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TMF-modules

Our aim is to understand TMF-modules.
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TMF-modules

Our aim is to understand TMF-modules.

Let R be a ring spectrum and M and N be R-modules. Recall from
Mark Hovey’s talk, we have the following spectral sequence:

Universal coefficient spectral sequence

Eyt = Exty! (M, N.) = [MNIES e oo
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Problem: The global dimension of TMF, is infinite.
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TMF-modules

Our aim is to understand TMF-modules.

Let R be a ring spectrum and M and N be R-modules. Recall from
Mark Hovey’s talk, we have the following spectral sequence:

Universal coefficient spectral sequence

Eyt = Exty! (M, N.) = [MNIES e oo

Problem: The global dimension of TMF, is infinite.

The same problem already occurs for KO,
— but gldim(KU,) = gldim(Z[u*']) = 1.
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Bousfield’s Work

Let C be the full additive subcategory of KO — mod of all (finite)

modules M such that M Ao KU is a free KU-module —i.e. of the
relatively free modules. We get a functor 7¢:

KO —-mod — C —mod
X = (m(X Ako M))mec

For formal reasons, prdim #¢(X) < 1 for every finite KO-module N.
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Bousfield’s Work

Let C be the full additive subcategory of KO — mod of all (finite)
modules M such that M Ao KU is a free KU-module —i.e. of the
relatively free modules. We get a functor 7¢:

KO —-mod — C —mod
X = (m(X Ako M))mec

For formal reasons, prdim #¢(X) < 1 for every finite KO-module N.

UCSS - modified version

For two R-modules M and N, we have a spectral sequence
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Still Bousfield
Theorem (Bousfield)

Every indecomposable relatively free KO-module is isomorphic to a
suspension of KO, KU or KT. So we can choose

C = CRT = {KO, KU, KT}.
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uCSS
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Still Bousfield
Theorem (Bousfield)

Every indecomposable relatively free KO-module is isomorphic to a
suspension of KO, KU or KT. So we can choose

C = CRT = {KO, KU, KT}.

uCSS
\\. 5\. ﬁ\. . modified by CRT

Every map between 7CFT(X) — nCAT(Y) can be realized.

= 7CRT classifies KO-modules.
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Back to TMF

Recall that there is a sheaf of E..-ring spectra O on the moduli stack
M of elliptic curves. We define TMF = O"P(M).
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Back to TMF

Recall that there is a sheaf of E..-ring spectra O on the moduli stack
M of elliptic curves. We define TMF = O"%P(M).

From now on, we will invert everywhere 2. There is then an etale cover

M(2)

|

M
Define TMF(2) = OP(M(2)). We have
TMF(2), = Z[x2, y2, A7),
hence gldim TMF(2), = 2.
~» "TMF(2) analogue of KU”
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Relatively free TMF-modules

Goal: We need to classify (finite) TMF-modules M such that
M Aty TMF(2) is TMF(2)-free, called again relatively free modules.
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Relatively free TMF-modules

Goal: We need to classify (finite) TMF-modules M such that
M Aty TMF(2) is TMF(2)-free, called again relatively free modules.

Let M be a (finite) TMF-module. Then we can associate to it an
OP-module Fy, by

U— Metale — Fy(U) = OPP(U) Amye M.

If M is relatively free, . Fy is a vector bundle on M.
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Vector Bundles

Theorem (Mumford, Fulton-Olsson)

Every line bundle on M is a power of w and w'? = O.
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Vector Bundles

Theorem (Mumford, Fulton-Olsson)

Every line bundle on M is a power of w and w'? = O.

Theorem (Extension Theorem)
Every vector bundle E allows a short exact sequence

k

0 —uw'—E—E —0,

whererk E' =rk E — 1.
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Vector Bundles

Theorem (Mumford, Fulton-Olsson)
Every line bundle on M is a power of w and w'? = O.

Theorem (Extension Theorem)
Every vector bundle E allows a short exact sequence

k

0 —uw'—E—E —0,

whererk E' =rk E — 1.

Theorem (Classification Theorem)

There are up to tensoring with powers of w only 3 indecomposable
vector bundles: O, E, and E, 5. '

These are of ranks 1, 2 and 3 respectively and H'(M; E, 5) = 0 for
i>0.
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Standard Modules

If M is a relatively free module and a € M a torsion class, we can
form a cofiber sequence

YKTMF 2 M —s Cone(a) — f*' TMF.
Since TMF(2). is torsionfree, the sequence splits after Arye TMF(2).

Therefore, Cone(a) is again a relatively free module. Modules built up
from TMF in this way, are called standard modules.
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Every relatively free module is standard.
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Standard Modules

If M is a relatively free module and a € M a torsion class, we can
form a cofiber sequence

YKTMF 2 M —s Cone(a) — f*' TMF.

Since TMF(2). is torsionfree, the sequence splits after Arye TMF(2).
Therefore, Cone(a) is again a relatively free module. Modules built up
from TMF in this way, are called standard modules.
Theorem (Extension Theorem)

Every relatively free module is standard.

Ko(TMF) = 7
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