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Abstract

The present work describes, for all odd prime p, a p-local splitting of the infinite
complex projective space in a wedge of p − 1 spaces ΣCP∞(p) ' K1 ∨ · · · ∨ Kp−1. Each
of these spaces can be endowed with a co-H-space structure inherited from the one
on ΣCP∞, but they are not particularly nice though, except for the case j = p − 1
since Kp−1 has the homotopy type of a suspension. The aim is, more precisely, to
study possible co-H-stuctures on the other spaces K1 to Kp−2. It shall be shown that
none of them have the homotopy type of a suspension but furthermore that they
can’t even possess coassociative coproducts.

Übersicht

Diese Arbeit stellt eine p-lokale Zerlegung des unendlichen komplexen projek-
tiven Raumes in ein Bouquet von p−1 topologischen RäumenΣCP∞(p) ' K1∨· · ·∨Kp−1

vor. Auf jedem dieser Räume K j kann durch die Co-H-Struktur auf der Einhängung
ΣCP∞ eine Co-H-Struktur definiert werden. Abgesehen von Kp−1, der den Homo-
topietyp einer Einhängung hat, haben diese Räume keine besonders schöne Struk-
tur. Das Hauptziel dieser Arbeit ist das Studium möglicher Co-H-Strukturen auf
den topologischen Räumen K1 bis Kp−2. Wir werden erst zeigen, dass sie nicht den
Homotopietyp einer Einhängung haben und dann, dass sie kein co-assoziatives
Co-Produkt haben können.

Résumé

Où l’on présente, pour tout premier impair p, une décomposition p-locale
de l’espace projectif complexe infini en un wedge de p − 1 espaces topologiques
ΣCP∞(p) ' K1 ∨ · · · ∨ Kp−1. Chacun de ces espaces peut être muni d’une structure
de co-H-espace héritée de celle de ΣCP∞. Cependant ces dernières ne sont pas
particulièrement remarquables, à l’exception du cas j = p − 1, puisque Kp−1 a le
type d’homotopie d’une suspension. Le but principal de ce travail est d’étudier
d’éventuelles co-H-structures sur les p − 2 autres espaces K1 à Kp−2. En particulier,
il y est démontré que, non seulement, aucun d’entre eux n’ont le type d’homotopie
d’une suspension, mais, de mal en pis, qu’ils ne possèdent aucun co-produit co-
associatif.



To Pinky and The Brain,
Whom I share the plans of!

Brain: ”Are you pondering what I’m pondering?”

Pinky: ” I think so, Brain. But if I put on two tutu’s,
would I really be wearing a four-by-four?”

Brain: ”Why do I even bother asking?”

Pinky: ”I dunno, Brain. Maybe it’s all part
of some huge, cosmic plot formula!”
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Introduction

Let p be an odd prime. In [McG81, Proposition 2.2] C.A. McGibbon describes
a p-local splitting of the infinite complex projective space

ΣCP∞(p) '

p−1∨
j=1

K j

such that the homology of each piece is given by

H̃q(K j,Z) =

Z(p) if q = 2n + 1 and n(≥ 1) ≡ j (mod p − 1)
0 otherwise.

Using the canonical inclusions and retractions K j ↪→ ΣCP∞(p) and ΣCP∞(p) −→ K j,
each space K j can easily be endowed with a coproduct, which does not necessarily
have nice properties though. It follows from work of D. P. Sullivan [Sul74] that the
space Kp−1 has the homotopy type of a suspension. We wish to investigate possible
co-H-structures on the other spaces K1 to Kp−2. The first result which gives a hint
that these spaces do not bear nice co-H-stuctrures is the following.

T (4.4).
For all j ∈Np−2 the spaces K j do not have the homotopy type of a suspension.

But our principal aim is to show that coassociative co-H-structures can’t exist on
these spaces:

T (4.8).
Let j ∈Np−2, then the space K j does not possess any coassociative coproduct.

We shall also figure out that the difference between Kp−1 and the other spaces is
entirely related to the degrees in which homology is concentrated.

The proofs of these results shall in fact need many algebraic and topological
tools. We start in chapter 1 with an introduction to co-H-spaces and present, in
chapter 2, the basics of topological localizations , both of which are necessary to
acquire a good understanding of the proof of the p-local splitting and the con-
struction of the spaces K1, . . . ,Kp−1. Chapter 3 introduces mathematical tools that
we shall need in the proofs of chapter 4. The treated subjects are Hopf algebras
and their duals, the elemantary properties of the Steenrod reduced powers, the
Serre spectral sequences and the cohomology suspension morphism. Of course,
this document is far from being self-contained and requires previous knowledge
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8 INTRODUCTION

in algebraic topology and algebra. Nonetheless, I hope I have managed to explain
the main necessary steps to carry out the proofs of the theorems cited above. This
work has taught me how difficult it is to work with concrete examples and how
much more advanced material can be needed to treat a problem which actually
does not require much knowledge in algebraic topology to be understood.

I also ought to apologize to native speakers for the style in which this text is
written. English is a beautiful language which certainly does not deserve to be
slaughtered by French speakers. Finally, in order to recover the atmosphere in
which this work was carried through, I would advise the reader either to paint his
office walls in green or more simply to print it on green paper.
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I wish to thank Prof. Birgit Richter for the nice and interesting subject she
has found for me to study as well as for welcoming me at Hamburg University,
Fridolin Roth for all his explanations on LS-category and the Swiss Federal Institute
of Technology of Lausanne for its financial support to academic exchange students.



CHAPTER 1

Introduction to Co-H-spaces

To start with we give a detailed introduction to the notion of co-H-space
structure on a pointed space. This is the central notion we wish to investigate
through the example of the splitting of ΣCP∞(p). This chapter is based on the books
by G.W. Whitehaed and Switzer ([Whi78] and [Swi02]).

1. Notation

To begin with we set up the various standard notations which shall be used
throughout this work. Let X,Y ∈ Top∗ be pointed topological spaces. When no
confusion is to be made, the base point of a pointed space will simply be denoted
by the symbol ∗ . The wedge X ∨ Y is considered as embedded into the product
X × Y. The arrow

∗ : X −→ Y
x 7−→ ∗

will denote the constant map (on the based point);
j1: X −→ X ∨ Y

x 7−→ (x, ∗)
j2: Y −→ X ∨ Y

y 7−→ (∗, y)
the inclusions in the wedge;

i1: X −→ X × Y
x 7−→ (x, ∗)

i2: Y −→ X × Y
y 7−→ (∗, y)

the inclusions in the cartesian product;
q1: X ∨ Y −→ X

(x, y) 7−→ x
q2: X ∨ Y −→ Y

(x, y) 7−→ y
the projections from the wedge on each factor;

p1: X × Y −→ X
(x, y) 7−→ x

p2: X × Y −→ Y
(x, y) 7−→ y

the projections from the cartesian product on each factor;
k: X ∨ Y −→ X × Y

the canonical inclusion of the wedge in the cartesian product;

∆: X −→ X × X
x 7−→ (x, x)

∇: X ∨ X −→ X
(x, ∗) 7−→ x
(∗, x) 7−→ x

the diagonal and the folding maps, which can be iterated into n-fold versions.
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10 1. INTRODUCTION TO CO-H-SPACES

R 1.1.
There are many relations between the maps above, some of which shall be indis-
pensable in the next sections. By way of illustration, here is a non-comprehensive
list :

(1) p1i1 = IdX and p2i2 = IdY ; (2) p1i2 = ∗ = p2i1 ;
(3) q1 j1 = IdX and q2 j2 = IdY ; (4) q1 j2 = ∗ = q2 j1 ;
(5) p1∆ = idX = p2∆ ; (6) ∇ j1 = IdX = ∇ j2 ;
(7) p1k = q1 and p2k = q2 ; (8) ∇( j1 ∨ j2) = idX∨X .

The proofs of these formulae are straight forward calculations.

2. Equivalent Definitions

D 1.2.
A pointed topological space (X, ∗) is a co-H-space1 if for all Y ∈ Top∗ the set [X,Y] is en-
dowed with a product+ such that

(1) the identity element is the class of the constant map [∗].
(2) For all Y1,Y2 ∈ Top∗ and for all f ∈ Top∗(Y1,Y2) the induced map

f∗ : [X,Y1] −→ [X,Y2]
[g] 7−→ [ f ◦ g]

is a homomorphism, that is for all [g1], [g2] ∈ [X,Y1] we have

f∗([g1] + [g2]) = f∗([g1]) + f∗([g2]) .

D 1.3.
Let X ∈ Top∗. A coproduct (or comultiplication) on X is a pointed continuous map
θ : X −→ X ∨ X such that the following diagram commutes up to homotopy

X X ∨ X
q1

oo
q2

// X

X

θ

OO

idX

``AAAAAAAAAA idX

>>}}}}}}}}}}
.

P 1.4.
A space X ∈ Top∗ is a co-H-space if and only if there exists a coproduct θ on X. Moreover,
in this case the product + on [X,Y] is defined for all Y ∈ Top∗ and all f1, f2 ∈ [X,Y] by

[ f1] + [ f2] = [∇( f1 ∨ f2)θ] .

1H stands for Heinz Hopf.
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P. First assume that X is a co-H-space. Up to homotopy we can define a
pointed continuous map from X to X ∨ X by the formula

[θ] := [ j1] + [ j2] .

It is then an easy calculation to check that any element of this class is a coproduct:

[q1θ] = (q1)∗([θ]) = (q1)∗([ j1] + [ j2]) = (q1)∗([ j1]) + (q1)∗([ j2])
= [q1 j1] + [q1 j2] = [q1 j1] + [q1 j2] = [IdX] + [∗] = [IdX]

And similarly [q2θ] = [IdX]. Thus X has a co-product. In addition, for all Y ∈ Top∗
and all f1, f2 ∈ [X,Y] we have

[∇( f1 ∨ f2)θ] = (∇( f1 ∨ f2))∗([θ]) = (∇( f1 ∨ f2))∗([ j1] + [ j2])

= (∇( f1 ∨ f2))∗([ j1]) + (∇( f1 ∨ f2))∗([ j2])

= [∇( f1 ∨ f2) j1︸        ︷︷        ︸
f1

] + [∇( f1 ∨ f2) j2︸        ︷︷        ︸
f2

] = [ f1] + [ f2] .

Conversely, assume that X is endowed with a coproduct θ. Then for all Y ∈ Top∗
and all f1, f2 ∈ [X,Y] we can define a product ” + ” on [X,Y] by the formula
[ f1] + [ f2] = [∇( f1 ∨ f2)θ].
Since the composition ( j1 ∨ j2)∇ is the identity on X ∨ X:

X ∨ X
j1∨ j2

// (X ∨ X) ∨ (X ∨ X)
∇ // X ∨ X

(x, ∗) � // ((x, ∗); (∗, ∗)) � // (x, ∗)

(∗, x) � // ((∗, ∗); (∗, x)) � // (∗, x)

we have in particular [ j1] + [ j2] = [∇( j1 ∨ j2)θ] = [θ].
Moreover, the hypothesis q1θ ' IdX ' q2θ implies that for all f ∈ [X,Y] the two
following diagrams

X
θ //

IdX
""FF

FF
FF

FF
F X ∨ X

	

f∨∗
//

q1

��

Y ∨ Y

∇

��

X
f

// Y

X
θ //

IdX
""FF

FF
FF

FF
F X ∨ X

	

∗∨ f
//

q2

��

Y ∨ Y

∇

��

X
f

// Y

homotopy commute. (The commutativity of the two squares is quite obvious.) In
other words:

[ f ] + [∗] = [∇( f ∨ ∗)θ] = [ f IdX] = [ f ]

and
[∗] + [ f ] = [∇(∗ ∨ f )θ] = [ f IdX] = [ f ] .

