rationally trivial G-torsors and stability questions for algebraic vector
bundles. One can also approach these computations via the slice spectral sequence and there may be a close
relation between this approach and the one via the chromatic filtration (see §PA1).

4. Develop a motivic version of rational homotopy theory and apply homotopy-theoretic methods
to the Hodge theory of homotopy groups. There is already a nascent motivic rational homotopy theory
derived for example from the Deligne-Goncharov [32] construction of the motivic ⇡1. However, this theory
is applicable only in rather limited settings; a more extensive and purely motivic theory should be developed.
Another aspect that is lacking is a homotopy-theoretic foundation for these constructions. It would be interesting
to construct a suitable motivic rational homotopy theory, possibly one more closely related to the A1 derived
category. From another direction, one should apply more sophisticated methods from the homotopy theory of
cdgas and related model category structures to the task of giving Hodge structures to all aspects of the homotopy
groups of algebraic varieties.

5. Obstruction theory and higher rational connectedness. The geometric notions of rational connectedness
and rational simple connectedness have been successfully applied to questions of the existence of rational sections
to maps of schemes to curves and surfaces over algebraically closed fields. The relation of rational connectedness
to A1-homotopy has been clarified by Asok-Haesemeyer [6], who show that rational connectedness of a smooth

projective variety X over a given field F is equivalent to the triviality of ⇡A1

0 (X)(F ). The theorem of Graber-
Harris-Starr [40] on the existence of a rational sections for rationally connected fibrations over a smooth curve

over Cmay be thereby viewed as a Galois descent property of the Nisnevich sheaf ⇡A1

0 (X). There is an obstruction
theory in place for the existence of a section in the A1-homotopy category [28], but it is not at all clear what
relation the A1-homotopy sheaves have to do with the geometric notions of rational simple-connectedness.

6. Operads and recognition principles. Operads play an important role in stability questions and in recog-
nition of loop space structures in classical homotopy theory. One central open problem in the motivic theory
is the construction of models for P1-loop spaces and a usable recognition principle; at present it is not at all
clear if this can be accomplished through the use of operads as in the classical case, but models based on mixing
sheaf theory with the classical constructions could be tried. Related topics would include the rational homotopy
properties of operads, a study of formality of operads and modules over operads and spaces of (derived) maps
between operads.

6 Gender equality measures

6.1 Integration of and funding opportunities for participating female researchers

We plan to organize a yearly meeting “Young Women in Homotopy Theory and Algebraic Geometry”. These
meetings will be a continuation of the meetings “Young Women in Topology” that have been organized success-
fully by the Graduiertenkolleg 1150 “Homotopy and Cohomology” in 2010, 2011, 2012 and 2013.

16



For each meeting, taking place over the course of 2-3 days, we would specifically invite young women – on
the master, PhD and postdoc level – working in topology or algebraic geometry from Germany and neighboring
countries. One senior female mathematician is invited to give a series of 2-3 lectures about a recent development
in the field; the lecture series is complemented by shorter talks of the junior female participants. There will also
be ample time for discussion and networking, We envision a group of about 20 female participants; prospective
speakers of the lecture series include for instance: Ulrike Tillmann (Oxford), R. Sujatha (Tata Institute), Claire
Voisin (CNRS, Jussieu), as well as participants in the Priority Program such as Hélène Esnault, Annette Huber
and Birgit Richter. The talks in the “Young Women in Homotopy Theory and Algebraic Geometry” are public,
i.e., men are also encouraged to attend but funding and the possibility to give talks are reserved to women.

We note that two of the four Initiators are women; we hope this will have a “role-model” e↵ect for younger
female researchers. We also plan on reserving a portion of the guest funds for visiting female researchers.

6.2 Family-friendly options

Besides the options o↵ered to employees at the respective institutions, we will work with the hosting universities
to o↵er childcare as needed during our workshops, summer schools and conferences. A budget item requests
funds for this purpose.

