Modules over TMF

Lennart Meier

Mathematisches Institut, Universität Bonn

Structured Ring Spectra TNG

Our aim is to understand *TMF*-modules.

Let R be a ring spectrum and M and N be R-modules. Recall from Mark Hovey's talk, we have the following spectral sequence:

Universal coefficient spectral sequence

$$E_2^{s,t} = \operatorname{Ext}_{R_*}^{s,t}(M_*, N_*) \implies [M, N]_{Ho(R-mod)}^{s+t}$$

Problem: The global dimension of *TMF*_{*} is infinite.

The same problem already occurs for KO_* - but gldim(KU_*) = gldim($\mathbb{Z}[u^{\pm 1}]$) = 1.

Our aim is to understand *TMF*-modules.

Let R be a ring spectrum and M and N be R-modules. Recall from Mark Hovey's talk, we have the following spectral sequence:

Universal coefficient spectral sequence

$$E_2^{s,t} = \mathsf{Ext}_{R_*}^{s,t}(M_*,N_*) \; \Rightarrow \; [M,N]_{Ho(R-mod}^{s+t})$$

Problem: The global dimension of TMF_* is infinite.

The same problem already occurs for KO_* - but gldim(KU_*) = gldim($\mathbb{Z}[u^{\pm 1}]$) = 1.

Our aim is to understand *TMF*-modules.

Let R be a ring spectrum and M and N be R-modules. Recall from Mark Hovey's talk, we have the following spectral sequence:

Universal coefficient spectral sequence

$$E_2^{s,t} = \mathsf{Ext}_{R_*}^{s,t}(M_*,N_*) \; \Rightarrow \; [M,N]_{Ho(R-mod}^{s+t}$$

Problem: The global dimension of *TMF*_{*} is infinite.

The same problem already occurs for KO_* - but gldim $(KU_*) = \text{gldim}(\mathbb{Z}[u^{\pm 1}]) = 1$.

Our aim is to understand *TMF*-modules.

Let R be a ring spectrum and M and N be R-modules. Recall from Mark Hovey's talk, we have the following spectral sequence:

Universal coefficient spectral sequence

$$E_2^{s,t} = \operatorname{Ext}_{R_*}^{s,t}(M_*, N_*) \Rightarrow [M, N]_{Ho(R-mod)}^{s+t}$$

Problem: The global dimension of *TMF*_{*} is infinite.

The same problem already occurs for KO_* - but gldim(KU_*) = gldim($\mathbb{Z}[u^{\pm 1}]$) = 1.

Bousfield's Work

Let C be the full additive subcategory of KO – mod of all (finite) modules M such that $M \wedge_{KO} KU$ is a free KU-module – i.e. of the *relatively free* modules. We get a functor π^{C}_{*} :

$$egin{array}{rcl} {\cal K}{O}-{\it mod} &\longrightarrow {\cal C}-{\it mod} \ X &\mapsto (\pi_*(X\wedge_{{\it K}{O}}{\it M}))_{{\it M}\in {\cal C}} \end{array}$$

For formal reasons, prdim $\pi^{\mathcal{C}}_*(X) \leq 1$ for every finite *KO*-module *N*.

UCSS - modified version

For two *R*-modules *M* and *N*, we have a spectral sequence

$$\mathsf{E}_{2}^{s,t} = \mathsf{Ext}_{\mathcal{C}-\mathsf{mod}}^{s,t}(\pi^{\mathcal{C}}_{*}(M),\pi^{\mathcal{C}}_{*}(N)) \; \Rightarrow \; [M,N]_{Ho(R-mod)}^{s+t}$$

Bousfield's Work

Let C be the full additive subcategory of KO – mod of all (finite) modules M such that $M \wedge_{KO} KU$ is a free KU-module – i.e. of the *relatively free* modules. We get a functor π^{C}_{*} :

$$egin{array}{rcl} {\cal K}{O}-{\it mod} & \longrightarrow & {\cal C}-{\it mod} \ X & \mapsto & (\pi_*(X\wedge_{{\cal K}{O}}M))_{M\in {\cal C}} \end{array}$$

For formal reasons, prdim $\pi^{\mathcal{C}}_*(X) \leq 1$ for every finite *KO*-module *N*.