Hence [∗] is an identity element for+. Finally, given f ∈ Top∗(Y1,Y2), the fact that the
induced map is an homomorphism follows from the easily-checked commutativity
of the diagram

Y1 ∨ Y1

	

f∨ f
//

∇

��

Y2 ∨ Y2

∇

��

Y1 f
// Y2 .
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For then for all [g1], [g2] ∈ [X,Y1] we have

f∗([g1] + [g2]) = f∗([∇(g1 ∨ g2)θ] = [ f∇(g1 ∨ g2)θ]

= [∇( f ∨ f )(g1 ∨ g2)θ] = [∇( f g1 ∨ f g2)θ]

= [ f g1] + [ f g2] = f∗([g1]) + f∗([g2]) .

�

There still is another characterization for co-H-spaces which can be useful to bear
in mind.

P 1.5.
Let X ∈ Top∗ be a pointed topological space with a pointed continuous mapθ : X −→ X∨X.
Then θ is a coproduct if and only if the diagonal map ∆ : X −→ X ×X factors through the
wedge via θ, i.e. the following diagram commutes up to homotopy

X

∆
##GG

GG
GG

GG
G

θ // X ∨ X

k
��

X × X .

P. If θ is a coproduct, then q1θ ' IdX ' q2θ and in other words there exist
two homotopies F1,F2 : X × [0, 1] −→ X such that, respectively,{

F1(x, 0) = q1θ(x) = p1kθ(x)
F1(x, 1) = IdX(x) = p1∆(x) and

{
F2(x, 0) = q2θ(x) = p2kθ(x)
F2(x, 1) = IdX(x) = p2∆(x)

Applying the universal property of the product, we get the existence of a continu-
ous map F : X × [0, 1] −→ X × X such that p1F = F1 and p2F = F2:

X

X × [0, 1]
F //___

F1

..

F2

00

X × X

p1

<<yyyyyyyyy

p2

""EE
EE

EE
EE

E

X

Therefore F is a homotopy between kθ and ∆.

Conversely, assuming that ∆ ' kθ, it suffices to use the canonical projections on
each factor of the cartesian product X × X to obtain the required result.

X

X
∆ //

kθ
// X × X

p1 22ffffffffffff

p2 ,,XXXXXXXXXXXX

X

.

For, remembering that p1k = q1, p2k = q2 and p1∆ = IdX = p2∆we easily get

q1θ = p1 kθ︸︷︷︸
'∆

' p1∆ = IdX
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and
q2θ = p2kθ ' p2∆ = IdX .

Thus θ fulfills definition 1.3. �

To sum up, a co-H-space can be thought of either in terms of definition 1.2,
or equivalently as a space with a comultiplication θ satisfying the condition q1θ '
IdX ' q2θ of definition 1.3, or the condition on the diagonal map of proposition 1.5.
Definition 1.2 gives a straight forward idea of the kind of topological properties
aimed at with the notion of co-H-space and will also quite nicely explain the
terminology of coassociativity and co-H-group introduced in the next section.
Nonetheless, thinking of a co-H-space as a space with a comultiplication is slightly
more interesting in the sense that this definition easily generalizes to a categorical
definition. To understand it better, let us recall that in the category Top∗, the wedge
sum corresponds to the categorical coproduct.

D 1.6.
Let C be a category with zero morphisms and coproducts. A comultiplication on an
object A ∈ C is a morphismΦ : A −→ A∗A such that< IdA, 0 > Φ = IdA =< 0, IdA >
Φ, where ∗ denotes the coproduct, 0 the zero morphism from A to A, < IdA, 0 >
and < 0, IdA > the unique morphims obtained by applying the universal property
of the coproduct to the pairs of morphisms (IdA, 0) and (0, IdA), respectively.
A pair (A,Φ) is called a comultiplicative object in C and Φ is called coassociative if
(IdA ∗Φ) ∗Φ = (Φ ∗ IdA) ∗Φ : A −→ A ∗ A ∗ A.

3. Further Elementary Properties of Co-H-spaces

If X is a co-H-space, the set [X,Y] is endowed with a product for all Y ∈ Top∗,
but it need not be a group, neither is the product necessarily associative. Let us
investigate these two properties in terms of coproducts.

A.
The product + is associative when for all f1, f2, f3 ∈ Top∗(X,Y) we have [ f1]+ ([ f2]+
[ f3]) = [ f1] + ([ f2] + [ f3]), where the first member of the equation is represented by
the composition

X
θ // X ∨ X

θ∨IdX // X ∨ X ∨ X
f1∨ f2∨ f3

// Y ∨ Y ∨ Y
∇ // Y

and the second member by the composition

X
θ // X ∨ X

IdX ∨θ // X ∨ X ∨ X
f1∨ f2∨ f3

// Y ∨ Y ∨ Y
∇ // Y .

(Where ∇ obviously denotes the 3-fold folding map.) Hence + is associative if
(θ ∨ IdX)θ ' (IdX ∨θ)θ.
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Conversely, if + is associative, the particular case Y := X ∨ X ∨ X, f1 = j1, f2 = j2
and f3 = j3 yields ∇( f1 ∨ f2 ∨ f3) = ∇( j1 ∨ j2 ∨ j3) = IdX∨X∨X and

[(θ ∨ IdX)θ] = [idX∨X∨X(θ ∨ IdX)θ] = [∇( j1 ∨ j2 ∨ j3)(θ ∨ IdX)θ]
= ([ j1] + [ j2]) + [ j3]
= [ j1] + ([ j2] + [ j3])
= [∇( j1 ∨ j2 ∨ j3)(IdX ∨θ)θ] = [idX∨X∨X(IdX ∨θ)θ]
= [(IdX ∨θ)θ] .

This leads to the so-called notion of coassociativity for a coproduct.

D 1.7.
A co-H-space (X, θ) is called coassociative if its coproduct is coassociative that is if the
diagram

X
θ //

θ
��

X ∨ X

θ∨IdX

��

X ∨ X
IdX ∨θ

// X ∨ X ∨ X .

commutes up to homotopy.

R 1.8.
Coassociativity is no automatic property for co-H-spaces. We shall show that the
spaces K1, . . .Kp−2 built in theorem 4.1 provide an example of infinitely many spaces
which are co-H-spaces but fail to be coassociative.

I.
We now describe a necessary and sufficient condition for inverses to exist.
If every [ f ] ∈ [X,Y] has an inverse, so does, in particular, [IdX] ∈ [X,X]: [IdX]+[ν] =
[∗] = [ν] + [IdX]. Conversely, if [ν] exists, we easily see that any class [ f ] ∈ [X,Y]
admits [ fν] as inverse. For the class of the constant map [∗] = [ν] + [IdX] is
represented by

X
θ // X ∨ X

ν∨IdX // X ∨ X
∇ // X ;

[ fν] + [ f ] is represented by

X
θ // X ∨ X

fν∨ f
// Y ∨ Y

∇ // Y

and the diagram

X
θ // X ∨ X

fν∨ f
//

ν∨IdX

	

&&NNNNNNNNNNN Y ∨ Y

	

∇ // Y

X ∨ X

f∨ f

OO

∇

// X .

f

OO



4. SUSPENSIONS 15

commutes. Thus [ fν] + [ f ] = [ f ∗] = [∗]. Similarly, we get [ f ] + [ fν] = [∗]. It leads
to the following definitions.

D 1.9.
Let (X, θ) be a co-H-space.

(1) A homotopy inverse for X is a pointed continuous map ν : X −→ X such
that the diagram

X X ∨ X
∇oo X ∨ X

IdX ∨ν //
ν∨IdXoo X ∨ X

∇ // X

X

θ

OO

∗

55kkkkkkkkkkkkkkkkkkkk
∗

iiTTTTTTTTTTTTTTTTTTT

commutes up to homotopy.
(2) A co-H-space (X, θ) with homotopy inverse ν and which is coassociative

is called co-H-group.

Note that it follows from the above development that this definition of a co-H-
group is equivalent to saying that the set [X,Y] is endowed with a group structure
for all Y ∈ Top∗.

The first example that springs to mind is the honnest 1-sphere S1, which is
a co-H-group as [S1,Y] = π1(Y) is the fundamental group of Y for all pointed
space Y. Let us denote by t̄ the image of t ∈ [0, 1] =: I under the canonical map
I −→ I/0 ∼ 1 � S1. Then the coproduct on S1 is described by the pinch map:

θ : t̄ !−→

{

(2t, ∗) if 0 ≤ t ≤ 1

2

(∗, 2t− 1) if 1

2
≤ t ≤ 1

θ

4. Suspensions

Let (X, ∗) be a pointed topological space. We recall that the reduced suspension
ΣX of X is often defined to be the smash product ΣX := S1

∧ X . Since (I; {0, 1}) is
an NDR-pair it can be showed that there is a natural homeomorphism

ΣX � X × I/X × {0} ∪ X × {1} ∪ {∗} × I

where the base point is then {∗} × I. (See [Whi78, Chapter III].) Hence the reduced
suspension can also be thought of as the union of the upper and lower cones on X,
described, as subset of the above quotient, by C−X = {[x, t] | x ∈ X, 0 ≤ t ≤ 1

2 } and
C+X = {[x, t] | x ∈ X, 1

2 ≤ t ≤ 1}. Furthermore, C−X ∩ C+X is homeomorphic to X
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and we often find the following representation:

X∗

∗ × I

The operation of forming the reduced suspension determines a functor Σ, whose
effect on morphisms is defined for all f ∈ Top∗(X,Y) by

Σ f := Id∧ f : ΣX −→ ΣY
t̄ ∧ x 7−→ Σ f (t̄ ∧ x) := t̄ ∧ f (x) .

By means of the following lemma we easily show that reduced suspensions
are co-H-spaces and even better, co-H-groups. See [Whi78] for details of the proof.

L 1.10.
Let (X, θ) be a co-H-space.

(1) Then so is X ∧ Y for all Y ∈ Top∗.
(2) If X is coassociative, then so is X ∧ Y for all Y ∈ Top∗.
(3) If X is a co-H-group, then so is X ∧ Y for all Y ∈ Top∗.

S  . Let F(X,Y) denotes the set of all pointed continuous maps
from X to Y with the compact-open topology. The idea of the proof is to consider
the natural homeomorphism F(X ∧ Y,Z) � F(X,F(Y,Z)) which induces a bijection
[X ∧ Y,Z] ≈ [X,F(Y; Z)]. Therefore we can use this bijection to transfer the product
on [X,F(Y; Z)], given by the co-H-space structure of X, to one on [X ∧ Y,Z], which
is coassociative or gives a group structure if the first one does. �

R 1.11.
In order to use the homeomorphism F(X∧Y,Z) � F(X,F(Y,Z)), more hypotheses on
the spaces are necessary. For example, Whitehead assumes that they are compactly
generated spaces2, of which locally compact Hausdorff spaces are particular cases.
Therefore, to be able to use the results of the lemma above, we shall also assume that
the spaces considered in this section satisfy this supplementary condition. But we
don’t need to worry too much about it, because the space, which we are eventually
interested in, CP∞, is certainly compactly generated (as a pointed CW-complex).

C 1.12.
Suspensions are co-H-groups.