7 Coordinator project: Integration and exchange

The problem areas delineated in this Priority Program’s Scientific Program require expertise in several di↵erent
fields, whose practitioners are widely distributed throughout Germany. To link these separate locations, to help
bring in outside talent and to further the integration of early career researchers into the Priority Program, we
will use three di↵erent approaches: We will organize a series of conferences, summer-schools and workshops, we
will use regional seminars to establish links between relatively nearby locations in this Priority Program and we
will o↵er exchange programs for post-docs and Ph.D. students. A website for the Priority Program will help with
the organization and publicizing of these activities, and will be used for disseminating information about projects
within the Priority Program. The Steering Committee will organize these activities and will consist of: Prof.
Dr. Hélène Esnault (FU Berlin), Prof. Dr. Jens Hornbostel (Univ. Wuppertal), Prof. Dr. Marc Levine (Univ.
Duisburg-Essen), Prof. Dr. Birgit Richter (Univ. Hamburg) and Prof. Dr. Stefan Schwede (Univ. Bonn).

7.1 Integration of early career researchers into the program

Ph.D. students and post-docs are integrated into this Priority Program through their active participation in
regional seminars, workshops and summers schools, as well as through their participation in exchange programs,
as detailed in §7.2 below. In addition, we will promote the integration of Ph.D. students and post-docs by

• setting funds aside for the attendance of young researchers at meetings of the Priority Program,
• including recent PhDs among speakers, achieving a good mix of established and young speakers,
• using travel funds as well as the exchange program to allow young researchers short-term visits.

7.2 Conferences, summer-schools, workshops

Our program of meetings forms the connective tissue that will link the research groups taking part in the Priority
Program. We plan five types of meetings:

• Planning workshops: At the beginning of each three-year funding period, we will hold a one-day planning
workshop for the purpose of fine-tuning and coordinating potential projects. The workshop would be devoted
to presentation of project ideas, discussion of possible modifications and creation of potential team projects,
forming a basis for the furhter development of finished proposals.

• Yearly conference: Each year (following the initial year) we will hold a week-long conference presenting the
latest results in an area or areas represented in the Priority Program, with speakers and invited participants on
the international level.

• Workshops: We will hold two workshops in selected areas of research within the Priority Program; depending
on the topic selected, the workshop would run from a few days to a week. The core purpose of the workshop will
be to promote the interaction and exchange of expertise between the di↵erent research directions represented in
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the Priority Program through lectures and discussions.

• Compact workshops: These 2-3 day workshops would be planned and organized by the post-docs and Ph.D.
students and will allow a part of the Priority Program to inform those working in other areas about foundation
aspects of their field in a quick and e�cient manner. Those directly connected with the chosen topic would assist
those from outside the area, outside experts could also be invited to help organize the workshops.

• Summer schools: The week-long summer schools will be held once a year, and are directed at the younger
members of the research community. Foundational topics and methods, for example, An introduction to motivic
homotopy theory, will be presented in a short-course format, with lectures by a mix of experts and younger
mathematicians, along with problem sessions and discussion groups to encourage active participation.

7.3 Regional seminars

In addition to these large-scale meetings, the Priority Program will help organize smaller regional seminars.
These seminars will take advantage of regional concentrations among the Priority Program participants to set
up smaller scale cooperative e↵orts. For example, the organization of the current Bochum-Bonn-Düsseldorf-
Wuppertal topology seminar, run as part of the GRK 1150 “Homotopy and Cohomology”, will be taken over
by this Priority Program after the conclusion of the GRK. We plan to organize other regional seminars on this
model to help link together regional clusters of participants in this Priority Program.

7.4 Exchange programs

We plan on the exchange of personnel between the various research groups a�liated with this Priority Program,
through short-term and long-term exchanges.

On the short-term side, the Coordinator and Steering Committee will encourage the exchange of researchers
involved in the Priority Program through their participation in the regularly scheduled seminars and colloquia
taking place under the various research groups participating in the Priority Program. This will give the partici-
pants opportunities in an informal setting to disseminate their work on topics relevant to the Priority Program.

Longer term exchanges, by either Ph.D. students or post-docs, will be financed in part through the Priority
Program. Upon the return of the visiting researchers, lectures and discussion groups will be used to spread the
knowledge acquired at the host group. A second advisor from the host group will be assigned to any visiting
Ph.D. student and the planning of the visit would actively involve the student and both advisors.

In addition to such internal exchanges, this Priority Program will encourage the involvement of other research
groups, both inside and outside of Germany, through exchange programs on various levels. For example:

Other DFG-funded groups: Targeted short-term exchange programs involving post-docs funded by the Prior-
ity Program and other DFG projects, such as the SFB Transregio 45, form an e↵ective method for promoting
collaboration and the transfer of information among the young researchers involved in these projects.