UCSS - modified version

For two R-modules M and N, we have a spectral sequence

$$E_2^{s,t} = \mathsf{Ext}_{\mathcal{C}-\mathsf{mod}}^{s,t}(\pi^{\mathcal{C}}_*(M),\pi^{\mathcal{C}}_*(N)) \; \Rightarrow \; [M,N]_{Ho(R-\mathit{mod})}^{s+t}$$

Still Bousfield

Theorem (Bousfield)

Every indecomposable relatively free KO-module is isomorphic to a suspension of KO, KU or KT. So we can choose

 $\mathcal{C} = CRT = \{KO, KU, KT\}.$

Corollary

Every map between $\pi_*^{CRT}(X) \longrightarrow \pi_*^{CRT}(Y)$ can be realized. $\Rightarrow \pi_*^{CRT}$ classifies KO-modules.

Lennart Meier (Bonn)

Modules over TMF

Still Bousfield

Theorem (Bousfield)

Every indecomposable relatively free KO-module is isomorphic to a suspension of KO, KU or KT. So we can choose

 $\mathcal{C} = CRT = \{KO, KU, KT\}.$

Corollary

Every map between $\pi_*^{CRT}(X) \longrightarrow \pi_*^{CRT}(Y)$ can be realized. $\Rightarrow \pi_*^{CRT}$ classifies KO-modules.

Lennart Meier (Bonn)

Modules over TMF

Still Bousfield

Theorem (Bousfield)

Every indecomposable relatively free KO-module is isomorphic to a suspension of KO, KU or KT. So we can choose

 $\mathcal{C} = CRT = \{KO, KU, KT\}.$

Lennart Meier (Bonn)

Modules over TMF

Back to TMF

Recall that there is a sheaf of E_{∞} -ring spectra \mathcal{O}^{top} on the moduli stack \mathcal{M} of elliptic curves. We define $TMF = \mathcal{O}^{top}(\mathcal{M})$.

From now on, we will invert everywhere 2. There is then an etale cover

 $\mathcal{M}(2)$

Define $TMF(2) = O^{top}(\mathcal{M}(2))$. We have

 $TMF(2)_* \cong \mathbb{Z}[x_2, y_2, \Delta^{-1}],$

hence gldim $TMF(2)_* = 2$.

 \rightsquigarrow "*TMF*(2) analogue of *KU*"

Back to TMF

Recall that there is a sheaf of E_{∞} -ring spectra \mathcal{O}^{top} on the moduli stack \mathcal{M} of elliptic curves. We define $TMF = \mathcal{O}^{top}(\mathcal{M})$.

From now on, we will invert everywhere 2. There is then an etale cover

 $\mathcal{M}(2)$ \downarrow \mathcal{M}

Define $TMF(2) = O^{top}(\mathcal{M}(2))$. We have

$$TMF(2)_* \cong \mathbb{Z}[x_2, y_2, \Delta^{-1}],$$

hence gldim $TMF(2)_* = 2$.

 \rightsquigarrow "*TMF*(2) analogue of *KU*"

Relatively free TMF-modules

Goal: We need to classify (finite) *TMF*-modules *M* such that $M \wedge_{TMF} TMF(2)$ is *TMF*(2)-free, called again *relatively free modules*.

Let *M* be a (finite) *TMF*-module. Then we can associate to it an \mathcal{O}^{top} -module \mathcal{F}_M by

 $U \longrightarrow \mathcal{M}$ etale $\mapsto \mathcal{F}_{\mathcal{M}}(U) = \mathcal{O}^{top}(U) \wedge_{TMF} M.$

If *M* is relatively free, $\pi_* \mathcal{F}_M$ is a vector bundle on \mathcal{M} .

Relatively free TMF-modules

Goal: We need to classify (finite) *TMF*-modules *M* such that $M \wedge_{TMF} TMF(2)$ is *TMF*(2)-free, called again *relatively free modules*.

Let *M* be a (finite) *TMF*-module. Then we can associate to it an \mathcal{O}^{top} -module \mathcal{F}_M by

$$U \longrightarrow \mathcal{M}$$
 etale $\mapsto \mathcal{F}_{\mathcal{M}}(U) = \mathcal{O}^{top}(U) \wedge_{TMF} M.$

If *M* is relatively free, $\pi_* \mathcal{F}_M$ is a vector bundle on \mathcal{M} .

Vector Bundles

Theorem (Mumford, Fulton-Olsson)

Every line bundle on \mathcal{M} is a power of ω and $\omega^{12} \cong \mathcal{O}$.

Theorem (Extension Theorem)

Every vector bundle E allows a short exact sequence

$$\mathbf{0} \longrightarrow \omega^k \longrightarrow E \longrightarrow E' \longrightarrow \mathbf{0},$$

where $\operatorname{rk} E' = \operatorname{rk} E - 1$.