P. Since it has been seen in the previous section that S1 is a co-H-group,
so is the smash product S1

∧ X = ΣX. �

2Here a compactly generated space X is a Hausdorff space such that each subset A of X with the
property that A ∩ C is closed for every compact subset C of X is itself closed.
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By dissecting more deeply the bijection used in the proof of the lemma it can
be seen that the coproduct on a suspension ΣX is induced from the one of S1 as
follows:

θ: ΣX = S1
∧ X −→ (S1

∨ S1) ∧ X �
−→ (S1

∧ X) ∨ (S1
∧ X)

t̄ ∧ x 7−→

(2t, ∗) ∧ x if 0 ≤ t ≤ 1
2

(∗, 2t − 1) ∧ x if 1
2 ≤ t ≤ 1

7−→

(2t ∧ x, ∗) if 0 ≤ t ≤ 1
2

(∗, 2t − 1 ∧ x) if 1
2 ≤ t ≤ 1

This map is often described as the ”pinching” and represented by the naive picture:

θ

C 1.13.
In particular, it follows by induction on n that all the n-spheres are co-H-groups:
Sn � ΣSn−1 for all n > 1. As a matter of fact, given a pointed space Y, the co-H-group
structure of Sn can be used to define the n-th homotopy group πn(Y) := [Sn,Y] of Y
for all n ≥ 1.

5. Co-H-spaces and Homology

In this section, we assume that the spaces are such that their base point is closed
and is a deformation retract of some neighbourhood in the space. CW-complexes,
for instance, verify this condition. It enables the use of the isomorphism

( jα∗)α :
⊕
α

H̃q(Xα) �
−→ H̃q(

∨
α

Xα)

induced by the canonical inclusions jα : Xα −→
∨
α Xα.

P 1.14.
Let (X, θ) be a co-H-space satisfying the assumption above.

(1) For all x ∈ H̃q(X) the composite map

α : H̃q(X)
θ∗ // H̃q(X ∨ X) H̃q(X) ⊕ H̃q(X)

�

( j1 ∗, j2 ∗)
oo

is given by x 7→ (x, x) for all q.
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(2) If X has a homotopy inverse ν : X −→ X, then the induced map in homology
ν∗ : H̃q(X) −→ H̃q(X) is given by x 7→ −x for all q.

P.
(1) The relations q1θ ' IdX ' q2θ, q1 j1 = IdX = q2 j2 and q1 j2 = ∗ = q2 j1 yield,

when passing to homology, the commutative diagrams

H̃q(X)

Id

	

$$JJJJJJJJJ

θ∗ // H̃q(X ∨ X)

q1 ∗

��

H̃q(X) ⊕ H̃q(X)
( j1 ∗, j2 ∗)
oo

(Id,0)

	

wwpppppppppppp

H̃q(X)

H̃q(X)

Id

	

##GGGGGGGGGG

θ∗ // H̃q(X ∨ X)

q2 ∗

��

H̃q(X) ⊕ H̃q(X)
( j1 ∗, j2 ∗)
oo

(0,Id)

	

xxrrrrrrrrrrrr

H̃q(X) .

Therefore for all for all x ∈ H̃q(X) and all q, the first diagram says that
α(x) = (x, z) for some z and the second one implies that α(x) = (y, x) for
some y. Hence α(x) = (x, x).

(2) Recall that, by definition of ν, the following diagram commutes up to
homotopy:

X X ∨ X
∇oo X ∨ X

ν∨Idoo

X

θ

OO

∗

iiTTTTTTTTTTTTTTTTTTT

Thus passing to homology we have 0 = (∇(ν∨ Id)θ)∗ and the computation
of remark (2) below yields, for all x, 0 = (∇(ν∨Id)θ)∗(x) = ν∗(x)+x, whence
ν∗(x) = −x.

�

C 1.15.
As a result, the expression of the induced map in homology by the coproduct is

θ∗(x) = ( j1 ∗, j2 ∗)α(x) = ( j1 ∗, j2 ∗)(x, x) = j1 ∗(x) + j2 ∗(x) .

R 1.16.

(1) Since ∇ j1 = IdX = ∇ j2 the map H̃q(X) ⊕ H̃q(X)
( j1 ∗, j2 ∗)
−→ H̃q(X ∨ X)

∇∗
−→ H̃q(X)

is given by (x, y) 7→ j1 ∗(x) + j2 ∗(y) 7→ ∇∗ j1 ∗(x) + ∇∗ j2 ∗(x) = x + y.
(2) Let Y ∈ Top∗ and f , g ∈ Top∗(X,Y), then for [ f ] + [g] ∈ [X,Y] there is a nice

expression for the induced map in homology. For all x ∈ H̃q(X):
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([ f ] + [g])∗(x) = (∇( f ∨ g)θ)∗(x) = ∇∗( f ∨ g)∗θ∗(x)

= ∇∗( f ∨ g)∗( j1 ∗, j2 ∗)( j1 ∗, j2 ∗)−1θ∗(x)

= ∇∗( f ∨ g)∗( j1 ∗, j2 ∗)α(x) = ∇∗( f ∨ g)∗( j1 ∗, j2 ∗)(x, x)

= ∇∗( j1 ∗, j2 ∗)( f∗ ⊕ g∗)(x, x) = ∇∗( j1 ∗, j2 ∗)( f∗(x), g∗(x))

= f∗(x) + g∗(x)

where the last equality comes from remark (1) above and the only other
non-obvious step is the equality ( f ∨ g)∗( j1 ∗, j2 ∗) = ( j1 ∗, j2 ∗)( f∗⊕ g∗), which
actually comes from the commutative diagrams:

X

	

f
//

j1
��

Y

j1
��

X ∨ X
f∨g

// Y ∨ Y

X

	

g
//

j2
��

Y

j2
��

X ∨ X
f∨g

// Y ∨ Y

For this yields

( f ∨ g)∗( j1 ∗, j2 ∗)(x, z) = (( f ∨ g) j1)∗(x) + (( f ∨ g) j2)∗(z)

= ( j1 f )∗(x) + ( j2g)∗(z) = ( j1 ∗, j2 ∗)( f∗(x) + g∗(z))

= ( j1 ∗, j2 ∗)( f∗ ⊕ g∗)(x, z)

for all x, z ∈ H̃q(X).

6. H-spaces

The dual notion to the notion of co-H-space is the notion of H-space.

An H-space is by definition a pointed topological space (Y, ∗) such that for all Y ∈ Top∗
the set [X,Y] is endowed with a product ”·” such that the identity element is the
class of the constant map [∗] and for all X1,X2 ∈ Top∗ and for all f ∈ Top∗(X1,X2) the
induced map f ∗ is a homomorphism.
Equivalently, Y is an H-space if and only if it possesses a pointed continuous map
µ : Y × Y −→ Y, called product, such that µi1 ' IdY ' µi2 or µk ' ∇.

Given a co-H-space (X, θ) and an H-space (Y, µ), the set [X,Y] possesses two al-
gebraic structures:

+ given by the co-H-space structure;
· given by the H-space structure.

They are linked by the following proposition.

P 1.17.
(1) The products + and · are the same.
(2) This unique composition law is associative and commutative.
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P. The first claim follows from the commutativity up to homotopy of the
diagram

X
θ //

∆

��

X ∨ X

k
zzttttttttt

f∨g
// Y ∨ Y

∇

��
k

zzuuuuuuuuu

X × X
f×g

// Y × Y µ
// Y

for all [ f ], [g] ∈ [X,Y]. The second claim is a straight forward computation. See
e.g. [Swi02]. �

Assuming again that we work with compactly generated spaces, there is a propo-
sition similar to lemma 1.10 which links co-H-structures and H-structures:

L 1.18.
(1) If X is a co-H-space, then F(X,Y) is an H-space for all Y.
(2) If X is a coassociative co-H-space, then F(X,Y) is an associative H-space for all

Y, that is the product + on [X,F(X,Y)] is associative.
(3) If X is a co-H-group, then F(X,Y) is an H-group for all Y, that is [X,F(X,Y)] is

endowed with a group structure by +.

Therefore taking X equal to the co-H-space S1, we obtain that the loop space
ΩY = F(S1,Y) is an H-group for all pointed spaces Y.



CHAPTER 2

Localizations

1. Localizations of Rings and Modules

In this section, unless otherwise stated, all rings are assumed to be commuta-
tive. Recall that for a ring (R,+, ·), a subset S ⊂ R is called multiplicatively closed
if (S, ·) is a monoid with identity element 1R and such that 0R does not belong to
S. Most books dealing with an introduction to abstract algebra have a section on
localization of rings and often of modules as well. Nevertheless, to my mind, the
only recommendable book on the subject is [Bou61]. As usual with N. Bourbaki it
is concise (and a bit old-fashioned) but comprehensive and formally done.

1.1. Localization of Rings.

D 2.1.
Let R be a ring and S ⊂ R a multiplicatively closed subset. A localization of the ring
R at S is a ring RS together with a ring homomorphism θ : R −→ RS, which satisfy
the following conditions:

(1) The elements of θ(S) are invertible in RS.
(2) For all ring homomorphism f : R −→ B such that f (S) ⊂ B∗, there exist a

unique ring homomorphism f̃ : RS −→ B such that f̃ ◦ θ = f , that is such
that the following diagram commutes:

R

θ

��

f
// B

RS

	

∃! f̃

??~~~~~~~~

As usual, a solution (RS, θ) to such a universal mapping problem is unique up to a
unique ring isomorphism.

21
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The existence is established through the following construction. We first define an
equivalence relation ∼ on the cartesian product R × S by

(r, s) ∼ (r̄, s̄) ⇐⇒ ∃ t ∈ S such that t(s̄r − sr̄) = 0 .

Let S−1R := R × S/ ∼ . We denote by r/s the class of (r, s) in the quotient and we set
θ(r) := r/1 for all r ∈ R. Then, giving S−1R the ring structure (well-)defined by

+: S−1R × S−1R −→ S−1R
(r/s, r̄/s̄) 7−→ (s̄r + sr̄)/ss̄

and
·: S−1R × S−1R −→ S−1R

(r/s, r̄/s̄) 7−→ rr̄/ss̄
(for which 0/1 is the identity element with respect to + and 1/1 the unit) makes θ
into a ring homomorphism. Furthermore, as s/1 ·1/s = 1/1, we have θ(S) ⊂ (S−1R)∗.

Now, let f : R −→ B be a ring homomorphism such that f (S) ⊂ B∗. If we want a
ring homomorphism f̃ : S−1R −→ B such that f̃ ◦ θ = f , it is necessary that

1 = f̃ (1/1) = f̃ (s/1) f̃ (1/s) = f̃ ◦ θ(s) f̃ (1/s) = f (s) f̃ (1/s) .

But f (s) ∈ B∗ yields f̃ (1/s) = f (s)−1. Hence, f̃ is uniquely defined by:

f̃ (r/s) = f̃ (r/1) · f̃ (1/s) = f (r) f (s)−1
· ∀ r ∈ R, s ∈ S .

R 2.2.
(1) Any element in S−1R can be written as r/s = θ(r)θ(s)−1.
(2) The kernel of θ is ker(θ) = {r ∈ R | ∃ s ∈ S with sr = 0} .
(3) Thus, if R is an integral domain θ is injective.
(4) If R is an integral domain and S = R \ {0} then S−1R is Q(R) the field of

fractions of R. It follows that if T ⊆ R \ {0} then T−1R can be identified
with a subring of Q(R).

1.2. Localization of Modules.

The basic idea of the localization of an R-module M at a multiplicatively closed
subset S of R is to make multiplication by any element of S into an isomorphism. As
described below, this is achieved, for instance, by tensoring M, over R, with S−1R.
As it happens, this very characterization is most of the time used as the definition
of the localization of a module. It, nonetheless, shall be useful to copy what we
have done above with localizations of rings and give a more formal definition
using a universal property.