Cooperation with other research networks: We are discussing a similar exchange with the French network GATHO
and the Norwegian “Topology in Norway” project, as well as joint conferences, workshops and summer schools.

7.5 Webserver

The Coordinator will arrange for the creation of a website for this Priority Program, serving as information nexus
for the various activities of the Priority Program, including a calendar of conferences, workshops and summer
schools, lists of participants, projects funded, and the like, as well as serving as an advertising platform to the
larger mathematical community.

8 International Cooperation

The initiators and potential participants for this Priority Program have extensive ties to researchers on the
international level, too numerous to list here. For a selected list of collaborators with potential participants of
this Priority Program, and other researchers with related interests, please see the Appendix §4.

Homotopy theory and allied areas are internationally recognized as central areas in mathematics and there
are a number of extensive networks devoted to these topics. There is at present no research network in this area
in Germany.
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In the U.S., the NSF is currently funding two Focused Research Groups in areas close to those in our
program: Homotopy Theory: Applications and New Dimensions (Hopkins, Lurie, Miller, Barwick, Behrens) and
Homotopical methods in Algebra (Friedlander, Haesemeyer, Walker, Weibel).

In France, there is the long-running program funded by the CNRS: GDR 2875 ”Topologie Algébrique et
Applications”, with a wide range of areas of research, and approximately 100 members at 14 di↵erent universities.
The project GATHO (Groupes algébriques et Théories Homologiques) with topics quite close to ours is funded
by the ANR. Represented in this project are the Université Paris 6, Université d’Artois and Université Paris 13.

Norway has the ”Topology in Norway” project sponsored by the Research Council of Norway involving the
Norwegian topologists in Bergen, Oslo, and Trondheim, including M. Brun, B. Dundas, P.A. Østvær, J. Rognes,
C. Schlichtkrull, and N. Baas.

There are numerous connections on the level of individual collaborations and joint organization of past con-
ferences between members of these groups and the initiators and potential participants of this Priority Program.
We are currently discussing possibilities for cooperation and collaboration with both the ”Topology in Norway”
group and the GATHO group; these include joint conferences or workshops as well as exchange programs.

9 Connections to and separation from other DFG funded activities

This SPP will not allow any double funding of projects supported in other DFG programs. We intend to support
projects that further the following goals of this SPP:

• to encourage interaction among researchers in the di↵erent research fields: algebraic geometry, classical homo-
topy theory, motivic homotopy theory and di↵erential homotopy theory, represented in this SPP
• to encourage researchers to engage in projects that develop connections between other fields (such as number
theory, representation theory, tropical geometry) and the main research fields represented in this SPP. This
includes joint projects between researchers within the “mainstream” fields in this SPP and those outside.

Overall, even though some existing or proposed DFG programs do involve individual projects which would fit
into this SPP, these projects occur in essentially isolated form; no DFG program is devoted to the constellation
of research directions which form the heart of this SPP. Even though a number of researchers intending to submit
projects to this SPP are already participants in existing or proposed DFG programs, projects funded by this
SPP will not overlap with the funding within these DFG programs. Additionally, there is great potential for
constructive collaboration among researchers throughout Germany through this SPP, that would not be possible
within the currently existing or proposed DFG programs.

The SFB/Transregio 45 “Periods, moduli spaces and arithmetic of algebraic varieties”4 contains a few projects
that would overlap with this SPP. However, the overall goals and direction in this SFB are quite di↵erent from
those of this SPP. Additionally, the current funding period of the SFB would be ending; the individual projects
of this type that are currently being funded in the SFB could easily move over into the SPP, as the second
funding period for the SFB will be ending some few months after projects could be funded through this SPP.

The specific projects involved are: Prof. Levine’s projects M02-3 (Algebraic cobordism: extensions and
applications), M02-4 (Motivic homotopy theory) and project M4-2 (Motivic obstructions to rational points).
Each of these projects may simply be completed in the current funding period of the SFB/Transregio 45, or may
form the basis for possible project applications to continue the project in this Priority Program; care will be taken
in any case to avoid double funding. We thus expect that this limited overlap between these two programs would
not carry over to a possible third funding period for this SFB and would therefore be short-lived. There would
be no overlap with Prof. Levine M02-2 (motivic structure on the nilpotent orbit), Profs. Levine/Müller-Stach
M02-5 (Regulators for Tate motives), Dr. Semenov M02-6(Algebraic groups and Chow motives).