Theorem (Classification Theorem)

There are up to tensoring with powers of ω only 3 indecomposable vector bundles: \mathcal{O} , E_{α} and $E_{\alpha,\tilde{\alpha}}$. These are of ranks 1, 2 and 3 respectively and $H^{i}(\mathcal{M}; E_{\alpha,\tilde{\alpha}}) = 0$ for i > 0.

Vector Bundles

Theorem (Mumford, Fulton-Olsson)

Every line bundle on \mathcal{M} is a power of ω and $\omega^{12} \cong \mathcal{O}$.

Theorem (Extension Theorem)

Every vector bundle E allows a short exact sequence

$$\mathbf{0} \longrightarrow \omega^k \longrightarrow E \longrightarrow E' \longrightarrow \mathbf{0},$$

where $\operatorname{rk} E' = \operatorname{rk} E - 1$.

Theorem (Classification Theorem)

There are up to tensoring with powers of ω only 3 indecomposable vector bundles: \mathcal{O} , E_{α} and $E_{\alpha,\tilde{\alpha}}$. These are of ranks 1, 2 and 3 respectively and $H^{i}(\mathcal{M}; E_{\alpha,\tilde{\alpha}}) = 0$ for i > 0.

Vector Bundles

Theorem (Mumford, Fulton-Olsson)

Every line bundle on \mathcal{M} is a power of ω and $\omega^{12} \cong \mathcal{O}$.

Theorem (Extension Theorem)

Every vector bundle E allows a short exact sequence

$$\mathbf{0} \longrightarrow \omega^{k} \longrightarrow E \longrightarrow E' \longrightarrow \mathbf{0},$$

where $\operatorname{rk} E' = \operatorname{rk} E - 1$.

Theorem (Classification Theorem)

There are up to tensoring with powers of ω only 3 indecomposable vector bundles: \mathcal{O} , E_{α} and $E_{\alpha,\tilde{\alpha}}$. These are of ranks 1, 2 and 3 respectively and $H^{i}(\mathcal{M}; E_{\alpha,\tilde{\alpha}}) = 0$ for i > 0.

Standard Modules

If *M* is a relatively free module and $a \in \pi_k M$ a torsion class, we can form a cofiber sequence

$$\Sigma^k TMF \xrightarrow{a} M \longrightarrow Cone(a) \longrightarrow \Sigma^{k+1} TMF.$$

Since $TMF(2)_*$ is torsionfree, the sequence splits after $\wedge_{TMF}TMF(2)$. Therefore, Cone(*a*) is again a relatively free module. Modules built up from *TMF* in this way, are called standard modules.

Theorem (Extension Theorem)

Every relatively free module is standard.

Corollary

$$K_0(TMF) \cong \mathbb{Z}$$

Standard Modules

If *M* is a relatively free module and $a \in \pi_k M$ a torsion class, we can form a cofiber sequence

$$\Sigma^k TMF \xrightarrow{a} M \longrightarrow Cone(a) \longrightarrow \Sigma^{k+1} TMF.$$

Since $TMF(2)_*$ is torsionfree, the sequence splits after $\wedge_{TMF}TMF(2)$. Therefore, Cone(*a*) is again a relatively free module. Modules built up from *TMF* in this way, are called standard modules.

Theorem (Extension Theorem)

Every relatively free module is standard.

Corollary

$$K_0(TMF) \cong \mathbb{Z}$$

Standard Modules

If *M* is a relatively free module and $a \in \pi_k M$ a torsion class, we can form a cofiber sequence

$$\Sigma^k TMF \xrightarrow{a} M \longrightarrow Cone(a) \longrightarrow \Sigma^{k+1} TMF.$$

Since $TMF(2)_*$ is torsionfree, the sequence splits after $\wedge_{TMF}TMF(2)$. Therefore, Cone(*a*) is again a relatively free module. Modules built up from *TMF* in this way, are called standard modules.

Theorem (Extension Theorem)

Every relatively free module is standard.

Corollary

$$K_0(\mathit{TMF})\cong\mathbb{Z}$$

Lennart Meier (Bonn)

 $\begin{array}{c} \textit{TMF}_{*} \subset \\ \mathbb{Z}[\frac{1}{2}][\textit{c}_{4},\textit{c}_{6},\Delta^{\pm 1}][\alpha,\beta] \end{array}$

For the picture we divide out: 3, c_4 and c_6