D 2.3.
Let R be a ring, S ⊂ R a multiplicatively closed subset and M an R-module.
A localization of M at S is an R-module MS together with an R-homomorphism
θM : M −→MS, which satisfy the following conditions:

(1) For all s ∈ S the multiplication by s
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hs: MS −→ MS
z 7−→ z · s

is bijective.
(2) For all R-module N such that the multiplication by s, n 7→ n · s, is bijective

for all s ∈ S, and for all R-homomorphism f : M −→ N, there exist a
unique R-homomorphism f̃ : MS −→ N such that f̃ ◦ θM = f , that is such
that the following diagram commutes:

M

θM

��

f
// N

MS

	

∃! f̃

>>}}}}}}}}

Again a solution (MS, θM) to the universal mapping problem of the definition
above, if ever it exists, is unique up to a unique R-isomorphism.
A concrete construction is made by setting MS =M ⊗R S−1R =: S−1M and

θM: M −→ M ⊗R S−1R
m 7−→ m ⊗ 1 .

This construction obviously fulfills condition (1) of the definition. To see that
condition (2) is satisfied as well, we observe that if an R-homomorphism f̃ : MS −→

N is such that f̃ ◦ θM = f , then for all s ∈ S and m ∈M we have

f (m) = f̃ (m ⊗ 1) = f̃ (((m ⊗ 1) · 1/s) · s) = f̃ ((m ⊗ 1) · 1/s) · s = hs[ f̃ ((m ⊗ 1) · 1/s .

But (1) says that hs is invertible, therefore f̃ is uniquely defined by:

f̃ (m ⊗ 1/s) = (hs)−1[ f (m)]

In particular, when N is an S−1R-module, by virtue of remark (5) below:

f̃ (m ⊗ 1/s) = f (m) · 1/s

R 2.4.
(1) The construction of the localization as the tensor product M⊗RS−1R allows

us to endow it with a natural S−1R-module structure.
(2) Since the tensor product is R-balanced, any generator in M ⊗R S−1R can

be written as m ⊗ 1/s for some m ∈M and s ∈ S.
(3) Moreover, m⊗ 1/s+ m̄⊗ 1/s̄ = (ms̄+ m̄s)⊗ 1/(ss̄) implies that any element

of M ⊗R S−1R can be written as m ⊗ 1/s for some m ∈M and s ∈ S.
(4) In case M is an S−1R-module, θM becomes an isomorphism. For the

ordered pair (M, IdM), where M is considered as an R-module, is a solution
to the universal mapping problem of the definition, too. And θM is the
unique isomorphism between M and S−1M.

(5) In general, if P and Q are S−1R-modules and f : P −→ Q an R-homomor-
phism, then f can be extended to an S−1R-homomorphism. For in this
case for all s ∈ S we have (hs)−1 = h1/s and for all p ∈ P

f (p) = f ((p · 1/s) · s) = f (n · 1/s) · s = hs[ f (n · 1/s)]
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implies
f (p · 1/s) = f (p) · 1/s .

(6) ker(θM) = {m ∈M | ∃ s ∈ S with sm = 0}.
(7) Since the tensor product preserves direct sums, if M is a free R-module,

then S−1M is a free S−1R-module.

P 2.5.
Let R and A be rings, S ⊆ R and T ⊆ A be multiplicatively closed subsets. Let f : R −→ A
be a ring homomorphism such that f (S) ⊆ T. Let M be an R-module, N be an A-module
and ϕ : M −→ N an R-linear mapping.
Then, there exists a unique S−1R-linear mapping ϕ̃ : S−1M −→ T−1N s.t. ϕ̃(m/1) =
ϕ(m)/1, i.e. such that the following diagram commutes:

M

	θM
��

ϕ
// N

θN
��

S−1M
∃!ϕ̃

//___ T−1N

P. The map θN ◦ ϕ is R-linear and for all s ∈ S we have ϕ(s) ∈ T, thus
the homothety produced by s in T−1N is bijective. Therefore, the existence and
uniqueness of the map ϕ̃ follows from definition 2.3. In addition, using a similar
argument as the one used in remark (5) above, we obtain ϕ̃(m ⊗ 1/s) = ϕ(m) ⊗
1/ f (s). �

R 2.6.
We also notice that in case R = A, S = T and f = IdR, then ϕ̃ is the map

ϕ ⊗ Id: M ⊗R S−1R −→ N ⊗R S−1R
m ⊗ 1/s 7−→ ϕ(m) ⊗ 1/s .

It is called the localization of the homomorphismϕ and allows to see the localization
process as a functorial construction.

1.3. Localization of Abelian Groups.

The aim is for us to apply localization theory to homology groups, that is
Z-modules. To set the context, let P ⊆ P be a set of primes and denote by ZP the
localization of the ring Z at the multiplicative set generated by the primes not in
P. This is a subring of Qwhich can be described as

{
a
b
∈ Q | a, b ∈ Z, b , 0 and p - b∀p ∈ P} .

We have the particular cases ZP = Z and Z∅ = Q. The more particular case we
wish to treat is the case P = {p}, the singleton made of a prime, thenZ{p} = Z(p) the
p-local integers.
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For an abelian group G, that is aZ-module, its localization atP is then G⊗ZZP,
that we shall simply denote by G ⊗ZP. For example, the localization G ⊗Z(p) has
the effect of killing all torsion of order relatively prime to p and leaving p-torsion
unchanged. We first show that localization can be seen as a colimit.

P 2.7.
Give an order structure to the multiplicative set S generated by the primes not in P by
means of the divisibility relation. Form a direct system of groups and homomorphisms
indexed by the directed set S by defining, for all s ≤ s′ ∈ S, fss′ : Gs := G −→ G = Gs′ to
be the multiplication by s′/s. Then

lim
−−→
s∈S

Gs � G ⊗ZP .

P. First define a compatible system of group homomorphisms by setting
for all s ∈ S

φs : Gs −→ G ⊗ZP
g 7−→ g ⊗ 1

s .

The universal property of colimits then yields the existence of a group homomor-
phism Φ : lim

−−→s∈S
Gs −→ G ⊗ ZP. First, for the easy case G = Z, the maps φs are

clearly injective since Z is torsion-free, thus Φ is an injection. In addition, any
element z⊗ 1

r ∈ Z⊗ZP is the image of z under φr. Therefore Φ is an isomorphism.
Now, passage to colimits commutes with tensor product, therefore for all abelian
group G, we have

G ⊗ZP � G ⊗ (lim
−−→
s∈S

Zs) � lim
−−→
s∈S

(G ⊗Zs) � lim
−−→
s∈S

Gs .

�

R 2.8.
(1) Since passage to colimits preserves exactness, the P-localization functor

G −→ G ⊗ZP takes exact sequences of abelian groups to exact sequences
of abelian groups. (This can actually be deduced, in a more more rudi-
mentary way, from the fact that ZP is torsion free.)

(2) Let A → B → C → D → E be an exact sequence of abelian groups such

that the groups A,B,D; E areZP-modules. Let us denote by M
⊗ZP
−→M⊗ZP

the natural map previously denoted by θM. Then there is a commutative
diagram with exact rows

A //

⊗ZP

��

B //

⊗ZP

��

C //

⊗ZP

��

D //

⊗ZP

��

E

⊗ZP

��

A ⊗ZP // B ⊗ZP // C ⊗ZP // D ⊗ZP // E ⊗ZP

where the first, second, fourth and fifth vertical arrows are isomorphisms.
Thus by the 5-lemma so is the third, i.e. the third group is also a ZP-
module.
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2. The Mapping Telescope Construction

Before generalizing the algebraic theory of localization to topological spaces,
there is a necessary construction, which is the mapping telescope, that we need to
describe.

M T.
The mapping telescope T of a sequence of topological spaces and continuous maps

X0
� � f0

// X1
� � f1

// X2
� � f2

// . . .

is the union of the mapping cylinders M fn with the copies of Xn in M fn and M fn−1

identified for all n ≥ 1.

X0

Mf0
Mf1

Mf2

X1 X2 X3

In other words T is the quotient space

T :=
∐
n≥0

(Xn × [n,n + 1]) / ∼

under the identifications (xn,n + 1) ∼ ( fn(xn),n + 1) for all n ≥ 1, (xn,n + 1) ∈
Xn × [n,n + 1] and ( fn(xn),n + 1) ∈ Xn+1 × [n + 1,n + 2].

The purpose of this section is to show that the homology of T can, under good
hypotheses, be described as a colimit of the homology groups of each Xn. Thus
for the remainder of the section, we need to assume that the spaces considered are
”nice enough”, that is such that their homology satisfies the additivity axiom and
the weak homotopy axiom. In particular, if the spaces Xi, i ≥ 0 constituting the
mapping telescope are CW-complexes this works well.

T 2.9.
Under the hypotheses above, for all p ≥ 0, there is an isomorphism

Hp(T) � lim
−−→
n∈N

Hp(Xn)

where the colimit is taken with respect to the induced maps {( fi)∗}i≥0.

The proof we give here is the one from [Bre97, Chapter 13] and [May99, Chapter
14]. First notice that, by additivity axiom, we may as well assume that we are
working with path-connected spaces.
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Define by induction

T0 := X0
T1 := M f0
T2 := T1 ∪M f1 =M f0 ∪M f1
. . .

∀ k ∈N Tk := Tk−1 ∪M fk−1

the union of the first k-th mapping cylinders in T, which is itself a finite mapping
telescope. We have the following commutative diagram:

X0 = T0
� � i0 //

f0

	

$$HHHHHHHHHHH T1 =M f0

	r

��

� � i1 // T2 =M f1∪M f0

	

� � i2 //

r

��

T3

	

� � i3 //

r

��

T4

r

��

...

X1
� � //

f1

	

&&LLLLLLLLLLLLLL M f1

	r

��

� � //

r

��

M f2∪M f1

	

� � //

r

��

M f3∪M f2∪M f1

r

��

...

X2

f2

	

&&MMMMMMMMMMMMMM
� � // M f2

	

� � //

r

��

M f3∪M f2

r

��

...

X3
� � //

f3

	

&&MMMMMMMMMMMMMM M f3

r

��

...

X4
...

. . .

where the horizontal maps are the canonical inclusions and the vertical maps the
obvious retractions of the mapping cylinders. Each r being a homotopy equiv-
alence, it follows that the maps rn : Tn −→ Xn induce an integral homology
isomorphism

Hq(rn) : Hq(Tn) �
−→ Hq(Xn)

for all q,n ≥ 0. Recall the following general result for colimits:

P 2.10.
Let (Gi, fi j)J and (Hi, hi j)J be two direct systems of groups with colimits (lim

−−→i∈J
Gi, Ii) and

(lim
−−→i∈J

Hi,Li) respectively. If Gi � Hi through a group isomorphism ϕi for all i ∈ J and
the diagram

Hi

	

hi j
// H j

Gi fi j

//

ϕi �

OO

G j

ϕ j�

OO
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commutes for all i ≤ j ∈ J, then there is a group isomorphism

lim
−−→
i∈J

Gi � lim
−−→
i∈J

Hi .

P. Applying the universal property of colimits yields the desired isomor-
phism.

�

It follows from the observations above and from this proposition that

lim
−−→
i≥0

Hq(Xi) � lim
−−→
i≥0

Hq(Ti) .

More accurately, the colimit of the direct system (Hq(Xi), ( fi)∗)i≥0 is isomorphic to
the colimit of the direct system (Hq(Ti), (ii)∗)i≥0.
Now T is seen as the union of the expanding sequence of subspaces Ti, i ≥ 0 and
inclusions ii. Therefore, in order to complete the proof of theorem 2.9, it suffices to
show the following result.

P 2.11.
Let Y be the union of an expanding sequence of subspaces made of inclusions

Y0
� � i0 // Y1

� � i1 // Y2
� � i2 // · · · .