The Research Unit at the Universität Heidelberg has contact with this SPP through a few projects dealing
with Suslin homology and motivic cohomology, but as the emphasis in the Research Unit is not on homotopy
theory, the approach being more arithmetic, we see no overlap with this program.

There is one subproject in the SFB 878 (Münster) entitled “Equivariant homotopy and homology” which has
connections with PA2, but the SFB subproject is largely concerned with aspects of C⇤-algebras, the Farrell-Jones
and Baum-Connes conjectures, and does not significantly overlap with the areas in this SPP.

An SFB at the Universität Regensburg is currently under consideration and involves some projects in homo-
topy theory, motivic cohomology and di↵erential homotopy theory, which would fit into this SPP. In this case, we
would take care to see that no double funding of any projects would occur. Although these projects in this SFB
do overlap with this SPP, the SFB in Regensburg is entirely restricted to researchers resident in Regensburg,

4
Currently in its 2nd funding period: July 2011-June 2015

19



and thus does not have the geographically widespread character of this SPP; for instance, the Regensburg SFB
would not be funding a joint project carried out by a researcher at Regensburg together with one at another
location.

An SFB/Transregio involving the FU Berlin, Frankfurt University and the University of Warsaw is in the
initial proposal stage, but it appears that the emphasis of this SFB would preclude any significant overlap with
the type of projects expected in this SPP.

Overlap with other DFG funded programs would be very small or non-existent. There are connections to
the Research Training Group 1150GRK “Homotopy and Cohomology” Bonn; Bochum; Düsseldorf (funding
period 2005-2014), 1692 GRK “Curvature, Cycles, and Cohomology” Regensburg (funding started 2010); and
1821GRK “Cohomological Methods in Geometry” Freiburg (funding started 2012), however, 1150GRK will be
ending shortly and the other two programs deal with topics that are not directly involved in this Priority Program.

Similarly, the Priority Program 1388 SPP “Representation Theory” (funding started 2009), the recently
established GK 1916 “Combinatorial structures in geometry” and the SFB 701 “Spectral Structures and Topo-
logical Methods in Mathematics” (funding stated 2005, running through 2017) have some small connections with
this SPP but no project overlap. The SFB 676 “Particles, strings and early universe” (currently in its 2nd
funding period 2010-2014) and the Research Training Group GRK 1670 “Mathematics inspired by string theory
and quantum field theory” (funding started 2011) each have a small connection to this SPP via mathematical
aspects of string theory, again, not involving specific program topics.

We expect there will be numerous opportunities for constructive collaborations with these other programs,
especially those which we have identified as related to the Priority Program.

10 Requested funding

Budget Coordinator project

Post-docs 10 ⇥ 190.000e = 1.900.000e
Ph.D. students 14 ⇥ 135.000e = 1.890.000e

Travel 216.000e

Coordinator 554.000e
project
Total (3 years) 4.560.000e
Total/year 1.520.000e

Visitors 332.000e
Conferences 2 ⇥ 16.000e = 32.000e
Planning workshop 3.000e
Workshops 2 ⇥ 10.000e = 20.000e
Summer schools 3 ⇥ 16.000e = 48.000e
Compact workshops 4 ⇥ 4.000e = 16.000e
“Young women in. . .” 3 ⇥ 8.000e = 24.000e
Exchange program 12 ⇥ 4.000e = 48.000e
SHK/Website 21.000e
Childcare 10.000e
Total(Coordinator) 554.000e

The budget items are estimates for a 3-year funding period, based on an estimate of the equivalent of ap-
proximately 20 single funded projects. The item “SHK/Website” is for setting up and maintaining the Program
website. “Childcare” refers to the measures discussed in §6.2. The estimates for the item “Travel” follow the
standard lump-sum (for single projects) of 9.000 Euro per person per 3-year period as set out by the DFG-
Fachkollegium in Mathematics.
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(4) 38 (2005), no. 1, 156.

[33] E. Devinatz, M. Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups.
Topology 43 (2004), no. 1, 1–47.

[34] D. Dugger, D. Isaksen, The motivic Adams spectral sequence. Geom. Topol. 14 (2010), no. 2, 967–1014.
[35] D.S. Freed, Dirac charge quantization and generalized di↵erential cohomology. Surveys in di↵erential geom-

etry, 129194, Surv. Di↵er. Geom., VII, Int. Press, Somerville, MA, 2000.
[36]•S. Galatius, U. Tillmann, I. Madsen, M. Weiss, The homotopy type of the cobordism category. Acta Math.

202 (2009), no. 2, 195–239.
[37] D. Gepner, V. Snaith: On the motivic spectra representing algebraic cobordism and algebraic K-theory.

Doc. Math 14 (2009), 319–396.
[38] P.G. Goerss, Topological modular forms [after Hopkins, Miller and Lurie], Séminaire Bourbaki. Volume
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Telefon: +49 40 42 838-5173
Fax: +49 40 42 838-5190
email: birgit.richter@uni-hamburg.de

Born:
14.07.1971 in Dortmund

Academic training and academic degrees:
1991 – 1997 Studium der Mathematik an der Rheinischen Friedrich-Wilhelms-Universität Bonn.

Diplomarbeit “Dialgebren, Doppelalgebren und ihre Homologie” unter der
Betreuung von Prof. Dr. Carl-Friedrich Bödigheimer.

1997 – 2000 Promotionsstudium (wissenschaftliche Mitarbeiterstelle) der Mathematik an der
Rheinischen Friedrich-Wilhelms-Universität Bonn. Dissertation
“Taylorapproximationen und kubische Konstruktionen von Gamma-Moduln”
betreut durch Prof. Dr. Carl-Friedrich Bödigheimer.

Academic positions after Promotion:
2000 – 2005 Assistentin (C1) in Bonn.
2005 – 2010 Professorin (W2) am Fachbereich Mathematik der Universität Hamburg.
2009 Ruf auf eine W3-Professur in Mathematik an der Bergischen Universität Wuppertal

(abgelehnt).
2010 – Professorin (W3) am Fachbereich Mathematik der Universität Hamburg.

Awards, honors, plenary lectures:
March 2002 Northwestern University, Northwestern conference (Emphasis Year on Algebraic

Topology), Plenarvortrag: Topological André-Quillen cohomology – an overview

Academic service:
Seit 05/2006 Schriftleitung der “Abhandlungen aus dem Mathematischen Seminar der

Universität Hamburg”, zusammen mit Vicente Cortés.

Mitglied in 21 Promotionskommissionen in Hamburg, einer in Straßburg (Bruno Vallette),
einer in Lille (Eric Ho↵beck) und drei in Bonn (Ste↵en Sagave, Julia Singer,
Boryana Dimitrova). Mitglied in 4 Habilitationskommissionen.
Mitglied der Auswahljury des Programmes Topologi des Norwegischen Forschungsrats
(Bergen, Oslo, Trondheim): Promotions- und Postdoc-Stellen.

Gutachterin für Advances in Mathematics, Geometry and Topology, Documenta
Mathematica, International Mathematics Research Notices, Inventiones, Journal of
Pure and Applied Algebra, Journal of Topology, K-theory, Mathematische Annalen,
Mathematische Zeitschrift, Memoirs of the AMS, Topology, Theory and Applications of
Categories, Springer Buchpublikationen.
25 Reviews für die Mathematical Reviews.
Gutachterin für den Schweizerischen Nationalfond, für das Engineering and Physical
Sciences Research Council (EPSRC), UK, für das MIT (tenure Gutachten), und für die DFG.

Buchherausgabe: Structured Ring Spectra, eds.: A. Baker, B. Richter, London Mathematical
Society Lecture Note Series 315, Cambridge University Press, 2004 und New Topological
Contexts for Galois Theory and Algebraic Geometry, eds.: A. Baker, B. Richter,
G & T monographs no 16, (2009).
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Academic service(continued):
Conference organized:
08. – 14.10.2000 Oberwolfach, , Arbeitsgemeinschaft: “Operaden und ihre Anwendungen”,

(with C.-F. Bödigheimer (Bonn), J.-L. Loday (Straßburg))
21. – 25.01.2002 Glasgow, Schottland, “Workshop on Structured Ring Spectra”,

(with A. Baker (Glasgow))
20. – 24.09.2004 Bonn, “Workshop on Structured Ring Spectra”,