Then for all integer p ≥ 0
Hp(Y) � lim

−−→
i∈N

Hp(Yi)

P. Let T̃ be the mapping telescope of the sequence of maps

Y0
� � i0 // Y1

� � i1 // Y2
� � i2 // · · ·

that is
T̃ :=

∐
n≥0

(Yn × [n,n + 1])/ ∼

under the identifications (yn,n) ∼ (in(yn),n + 1). Let Z0 := Y0 and for all k ≥ 1 let
Zk := Zk−1 ∪Mik−1 be the union of the first k-th mapping cylinders in T̃.
(I) We first show that H∗(Y) � H∗(T̃). Using again the retractions of the mapping
cylinders we obtain composite retractions

Zk

	

� � //

rk

��

Zk+1

rk+1

��

Yk
� � ik // Yk+1

such that the diagram commutes. Since the rk’s are homotopy equivalences and
since homotopy groups commute with colimits (see for example [May99]) we
obtain a weak equivalence

r : T̃ −→ Y
which then induces an isomorphism on homology.
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(II) It remains to show that Hq(T̃) � lim
−−→i≥1

Hq(Yi) for all q. The rough idea of the

proof is to split T̃ into a union of two spaces A and B such that A ' qi≥0Y2i,
B ' qi≥0Y2i+1 and A∩B ' qi≥0Yi so that we can apply the Mayer-Vietoris sequence
to the excisive triad (T̃; A,B). Splitting the mapping cylinders Min into thirds and
taking disjoint unions of well-chosen pieces does the trick. For all n ≥ 1 let

An := {(y, t) ∈ T | 2(n − 1) − 2
3 < t < 2(n − 1) + 2

3 } ;

Bn := {(y, t) ∈ T | 2n − 1 − 2
3 < t < 2n − 1

3 } .

Mi0 Mi1 Mi2

Y0 Y1 Y2 Y3

A1 A2

B1 B2

The subspaces An’s are disjoint open sets and each An is homotopy equivalent to
Y2(n−1). Similarly, the Bn’s are disjoint open sets and each Bn is homotopy equivalent
to Y2n−1:

An ' Y2(n−1) and Bn ' Y2n−1

Therefore

A :=
∐
n≥1

An '
∐
n≥1

Y2(n−1) and B :=
∐
n≥1

Bn '
∐
n≥1

Y2n−1 .

The intersection is
A ∩ B = A1 ∩ B1 q B1 ∩ A2 q A2 ∩ B2 q . . .

' Y0 q Y1 q Y2 q . . .

and by additivity axiom there is an isomorphism Hq(A ∩ B) �
⊕

i≥0 Hq(Yi) for all
q ≥ 0. So we can describe the homology groups of A ∩ B as:

Hq(A ∩ B) = {(ui)i≥0 |ui ∈ Hq(Yi),ui = 0 for large i’s}

And similarly:

Hq(A) = {(ui)i≥0 |ui = 0 for all odd i’s,u2 j ∈ Hq(Y2 j),u2 j = 0 for large j’s}

Hq(B) = {(ui)i≥0 |ui = 0 for all even i’s,u2 j+1 ∈ Hq(Y2 j+1),u2 j+1 = 0 for large j’s} .

Note that the canonical inclusions A ∩ B ı
−→ A and A ∩ B

j
−→ B have restrictions

Id : Y2i −→ Y2i and ı2i+1 : Y2i+1 −→ Y2i+2

and
i2i : Y2i −→ Y2i+1 and Id : Y2i+1 −→ Y2i+1
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respectively. Hence the induced maps in homology are:

ı∗: Hq(A ∩ B) −→ Hq(A)
(ui)i≥0 7−→ (u0, 0,u2 + (i1)∗(u1), 0,u4 + (i3)∗(u3), . . .)

and

j∗: Hq(A ∩ B) −→ Hq(A)
(ui)i≥0 7−→ (0,u1 + (i0)∗(u0), 0,u3 + (i2)∗(u2), 0, . . .)

Then the map

φ := ı∗ ⊕ (− j∗): Hq(A ∩ B) −→ Hq(A)
(ui)i≥0 7−→ (u0,−u1 − (i0)∗(u0),u2 + (i1)∗(u1),−u3 − (i2)∗(u2), . . .)

is one of the map in the Mayer-Vietoris sequence. (Well, the less common version
of the Mayer-Vietoris sequence of the form

. . . −→ Hq(U ∩ V)
ı∗⊕(− j∗)
−→ Hq(V) ⊕Hq(U)

k∗+ j∗
−→ Hq(U ∪ V) −→ . . . .)

We easily see by induction that φ is injective: φ((ui)i≥0) = 0 implies that u0 = 0,
thus (i0)∗(u0) = 0 and 0 = −u1 − (i0)∗(u0) = −u1, hence u1 = 0 and so on. Therefore
the Mayer-Vietoris sequence has the form:

. . . // Hq(A ∩ B) � � φ
// Hq(A) ⊕Hq(B)

β
// // Hq(A ∪ B = T̃) // . . .

where φ is injective and thus β surjective. It follows that Hq(A ∪ B) = Hq(T̃) �
Cokerφ. In addition, Im(φ) is generated by the elements of the form

φ(0, 0, . . . ,u j, 0, 0, . . .) = (0, 0, . . . ,±u j,±(i j)∗(u j), 0, 0, . . .) .

Eventually, since these relations are exactly the relations defining the colimit of the
direct system (Hq(Yi), (ii)∗)i≥0, we obtain the desired result:

lim
−−→
i∈N

Hq(Yi) � Hq(T̃) � Hq(Y) .

�

3. Topological Localizations

The idea of topological localization is to topologically realize the algebraic
localization of an abelian group G −→ G ⊗ ZP, when G is taken to be homology
and homotopy groups: for a given space X we are looking for a space XP together
with a map X −→ XP such that the induced maps in homotopy and homology are
just the algebraic localizations.
The reference for this section is essentially the book by D. P. Sullivan [Sul05],
in which he builds his theory for spaces that he calls ”simple spaces”, that is
topological spaces which are connected, have the homotopy type of a CW-complex,
as well as an abelian fundamental group which acts trivially on the homotopy and
homology of the universal covering space.
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We present here only the basics of this theory, which we shall need to apply it to
the case of ΣCP∞ treated further. We present the localization construction for CW-
complexes. In [Sul05], where details and further developments are to be found,
Sullivan also has a construction for Postnikov towers.

D 2.12.
(1) A topological space XP is a P-local space if and only if π∗(XP) is P-local in

the algebraic sense, that is iff π∗(XP) is a ZP-module.
(2) A localization of a topological space X is a pair (XP, `), where XP is a P-

local spaces and ` is a continuous map, satisfying the following universal
property: for all P-local space Y and for all f ∈ Top(X; Y), there exist a
unique map fP ∈ Top(XP; Y) such that the following diagramm commutes:

X

`

��

f
// Y

XP

∃! fP

>>}}}}}}}}

We start with a useful result that reformulates the definition above. In partic-
ular it will enables us to consider a space X as P-local if and only if its reduced
homology H̃∗(X) is a ZP-module.

T 2.13.
Let X `

−→ X′ be a continuous map between simple topological spaces. The following are
equivalent:

(1) The map ` is a localization.
(2) The map ` localizes integral reduced homology in the algebraic sense. In other

words, the diagram

H̃∗(X)

⊗ZP
��

`∗ // H̃∗(X′)

H̃∗(X) ⊗ZP

	

�

99ssssssssss

commutes, where the diagonal arrow is the one provided by definition 2.3.
(3) The map ` localizes homotopy in the algebraic sense. In other words, the diagram

π∗(X)

⊗ZP

��

`∗ // π∗(X′)

π∗(X) ⊗ZP

	

�

88rrrrrrrrrr

commutes, for ∗ ≥ 1, where the diagonal arrow is the one provided by definition
2.3.

P. See [Sul05], end of chapter 2. �
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As a result, taking ` = Id we get that a ”simple” space X is its own localization
if and only if it has local integral reduced homology if and only if it has local
homotopy.
Another useful result about localizations of suspensions is the following.

L 2.14.
If f : A −→ AP localizes homology, so does Σ f : ΣA −→ ΣAP.

P. Using the suspension isomorphism and the fact that f a localizes ho-
mology, we get the commutative diagram

H̃q(ΣA)
(Σ f )∗

//

�∂
��

H̃q(ΣAP)

� ∂
��

H̃q−1(A)
f∗

//

⊗ZP &&MMMMMMMMMM
H̃q−1(AP)

�
xxqqqqqqqqqq

H̃q−1(A) ⊗ZP

� ∂−1
⊗Id

��

H̃q(ΣA) ⊗ZP .

Since the map going down from H̃q(ΣA) to H̃q(ΣA)⊗ZP is the algebraic localization
⊗ZP, the isomorphism going up from H̃q(ΣA)⊗ZP to H̃q(ΣAP) is the unique homo-
morphism provided by the universal property 2.3, thusΣ f localizes homology. �

3.1. Localization of a continuous map and induced maps in homology.

Let f : X −→ Y be a continuous map between simple topological spaces

and let X loc
−→ XP and Y loc

−→ YP be localization of X and Y respectively. The
universal property of definition 2.12 yields the existence of a unique continuous
map fP : XP −→ YP making the diagram

X

	

f
//

loc
��

Y

loc
��

XP fP
// YP

commutative. We shall say that fP is the localization of the map f . Passing to
induced maps in homology we get the following commutative diagram:
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H̃∗(X)

	

f∗
//

loc∗

��

⊗ZP

##

H̃∗(Y)

loc∗

��

⊗ZP

{{

H̃∗(XP)

	

	
fP∗

// H̃∗(YP) 	

H̃∗(X) ⊗ZP f∗⊗Id
//

� ψX

OO

H̃∗(Y) ⊗ZP

�ψY

OO

The upper square commutes because the previous diagram does. The two triangles
commute by virtue of theorem 2.13. The map at the bottom is f∗⊗Id given by remark
2.6 and that makes the big exterior square commute. And the commutativity of
the lower square is easily computed:

ψ−1
Y fP∗ψX(x ⊗

1
z

) = ψ−1
Y fP∗(loc∗(x) ·

1
z

) = ψ−1
Y ( fP∗loc∗(x) ·

1
z

)

= ψ−1
Y (loc∗ f∗(x) ·

1
z

) = ψ−1
Y (loc∗( f∗(x)) ·

1
z

)

= f∗(x) ⊗
1
z

for all element x ⊗ 1
z ∈ H̃∗(X) ⊗ZP.

Furthermore, we see that P-localization is a functorial construction. For let
f : X −→ Y and h : Y −→ Z be continous maps between simple topological

spaces and let X loc
−→ XP, Y loc

−→ YP and Z loc
−→ ZP be P-localization, then there are

commutative diagrams

X

	

IdX //

loc
��

X

loc
��

XP (idX)P
// XP

X

	

f
//

loc
��

Y

	loc
��

h // Z

loc
��

XP fP
// YP hP

// ZP

so that, by uniqueness, (idX)P = IdXP and (h ◦ f )P = hP ◦ fP.
Moreover, in [Hat04] Hatcher also proves, by means of obstruction theory, that

f ' g implies fP ' gP. We use this property to show that a coproduct on a simple
space induces a p-local coproduct.