(with A. Baker (Glasgow), S. Schwede (Bonn))
05. – 07.06.2007 Hamburg, “Workshop on Elliptic Cohomology”,

(with K. Fredenhagen, U. Schreiber, C. Schweigert (Hamburg))
09. – 14.03.2008 Ban↵, Kanada, Workshop “New Topological Contexts for Galois Theory

and Algebraic Geometry”, (with A. Baker (Glasgow))
01. – 05.08.2011 Hamburg, workshop Structured Ring Spectra - TNG,

(with A. Baker (Glasgow))

Five most important publications: (a) works published or accepted for publication.
1. (with T. Pirashvili) Robinson-Whitehouse complex and stable homotopy,

Topology 39 (2000), no. 3, 525–530.
2. (with A. Baker) Gamma-cohomology of rings of numerical polynomials and E1 structures on

K-theory, Commentarii Mathematici Helvetici 80, (2005), 691–723.
3. with (A. Baker) Realizability of algebraic Galois extensions by strictly commutative ring spectra,

Trans. Amer. Math. Soc. 359 (2007), no. 2, 827–857.
4. (with N. Baas, B. I. Dundas, J. Rognes) Stable bundles over rig categories,

Journal of Topology (2011), 623–640.
5. (with N. Baas, B. I. Dundas, J. Rognes) Ring completion of rig categories,

Journal für die reine und angewandte Mathematik 674 (2013), 43–80.

Funding during the last five years:
Research project Funding period Funding souce
Mathematics inspired by string theory and QFT 2011 – DFG-GRK 1670
Zusatzstrukturen auf En-Kohomologie 2011-2014 DFG-Sachbeihilfe Einzelantrag
“Lehramtsausbildung im Fach Mathematik 2012–2016 Universitätskollegs Brücken in die
nachhaltig verbessern”, zusammen mit Universität -Wege in die Wissenschaft
Gabriele Kaiser und Jens Struckmeier des Qualitätspakts Lehre (BMBF)

Ph.D. theses directed during the last five years:
Name Topic Ph.D. awarded
Fridolin Roth Galois and Hopf-Galois Theory for Hamburg 08/2009

Associative S-Algebras
Hermann Soré The Dold-Kan correspondence and Hamburg 03/2010

coalgebra structures
Hannah König A Segal model for a multiplicative Hamburg 02/2011

group completion
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Prof. Dr. Stefan Schwede

Mathematisches Institut
Universität Bonn
Endenicher Allee 60, 53115 Bonn
Tel. (0228) 73-3158 (-2941), Fax. (0228) 73-6198
Email: schwede@math.uni-bonn.de
Homepage: www.math.uni-bonn.de/~schwede

Born:
June 23, 1969 in Bielefeld

Academic training and academic degrees:
1994 Diplom (Bielefeld)
1996 Dr. math. (Bielefeld)
2001 Habilitation (Bielefeld)

Academic positions:
1997 – 1998 Post-doc (MIT, Cambridge, USA)
2002 – 2003 Head of Junior Reseach Group, SFB 478 (Münster)
2003 – Professor (C4) Universität Bonn

Awards, honors and plenary lectures:
18. – 22. 06.2007 Joint International Meeting UMI – DMV, Perugia, Plenary lecture
29.02 – 02.03.2008 European Mathematical Society – Joint Mathematical Weekend,

Kopenhagen, Plenary lecture

Academic service:
2003– co-editor, Documenta Mathematica
2006 – 2012 co-editor, Mathematische Zeitschrift
2007 co-organizer (with Nils A. Baas, Bjørn Ian Dundas, Bjørn Jahren,

John Rognes, Eric Friedlander, Graeme Segal) of The Abel Symposium 2007
”Algebraic Topology”, August 5th - 10th 2007, Oslo, Norway

2007 co-organizer (with J. Greenlees, P. Goerss) of the Oberwolfach Workshop
‘Homotopy theory’, 16.-22. September 2007

2011 co-organizer (with J. Greenlees, P. Goerss) of the Oberwolfach Workshop
‘Homotopy theory’, 18.-24. September 2011

2015 co-organizer (with S. Galatius, H. Miller, P Teichner) Trimester program
“Homotopy theory, manifolds, and field theories”
Hausdor↵ Research Institute for Mathematics (Bonn) May - August 2015

Five most important publications: (a) works published or accepted for publication.
1. On the homotopy groups of symmetric spectra.