Let (X, θ) be a simple co-H-space and X loc
−→ XP aP-localization of X. The universal

property of localizations yields the existence of a unique map θP : XP −→ XP∨XP
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that makes the following diagram commute:

X
θ //

loc
��

X ∨ X
loc∨loc // XP ∨ XP

XP
θ(p)

55jjjjjjjjjjjjjjjjj

The space XP ∨ XP is clearly P-local since

H̃∗(XP ∨ XP) � H̃∗(XP) ⊕ H̃(XP) � (H̃∗(X) ⊗ZP) ⊕ (H̃∗(X) ⊗ZP)

� (H̃∗(X) ⊕ H̃∗(X)) ⊗ZP � H̃∗(X ∨ X) ⊗ZP .

which is a ZP-module. The diagram

X
θ //

loc
��

X ∨ X

loc∨loc
��

q1
// X

loc
��

XP θP
// XP ∨ XP q1

// XP

commutes as well and by uniqueness we obtain q1θP = (q1θ)P. Therefore it follows
from the property above that q1θP ' IdXP = IdXP and similarly q2θP ' IdXP , which
means that θP is a coproduct.

3.2. Localization of CW-complexes.

In this work, the spaces we wish to localize are CW-complexes (CP∞ andΣCP∞

in particular), therefore we will restrict this description of local spaces to showing
the existence of local CW-complexes. The first step to achieve this aim is the
localization of the cells, that is the localization of the n-dimensional spheres.

P 2.15.
For all i > 0, there exist a P-local i-sphere Si

P
.

P. (From [Sul05])
The P-local i-sphere Si

P
is realised through the mapping telescope construction.

Let {`n}n≥1 be a cofinal sequence in the multiplicative subset of Z generated by
P\P. (See remark below for a concrete example). For all n there exist a continuous
map f (`n) : Si

−→ Si with degree `n. We see that the space Si
P

defined to be the
infinite mapping telescope obtained from the sequence

Si
f (`1)

// Si
f (`2)

// Si
f (`3)

// . . .

together with the canonical inclusion ` : Si ↪→ Si
P

as the ”left-hand” i-sphere in the
mapping telescope is a localization of Si .
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Since the colimits of the systems

Z
`1 // Z

`2 // Z
`3 // . . .

and

0
`1 // 0

`2 // 0
`3 // . . .

are, respectively, the groups ZP and 0, we get

H̃q(Si
P

) =

lim
−−→`n

Z = ZP � Z ⊗ZP if q = i

lim
−−→`n

0 = 0 � 0 ⊗ZP otherwise.

Since the homology of Si is given byZ in degree i and 0 elsewhere, it follows from
theorem 2.13 that ` is a localization, as it localizes homology. �

R 2.16.
Later we shall use only the case P = {p}, the singleton made of a prime. In this
very case we can choose `n to be the product of the first n primes excluding p. The
sequence {`n}n≥1 is then obviously cofinal.

We can now localize CW-complexes.

D 2.17.
A P-local CW-complex is a topological space built inductively from a point or a
P-local 1-sphere by attaching cones over the local sphere using maps of the local
spheres Si

P
into the lower local-skeletons.

Since S0 is not connected, there is in this theory no local 0-sphere and thus the
definition above gives no local 1-cell. Both this observation and the definition lead
to the following theorem of existence of local CW-complexes.

T 2.18.
Let X be a CW-complex with one 0-cell and no 1-cell. Then there exist a local CW-complex
XP and a cellular map ` : X −→ XP such that ` induces a bijection between the cells of X
and the local cells of XP. Furthermore, ` localizes homology.

The proof is the one from [Sul05]. We only try to explain it with more details.

P. The first step is to show that the theorem holds for finite CW-complexes.
This proof is done by induction on the dimension and makes use of theorem 2.13
by assuming that a map is localization if and only if it localizes homology.
First, if X is a 2-complex with no one-cell and 0-skeleton equal to a point, then
X =

∨
S2 is just a wedge of 2-spheres and the map

∨
S2
−→

∨
S2
P

, which is the
wedge of the localizations of S2 described in the proof of proposition 2.15, satisfies,
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by definition, the one-to-one correspondence condition and also localizes integral
reduced homology since

H̃∗(
∨
S2
P

) �
⊕

H̃∗(S2
P

) �
⊕

(H̃∗(S2) ⊗ZP)

� (
⊕

H̃∗(S2)) ⊗ZP � H̃∗(
∨
S2) ⊗ZP .

For the general step, assume that the theorem is true for all complexes of dimension
less or equal to n − 1 (n ≥ 3). Let X be an n-dimensional CW-complex with one
0-cell and no 1-cell and let f :

∨
Sn−1

−→ X(n−1) be the map which attaches the
n-cells to the (n− 1)-skeleton in X, and let `n−1 : X(n−1)

−→ X(n−1)
P

be the localization
of X(n−1) given by the induction hypothesis. The universal property of definition
2.12 yields the commutative diagram∨

Sn−1

	

f
//

� _

l

��

X(n−1)

`n−1

��∨
Sn−1
P fP

// X(n−1)
P

.

To recover X, we use the cofiber sequence associated with the map f :∨
Sn−1

f
// X(n−1) i // C f

j
// Ci ' Σ(

∨
Sn−1)

Σ f
// Σ(X(n−1)) // · · ·

where C f = X(n−1)
∪ f C(

∨
Sn−1) = X(n) = X, and Σ(

∨
Sn−1) '

∨
(ΣSn−1) '

∨
Sn.

Similarly, we can build the cofiber sequence associated to the map fP:∨
Sn−1
P

fP
// X(n−1)
P

iP // C fP

jP
// Σ(

∨
Sn−1
P

)
Σ fP

// Σ(X(n−1)
P

) // · · ·

where Σ(
∨
Sn−1
P

) '
∨
Sn
P

. Then let XP be the cofiber of fP, C( fP) = X(n−1)
P

∪ fP

C(
∨
Sn−1
P

) and define a map ` : X −→ XP to be the map

`n−1 ∪ c(l) : X(n−1)
∪ f C(

∨
Sn−1) // X(n−1)

P
∪ fP C(

∨
Sn−1
P

)

so that the diagram∨
Sn−1

f
//

� _

l

��

X(n−1)

`n−1

��

i // X

`

��

j
//
∨
Sn
� _

��

Σ f
// Σ(X(n−1))

Σ`n−1

��∨
Sn−1
P fP

// X(n−1)
P iP

// XP jP
//
∨
Sn
P Σ fP

// Σ(X(n−1)
P

)

commutes. For the last square apply lemma 2.14 which ensures that Σ`n−1 is a
localization and note that by uniqueness Σ fP = (Σ f )P.

By theorem 2.13 it suffices to show that ` localizes homology. But by exactness
of the cofiber sequence, since the whole diagram commutes and since all the vertical
maps, but `, localize homology, passing to homology we can apply remark 2.8 (2)
and obtain the desired result. Moreover, since `n−1 sets a bijection between the cells
and the local cells, so does ` by construction. This completes the proof for finite
CW-complexes. For infinite CW-complexes, let XP =

⋃
∞

n=0 X(n).
�



CHAPTER 3

Algebraic and Topological Tools

The present chapter is a toolbox containing useful mathematical objects nec-
essary to carry out the proofs concerning the splitting of ΣCP∞(p) and the co-H-
structures on the spaces K1 to Kp−1. Each section introduces another object and
they can easily be read independently. The aim is not to start to develop these
objects but to focus on some specific properties we shall need in the next chapter.

1. Hopf Algebras

Under a few good hypotheses on topological spaces, their homology and
cohomology can each be endowed with Hopf algebra structures, which are dual
to each other. To study these structures, it shall be easier to take a step back in
the general theory of Hopf algebras. We begin by reviewing the basic definitions
of algebras and coalgebras. The main purpose of the section is to develop some
properties of the primitive, indecomposable elements and dual Hopf algebras.The
source for the cited results is the classical reference for Hopf algebras, the article
[MM65] by J.W. Milnor and J.C. Moore.
To set up notationsK shall always denote a commutative ring, the tensor products
shall be balanced overK, the gradings shall be taken over the non-negative integers
and in a graded module A• the notation |a| = m shall mean that a ∈ Am, i.e. denote
the degree of a. MoreverK shall be considered as a gradedK-module concentrated
in degree 0.

D 3.1.
(1) A K-algebra is a graded K-module A endowed with two morphisms of

gradedK-modules ϕ : A⊗A −→ A and η : K −→ A, called the multiplica-
tion and the unit of the algebra, and making the diagrams

A ⊗ A ⊗ A

ϕ⊗IdA

��

IdA ⊗ϕ
// A ⊗ A

ϕ

��

A ⊗ A ϕ
// A

K ⊗ A
η⊗IdA

//

�
$$JJJJJJJJJJ A ⊗ A

ϕ

��

A ⊗K
IdA ⊗η
oo

�
zztttttttttt

A

37
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commute. The commutativity of the first diagram is called associativity.
Moreover, A is called (graded) commutative if ϕT = ϕ, T being the twisting
morphism defined by T(a ⊗ a′) = (−1)|a||a

′
|a′ ⊗ a. A is called connected if

η maps K isomorphically to A0. A morphism of algebras f : A −→ B is
a morphism of graded K-modules that preserves the multiplication and
the unit, that is such that fϕA = ϕB( f ⊗ f ) and fηA = ηB.

(2) A K-coalgebra is a graded K-module C endowed with two morphisms
of graded K-modules ∆ : C −→ C ⊗ C and ε : C −→ K, called the
comultiplication and the counit of the coalgebra, and making the diagrams

C

∆

��

∆ // C ⊗ C

1⊗∆
��

C ⊗ C
∆⊗1

// C ⊗ C ⊗ C

K ⊗ C C ⊗ C
ε⊗IdCoo

IdC ⊗ε // C ⊗K

C
�

ddIIIIIIIIII �

::uuuuuuuuuu
∆

OO

commute. The commutativity of the first diagram is called coassociativity.
Moreover, C is called cocommutative if T∆ = ∆. C is called connected if ε
maps C0 isomorphically to K. A morphism of coalgebras f : C −→ D is a
morphism of graded K-modules that preserves the comultiplication and
the counit, that is such that ( f ⊗ f )∆C = ∆D f and εC = εD f .

D 3.2.
A Hopf algebra over K is a graded K-module A endowed with graded K-module
morphisms

ϕ : A ⊗ A −→ A η : K −→ A
∆ : A −→ A ⊗ A ε : A −→ K

such that

(1) (A, ϕ, η) is aK-algebra with augmentation ε;
(2) (A,∆, ε) is aK-coalgebra with augmentation η;
(3) ∆ is a morphism of algebras or equivalentlyϕ is a morphism of coalgebras.

In case, the multiplication ϕ and the comultiplication ∆ are not associative and
coassociative, we shall call A a quasi-Hopf algebra.

1.1. Primitive and Indecomposable Elements.

P-D 3.3.
Let (A, ϕ,∆, η, ε) be a Hopf algebra.

(1) In the algebra structure (A, ϕ, η) augmented by ε we denote by IA the
kernel of ε. It is called the augmentation ideal. We have (IA)n = An for
all n ≥ 1, (IA)0 = ker ε0 and εη = IdK, so that A � K ⊕ IA (as a graded
K-module).
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(2) In the coalgebra structure (A,∆, ε) augmented by η we denote by JA the
cokernel of η. We have (JA)n = An for all n ≥ 1, (JA)0 = Coker η0 and
A � K ⊕ JA (as a gradedK-module).

In fact, since εη = IdK, the composite ker ε i
↪→ A

p
� Coker η is an isomorphism,

so that we can identify IA = JA =: A.

P E.
For a Hopf algebra A we say that an element a ∈ JA is primitive if and only if it lies
in the kernel of the composite map

A
i // A

∆ // A ⊗ A
p⊗p

// A ⊗ A .