Geometry and Topology 12 (2008), 1313–1344
2. The stable homotopy category is rigid.

Annals of Math. 166 (2007), 837–863
3. (with F.Muro, N. Strickland) Triangulated categories without models.

Invent. Math. 170 (2007), 231–241
4. (with B. Shipley) Stable model categories are categories of modules.

Topology 42 (2003), 103–153
5. (with B. Shipley) Algebras and modules in monoidal model categories.

Proc. London Math. Soc. 80 (2000), 491-511
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Funding during the last five years:
Research project Funding period Funding souce
Graduiertenkolleg 1150 1. Funding Period: 10.2005 – 03.2010 DFG
“Homotopy and Cohomology” 2. Funding Period: 04.2010 – 09.2014
Exzellenzcluster 1. Funding Period: 11.2006 – 10.2012 DFG
“Mathematics: Foundations, 2. Funding Period: 11.2012 – 10.2017
Models, Applications”

Ph.D. theses directed during the last five years:
Name Topic Ph.D. awarded
Julia Singer Äquivariante �-Ringe und kommutative 2008

Multiplikationen auf Moore-Spektren
Martin Langer On the notion of order in the 2009

stable module categories
Arne Weiner Homotopy theory of S-bimodules, naive 2009

ring spectra and stable model categories
Moritz Groth On the theory of derivators 2011
Boryana Dimitrova Obstruction theory for operadic algebras 2012
Lennart Meier United elliptic homology 2012
Katja Hutschenreuter On rigidity of the ring spectra PmS(p) and ko 2012
Irakli Patchkoria Rigidity in equivariant stable homotopy theory 2013
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3 Prospective participants

Here is a list of prospective participants in the Priority Program, all of whom have been contacted and have
expressed a desire to participate in the Priority Program. Those marked with a ⇤ have expressed an interest in
submitting a project proposal to this Priority Program:

Name Faculty/Institute University
* Prof. Dr. Ulrich Bunke Fakultät für Mathematik Universität Regensburg
* Dr. Joana Cirici Fachbereich Mathematik Freie Universität Berlin

und Informatik
Dr. Benjamin Collas Mathematisches Institut Universität Münster

* Prof. Dr. Hélène Esnault Fachbereich Mathematik Freie Universität Berlin
und Informatik

* Dr. Jean Fasel Fakultät Mathematik Universität Duisburg-Essen
* Dr. Gereon Quick Mathematisches Institut Universität Münster
* Dr. Olivier Haution Mathematisches Institut LM Universität München
* Dr. Philip Herrmann Fachbereich Mathematik Universität Hamburg
* Prof. Dr. Detlev Ho↵mann Fakultät für Mathematik TU Dortmund
* Prof. Dr. Jens Hornbostel Fachgruppe Mathematik Bergische Universität Wuppertal

und Informatik
* Prof. Dr. Annette Huber Mathematisches Institut Universität Freiburg

Prof. Dr. Moritz Kerz Fakultät für Mathematik Universität Regensburg
* Prof. Dr. Kai Köhler Mathematisches Institut Universität Düsseldorf
* Prof. Dr. Jürg Kramer Institüt für Mathematik Humboldt Universität Berlin
* Prof. Dr. Gerd Laures Fakultät für Mathematik Universität Bochum
* Prof. Dr. Marc Levine Fakultät Mathematik Universität Duisburg-Essen

Prof. Dr. Christian Liedtke Fakultät für Mathematik Technische Universität München
* Prof. Dr. Hannah Markwig Fachrichtung Mathematik Universität des Saarlandes
* Prof. Dr. Stefan Müller-Stach Fachbereich Physik, Mathematik Universität Mainz

und Informatik
* Prof. Dr. Niko Naumann Fakultät für Mathematik Universität Regensburg
* Prof. Dr. Birgit Richter Fachbereich Mathematik Universität Hamburg
* Prof. Dr. Oliver Röndigs Fachbereich Mathematik/ Universität Osnabrück

Informatik
* Prof. Dr. Andreas Rosenschon Fakultät für Mathematik, LM Universität München

Informatik und Statistik
* Dr. Ste↵en Sagave Mathematisches Institut Universität Bonn
* Prof. Dr. Thomas Schick Fachbereich Mathematik Universität Göttingen
* Prof. Dr. Alexander Schmidt Mathematisches Institut Universität Heidelberg
* Prof. Dr. Alexander Schmitt Fachbereich Mathematik Freie Universität Berlin

und Informatik
* Dr. Jakob Scholbach Mathematisches Institut Universität Münster

Prof. Dr. Peter Scholze Mathematisches Institut Universität Bonn
* Prof. Dr. Stefan Schwede Mathematisches Institut Universität Bonn
* Jun.-Prof. Dr. Nikita Semenov Fachbereich Physik, Mathematik Universität Mainz

und Informatik
* Jun.-Prof. Dr. Markus Spitzweck Fachbereich Mathematik/ Universität Osnabrück

Informatik
* Dr. Florian Strunk Fakultät für Mathematik Universität Regensburg
* Dr. Georg Tamme, AR auf Zeit Fakultät für Mathematik Universität Regensburg
* Prof. Dr. Michael Weiss Mathematisches Institut Universität Münster
* Prof. Dr. Anna von Pippich Fachbereich Mathematik Universität Darmstadt
* Prof. Dr. Konrad Waldorf Institut für Mathematik Universität Greifswald

und Informatik
* Dr. Matthias Wendt Mathematisches Institut Universität Freiburg
* Prof. Dr. Annette Werner Institut für Mathematik Goethe Universität Frankfurt
* Dr. Marcus Zibrowius Fachgruppe Mathematik Bergische Universität Wuppertal

und Informatik
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4 International Collaborators

• Belgium: J. Nicaise (Leuven)
• Canada: S. Gille (Edmonton), N. Karpenko (Edmonton), K. Zainoulline (Ottawa).
• France: B. Calmès (Lens), C. Cazenave (Nice), C.D. Cisinski (Toulouse), F. Déglise (Lyon), P. Gille (ENS), B.
Kahn (Université Paris 7), B. Toën (Montpellier), J. Wildeshaus (Université Paris 13), O. Wittenberg (ENS).
• Spain: J. Burgos (Madrid), V. Navarro Aznar (Barcelona)
• India: A. Krishna (Tata Inst.), V. Srinivas (Tata Inst.).
• Japan: T. Geisser (Nagoya), L. Hesselholt (Nagoya), S. Saito (Tokyo), N. Yagita(Ibaraki University).
• Norway: B. Dundas (Bergen), J. Rognes (Oslo), C. Schlichtkrull (Bergen), P.A. Østvær (Oslo).
• Denmark: I. Madsen (Copenhagen), M. Szymik(Copenhagen)
• Russia: V. Kiritchenko (Moscow), I. Panin (St. Petersburg), S. Yagunov (St. Petersburg).
• Switzerland: J. Ayoub (Univ. Zürich), R. Pandharipande (ETH).
• UK: A. Baker (Glasgow), D. Benson (Aberdeen), V. Guletski (Liverpool), T. Pirashvili (Leicester), A. Robinson
(Warwick), M. Schlichting (Warwick), N. Strickland (She�eld), A. Vishik (Nottingham), Ranicki (Edinburgh),
Tillmann (Oxford)
• USA: A. Asok(USC), C. Barwick (MIT), M. Basterra (New Hampshire), M. Behrens (MIT), E. Friedlander
(USC), S. Garibaldi (Emory Univ.), P. Goerss (Northwestern), C. Haesemeyer (UCLA), M. Hill (Univ. Virginia),
M. Hopkins (Harvard), D. Isaksen (Wayne State Univ.), T. Lawson (Univ. Minnesota), Y.P. Lee (Univ. Utah),
J. Lurie (Harvard), M. A. Mandell (Univ. Indiana), J.P. May (Univ. Chicago), A. Merkurjev (UCLA), H. Miller
(MIT), C. Rezk (Univ. Ill. Urbana-Champaign), B. Shipley (Univ. Ill. Chicago), Y.J. Tzeng (Harvard), C.
Weibel (Rutgers).
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5 Literature not in print

All works referred to in this application, which have not appeared as a published journal article, book chapter
or book, are available for download, either from the Math ArXiv http://arxiv.org/archive/math using the
arXiv identifier listed in the article reference or at the URL listed in the article reference. For the reader’s
convenience, we have also set up a web-site for the down-loading of all such material, at

http://www.esaga.uni-due.de/marc.levine/SPP/
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