We denote by P(A) this kernel. When A is connected, JA is the positive part
of A. Moreover the map ∆ is a morphism of algebras, thus respects degrees.
Thus if a is in the kernel of the composite map above, then ∆(a) has the form
ai ⊗ 1 + 1 ⊗ a j with ai, a j ∈ A|a|. Then using the definition of the counit ε, we get
a ⊗ 1 = (ε ⊗ IdA)∆(a) = ai ⊗ 1 and 1 ⊗ a = (IdA ⊗ε)∆(a) = 1 ⊗ a j hence ai = a = a j.
Therefore a is primitive if and only if

∆(a) = a ⊗ 1 + 1 ⊗ a .

D 3.4.
A Hopf algebra A is said to be primitively generated when the subalgebra generated
by the set P(A) is equal to A itself.

I E.
For an augmented algebra A we say that an element a ∈ IA is decomposable if and
only if it lies in the image of the composite map

A ⊗ A
i⊗i // A ⊗ A

ϕ
// A

p
// A .

When A is a connected, we get by a similar calculation as above that an element
a ∈ IA is decomposable if and only if it has the form a =

∑
xiyi with xi ∈ Ami , yi ∈

A|a|−mi , 0 < mi < |a|.
By abuse of language, we shall call indecomposable the elements of the quotient
module IA/ϕ(IA ⊗ IA) =: Q(A).

Note that the natural map IA −→ Q(A) restricts to define a map P(A) −→ Q(A),
which is natural with respect to morphisms of Hopf algebras.

1.2. Duality.

The dual of a gradedK-module A is the gradedK-module A∗ such that (A∗)n =
Hom(An,K) and the dual of a morphism of graded K-modules f : A −→ B is the
graded morphism f ∗ : B∗ −→ A∗ such that ( f ∗)n = Hom( fn,K).
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A gradedK-module A is said to be of finite type if each An is finitely generated as a
K-module. Similarly it is projective, if each An is.

Let A and B be graded K-modules which are projective of finite type. Then,
from linear algebra, we know the following properties:

(1) A and its bidual A∗∗ are isomorphic through the morphism λ : A −→ A∗∗

defined by λ(x)(a∗) := a∗(x) for all x ∈ An and a ∈ A∗n, that is A and A∗ are
dual to each other.

(2) The morphism α : A∗ ⊗ B∗ −→ (A ⊗ B)∗ defined for all x ∈ An, y ∈ Am, a∗ ∈
A∗n, b∗ ∈ A∗m by α(a∗ ⊗ b∗)(x ⊗ y) := a∗(x)b∗(y) is an isomorphism.

(3) There are canonical isomorphisms µ : K −→ K∗ defined by 1 7−→ IdK and
its inverse µ−1 : K∗ −→ K defined by f 7−→ f (1).

The next proposition describes the links between algebras, coalgebras and their
duals.

P 3.5.
Let A be a gradedK-module which is projective of finite type. Then

(1) (A, ϕ, η) is an algebra if and only if (A∗, α−1ϕ∗, µ−1η∗) is a coalgebra. In particu-
lar,ϕ : A −→ A⊗A is a multiplication on A if and only ifα−1ϕ∗ : A∗⊗A∗ −→ A∗

is a comultiplication on A∗ and η : K −→ A is a unit for A if and only if
µ−1η∗ : A∗ −→ K∗ = K is a counit for A∗;

(2) the morphism ε : A −→ K is an augmentation for the algebra (A, ϕ, η) if and
only if ε∗µ : K −→ A∗ is an augmentation for the coalgebra (A∗, α−1ϕ∗, µ−1η∗);

(3) the algebra (A, ϕ, η) is commutative, respectively associative, if and only if the
coalgebra (A∗, α−1ϕ∗, µ−1η∗) is cocommutative, respectively coassociative;

(3) if (A, ϕ,∆, η, ε) is a Hopf algebra, then (A,∆∗α, α−1ϕ∗, ε∗µ, µ−1η∗) is a Hopf
algebra, called the dual Hopf algebra.

P. The proof of this proposition is omitted in [MM65] and we leave it out
as well1. �

Our ultimate aim, in this description of Hopf algebras, is to study the behaviour
of pth powers in the dual of a primitively generated Hopf algebra of finite type
over the field Fp. It will be achieved by means of the following proposition from
[MM65, proposition 4.20]. Besides, as it constitutes a central argument for the
proof of theorem 4.8, we recall the main ideas of proof.

P 3.6.
Let A be a connected quasi-Hopf algebra over the field Fp. Then the natural morphism
P(A) −→ Q(A) is injective if and only if the multiplication ϕ is commutative, associative
and the pth powers are zero.

1EPFL readers can nonetheless refer to a previous students joint work [DKKL06, Part III, Chapter
12 and 13], in which most of these calculations are carried through.
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S  . To prove commutativity, consider the graded commutator
[a, b] := ab − (−1)|a||b|ba and notice that if a and b are primitive, so is [a, b] and
has image zero in Q(A). Then, proceeding by induction we obtain that the map
[ , ] : A ⊗ A −→ A is zero. The same procedure applies to the morphism Ψ :
A ⊗ A ⊗ A −→ A : a ⊗ b ⊗ c 7−→ (ab)c − a(bc) to show associativity. Similarly, if
a ∈ P(A), then ap

∈ P(A) as well and has image zero in Q(A), thus by injectivity
ap = 0. Then by induction, if (Am)p = 0 for m ∈Nn−1, then (An)p

⊂ P(A)pn and (An)p

has image zero in Q(A)pn, that is (An)p = 0.
The converse is proved by induction on the number of generators and is easily
checked for one generator x ∈ An. If p = 2 or p,n are odd, xp = 0 implies that
P(A) = I(A) = Q(A). If p is odd and n even, then Aq = 0 for q , kn, k = 0, . . . , p−1 and
∆(xk) =

∑k
j=0

(k
j
)
x j
⊗ xk− j, then as the characteristic is p, we have P(A)n = An = Q(A)n

and P(A)q = 0 = Q(A)q, whence the injection. �

In order to know what happens to the primitives and indecomposable when dual-
izing, we first need a technical lemma.

L 3.7.
Let (A, ϕ,∆, ε, η) be a primitively generated Hopf algebra which is free of finite type and let
A∗ be its dual Hopf algebra. Then

(1) the dual of a generator is indecomposable in A∗;
(2) the natural morphism P(A∗) −→ Q(A∗) is injective.

P.
(1) Consider the evaluation map

< ,>: A∗ ⊗ A −→ K
x∗ ⊗ a 7−→ < x∗, a >= x∗(a) .

Let x be a primitive generator of A. Then < x∗, x >= 1 and ∆(x) = x⊗1+1⊗x. Now
suppose, ab absurdo, that x∗ = a∗ ·b∗ with a∗, b∗ ∈ A∗ and ”·” being the multiplication
in A∗, that is the map ∆∗α. Then

1 =< x∗, x >=< a∗ · b∗, x >=<∆∗α(a∗ ⊗ b∗), x >=<α(a∗ ⊗ b∗) ◦ ∆, x >
=< α(a∗ ⊗ b∗),∆(x) >=< α(a∗ ⊗ b∗), x ⊗ 1 + 1 ⊗ x >
=< α(a∗ ⊗ b∗), x ⊗ 1 > + < α(a∗ ⊗ b∗), 1 ⊗ x >
=< a∗, x >< b∗, 1 > + < a∗, 1 >< b∗, x > .

But, A being connected, either a∗ or b∗ has to be in A∗0 � K, otherwise the last term
of the equality is 0 . Thus x∗ couldn’t be decomposable.
(2) In other words, (1) says that there is a natural injection Q(A)∗ ↪→ Q(A∗). It
remains to see that P(A∗) injects in Q(A)∗, which doesn’t require the primitive gen-
eration hypothesis and is easily showed as follows. The evaluation map introduced
above restricts to < ,>: P(A∗) ⊗ IA −→ K. Let x∗ ∈ P(A∗) and a, b ∈ IA, then

< x∗, ϕ(a ⊗ b) > =< x∗ ◦ ϕ, a ⊗ b >=< αα−1ϕ∗(x∗), a ⊗ b >
=< α(x∗ ⊗ IdK + IdK ⊗x∗), a ⊗ b >
=< x∗, a >< IdK, b > + < IdK, a >< x∗, b >= 0
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since a, b ∈ IA = A>0. Thus we have a well-defined induced evaluation map

< ,>: P(A∗) ⊗Q(A) −→ K
x∗ ⊗ a 7−→ < x∗, a >= x∗(a) .

Then the map

Φ: P(A∗) −→ Q(A)∗

x∗ 7−→ < x∗,− >

shall furnish us with the required monomorphism.
Let x∗ ∈ P(A∗). If < x∗, a >= 0 for all a ∈ Q(A) then < x∗, a >= 0 for all a ∈ IA. But A
being connected we have |x∗| > 0, thus x∗ = 0, which proves that Φ is injective.
Thus we have P(A∗) ↪→ Q(A)∗ ↪→ Q(A∗).

�

R 3.8.
(1) First notice that the connectedness hypothesis is not fancy and decorative,

but is crucial.
(2) The map Φ is actually an isomorphism. A∗ being of finite type, to see

that it is surjective, one can, for example show, that if < x∗, a >= 0 for all
x∗ ∈ P(A∗) then a = 0 necessarily. But this is in fact a more general result
stated in [MM65, theorem 3.10], and proved more conceptually, which
says that: if A is a connected Hopf algebra which is free of finite type and A∗

is its dual Hopf algebra, then the primitive and the indecomposable elements are
dual to each other: P(A∗) = Q(A)∗ and P(A∗)∗ = Q(A).

The lemma allows us to restate, to some extent, proposition 3.6 of Milnor and
Moore in terms of the dual Hopf algebra.

C 3.9.
Let A be a connected Hopf algebra of finite type over the field Fp and let A∗ be its dual Hopf
algebra. Then A is primitively generated, as an algebra, if and only if A∗ is commutative
and has only trivial pth powers.

P. Assume that A is primitively generated, then the lemma and proposi-
tion 3.7 yield the result.
Conversely, if A∗ is commutative and has only trivial pth powers, then proposition
3.7 implies that P(A∗) ↪→ Q(A∗). Thus, by remark 3.8 (2), going to the dual gives an
injection Q(A) ↪→ P(A), i.e. A is primitively generated as an algebra. �

Furthermore, if the Hopf algebra is cocommutative, its dual is commutative and
we obtain a nice criterion for pth powers to be trivial in the dual:

C 3.10.
Let A be a connected, cocomutative Hopf algebra of finite type over the field Fp . Then A is
primitively generated, as an algebra, if and only if all pth powers vanish in A∗ .
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1.3. Hopf algebras in Homology and Cohomology.

Let us look at cohomology first. LetK be a commutative ring, then H∗(X;K) is
a graded commutative ring under cup product, but it may as well be regarded as
an algebra overK rather than merely a ring. Now assume that (X, µ) is an H-space
satisfying:

(1) X is path-connected, so that H0(X;K) � K;
(2) Hq(X,K) is a freeK-module of finite type for all q, so that the cross product

γ : H∗(X;K) ⊗H∗(X;K) −→ H∗(X × X;K) is an isomophism.

In that case, the properties of the product µ : X×X −→ X allows to endow H∗(X;K)
with a comultiplication ∆∗ which is defined to be the graded morphism

∆∗ : H∗(X;K)
µ∗

// H∗(X × X;K)
γ−1

�
// H∗(X;K) ⊗H∗(X;K) .

Then H∗(X,K) together with cup product and ∆∗ becomes a connected, associative,
commutative quasi-Hopf algebra of finite type; the counit being the graded mor-
phism ε : H∗(X;K) −→ H∗(∗;K) � K induced by the inclusion ∗ ↪→ X. To be more
accurate, the coassociativity condition is not automatic, but it is satisfied when the
product µ is homotopy associative. Proofs of these facts can be found in [Hat02,
Chapter 3] or in [Rot88, Chapter 12].

Let us now look at homology. Still assume that (X, µ) is an H-space satisfying
conditions (1) and such that Hq(X,K) is a free K-module of finite type for all q, so
that the homology cross product is an isomorphism. Then its homology groups also
have a multiplication operationϕ∗, called the Pontrijagin product, it is defined by the
composition of the cross product with the induced homomorphism in homology
by µ:

ϕ∗ : H∗(X;K) ⊗H∗(X;K)
� // H∗(X × X;K)

µ∗
// H∗(X;K)

This multiplication happens to be associative when the product µ is homotopy
associative. Similarly as cup products in cohomology can be obtained from the
diagonal map ∆ : X −→ X × X, there is a comultiplication in homology, which
by abuse of notation we denote by ∆∗ and which is induced by the diagonal and
defined to be the compostion:

H∗(X;K)
∆∗ // H∗(X × X;K)

� // H∗(X,K) ⊗H∗(X;K) .

Then H∗(X,K) together with the morphisms ϕ∗ and ∆∗ becomes a connected, coas-
sociative Hopf algebra of finite type, not necessarily associative though.

Additionally, since homology is assumed to be free of finite type, the universal
coefficient theorem yields an isomorphism Hq(X;K) � HomK(Hq(X;K);K), that is
H∗(X;K) and H∗(X;K) are dual graded K-modules. In fact, the cup product and
∆∗, as well as the Pontrijagin product and ∆∗ are dual to each other and H∗(X;K)
and H∗(X;K) are dual as Hopf algebras.
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We finally notice that, in particular, when X is an H-group, as for instance a
loop-space, the associated product µ is homotopy associative, so that H∗(X;K) and
H∗(X;K) are dual as Hopf algebras, which are associative and coassociative.

2. Cohomology Suspension

Let (X, ∗) be pointed topological space and let us consider the pathspace fi-
bration ΩX −→ PX

p
−→ X where the map p is the evaluation in 1, i.e. explicitly

p : u ∈ PX = X[0,1]
7−→ u(1). It is well-known that he pathspace PX is contractible.

(A proof of this fact can be found, for example, in [Whi78, Chapter 2].)
In cohomology there is a homomorphism of particular interest, that connects

the cohomology of the loop spaceΩX to the cohomology of the space X itself. It is
constructed as follows: first, the long exact sequence of the pair (PX,ΩX)

· · ·→Hq(PX,ΩX;G)→H̃q(PX;G)︸     ︷︷     ︸
=0

→H̃q(ΩX;G) ∂
→Hq+1(PX,ΩX;G)→H̃q+1(PX;G)︸       ︷︷       ︸

=0

→· · ·

gives an isomorphism H̃q(ΩX; G) ∂
−→
�

Hq+1(PX,ΩX; G) for all q. Then looking at

the map p as a map of pairs p : (PX,ΩX) −→ (X, ∗), we get an induced homomor-
phism in cohomology

p∗ : Hq+1(PX,ΩX; G) −→ Hq+1(X, ∗; G)

for all q. Therefore, combining both, we get the desired homomorphism:

H̃q+1(X; G) � Hq+1(X, ∗; G)
p∗
−→ Hq+1(PX,ΩX; G) ∂

←−
�

H̃q(ΩX; G)

which lowers dimension by one. In literature, it is often denominated cohomology
suspension.

In the next section we show that for sufficiently nice co-H-spaces, cohomology
suspension is an injection, that is to say, that the map p∗ is an injection.

2.1. Intrusion in the world of Lusternik-Schnirelmann category.

The purpose of this section is to show that for a normal, path-connected co-H-
space whose base point has an open contractible neighbourhood, the cohomology
suspension homomorphism introduced above is actually injective. It can seem
inappropriate to introduce a new theory but in the end we shall only have re-
formulated the definition of a co-H-space through an equivalent characterization
that provides us with a better viewpoint to look at cohomology suspension. This
viewpoint happens to be the vast theory of Lusternik-Schnirelmann category. The
reference for the notions presented below is [CLOT03], where all the proofs of the
cited propositions can be found. The basic definition is the following.
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D 3.11.
The Lusternik-Schnirelmann (or LS) category of a topological space X, denoted cat(X),
is the least integer n ∈N such that there exists an open coveringU1, . . . ,Un+1 of X
with eachUi contractible to a point in X. In case no such integer exists, we write
cat(X) = ∞.

G.W. Whitehead has given another definition of category, which we are most
interested in, because, to some extent, it generalises the notion of co-H-space. First
recall that for a pointed space (X, ∗) the fat wedge of X is defined to be the pointed
space:

Tm(X) := {(x1, . . . , xn) ∈ Xn
| x j = ∗ for at least one j ∈Nn}

D 3.12.
The Whitehead category of a based topological space (X, ∗), denoted catWh(X), is the
least integer n such that there exist a continuous map ∆′ : X −→ Tn+1(X) which
makes the diagram

Tn+1(X)� _

jn+1

��

X

∃∆′
<<y

y
y

y
y

∆
// Xn+1

homotopy commute. The map ∆ being the (n + 1)-fold diagonal.

Note that since T2(X) is X∨X, a space has Whitehead category precisely when
it is a co-H-space. A link between LS-category and Whitehead category is given
by the following proposition.

P 3.13.
Let (X, ∗) be a path-connected pointed topological space.

(1) If X is normal, then catWh(X) ≤ cat(X).
(2) If the base point has a contractible open neighbourhood, then catWh(X) ≥ cat(X).

There is yet a third characterisation for category, that will provide us with a better
viewpoint to look at cohomology suspension

P 3.14.
Let (X, ∗) be a normal, path-connected, pointed topological space such that the base point ∗
has a contractible open neighbourhood. Consider the homotopy-pullback

G̃n(X)
δn //

p̃n

��

Tn+1(X)� _

jn+1

��

X
∆

//

∃ sn ?

GG

Xn+1(X) .
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Then cat(X) = n exactely when n is the least integer such that there exist a section
sn : X −→ G̃n(X) for the nth fibration p̃n. We shall denote this number by catG(X).

This new viewpoint was given by Tudor Ganea, who has given an explicite
construction of spaces Gn(X) ' G̃n(X).

Now, let (X, ∗) be a co-H-space which is normal, path-connected and such
that the base point ∗ has a contractible open neighbourhood. (For instance a
path-connected CW-complexe.) From 3.13 and 3.14, we have cat(X) = catWh(X) =
catG(X). In order to understand why the cohomology suspension homomorphism
associated to X is injective, we need to study the first steps of Ganea’s construction.

The zero-th Ganea fibration F0(X)
i0
−→ G0(X)

p0
−→ X is defined to be the pathspace

fibration ΩX
i0
−→ PX

p0=p
−→ X. Then the Ganea fibration Fn+1(X)

in+1
−→ Gn+1(X)

pn+1
−→ X ,

n ≥ 0 is constructed inductively from the fibration Fn(X)
in
−→ Gn(X)

pn
−→ X. Namely,

let C(in) = Gn(X) ∪Fn(X) C(Fn(X)) be the cofiber of the map in : Fn(X) −→ Gn(X), set
qn : C(in) −→ X to be the map defined by qn(x) = pn(x) for x ∈ Gn(X) and qn(x) = ∗
for x ∈ C(Fn(X)), and finally define Gn+1(X) := C(in)×X XI

' C(in) and the associated
fibration pn+1 : Gn+1(X) −→ X is defined by the composition of qn with the last-
mentioned homotopy equivalence. In [CLOT03, Chapter 2], it is shown that for
all n there is a homotopy equivalence fn : Gn(X) −→ G̃n(X) such that p̃n f = pn
and as a result, catG(X) = n when n is the least integer such that there exist a
section for the nth Ganea fibration pn : Gn(X) −→ X. Moreover, it is also shown in
[CLOT03] that G1(X) has the homotopy type of the space ΣΩX, which itself as a
pointed space (ΣΩX, ∗) has the same homotopy type as the pair (PX,ΩX). Then,
the map of pairs p : (PX,ΩX) −→ (X, ∗) used to define the cohomology suspension
homomorphism is the right-hand one defined by composition in the following
commutative diagram of pointed spaces:

PX

p
$$IIIIIIIIII

� � // C(i0)

q1

��

' // G1(X)

p1

yyssssssssss

' // ΣΩX
' // (PX,ΩX)

p

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

X

Since X is a co-H-space, we have cat(X) = catWh(X) = catG(X) = 1. Then theorem
3.14 yields a section for p̃1 as follows

X θ

##
∃s !!C

C
C

C

IdX

G̃1(X)
δ //

p̃1

��

T1+1(X) = X ∨ X

k
��

X
∆

// X1+1(X) = X × X

Thus we have a homotopy section for p1 and in consequence also one for p :
(PX,ΩX) −→ (X, ∗). Therefore the induced map in cohomology p∗ has a strict
left-inverse, which means that it is injective.



3. STEENROD REDUCED POWERS 47

Other notions of category have been defined. We shortly introduce the strong
category and describes how the spaces K1 to Kp−2 built in theorem 4.1 become
interesting in this theory.

D 3.15.

(1) The geometric category of a topological space X, denoted gcat(X), is the
least integer m ∈N such that there exists a covering of X with m+ 1 open,
contractible subsets.

(2) The strong Lusternik-Schnirelmann category of a topological space X, de-
noted Cat(X), is the number min{gcat(Y) |Y ' X}. It is obviously a homo-
topy invariant.

An important property of strong category is that it characterizes suspensions,
that is it can be shown that:

Cat(X) = 1 if and only if X ' ΣZ for some topological space Z .

Another property, proved by Ganea, says that for any path-connected ANR space
X, LS category and strong category differ by at most one, i.e.

cat(X) ≤ Cat(X) ≤ cat(X) + 1 .

Thus the question raised by this result is whether the strong category is in fact
equal to the LS-category. In fact, it has been settled by Berstein [Ber64] that it is not
the case. But it is interesting to notice that the spaces K1 to Kp−2 built in theorem
4.1 are other counterexamples. In theorem 4.4, we shall show that they don’t have
the homotopy type of a suspension, therefore Cat(K j) , 1 for all j ∈ Np−2, but on
the other hand since they are path-connected co-H-spaces but not contractible we
have cat(K j) = catWh(K j) = 1 for all j ∈Np−2.

3. Steenrod Reduced Powers

The present section briefly introduces the Steenrod reduced powers which are
cohomology operations for the special case of cohomology with coefficient taken
modulo a prime p > 2. The definitive reference, in which all the result cited above
are proved, is the lectures notes [Ste62] by N.E. Steenrod himself. Another good
description is given by Hatcher in [Hat02].

D 3.16.
A cohomology operation of type (G,n,G′,m) is, by definition, a natural transformation
θ : Hn( ; G) −→ Hm( ; G′). That is, for all X,Y ∈ Top, f ∈ Top(X,Y) there are functions
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θX, θY such that the following diagram commutes:

Hn(X; G)

	

θX // Hm(X; G′)

Hm(Y; G)
θY

//

f ∗
OO

Hm(Y; G′)

f ∗
OO

Let p > 2 be an odd prime. The Steenrod reduced powers can be defined axiomati-
cally in the following way:

(1) For all i ≥ 0, there is a natural transformation

P
i : Hq(X;Fp) −→ Hq+2i(p−1)(X;Fp)

which is a group homorphism. In other terms, the Pi’s commute with
induced homomorphisms as in the definition above.

(2) P0 is the identity map.
(3) if |x| = 2i, i ≥ 1, then Pix = xp;
(4) if 2i > |x|, i ≥ 1, then Pix = 0;
(5) for all x, y ∈ H∗(X;Fp) the Cartan formula holds:

P
i(x _ y) =

i∑
j=0

P
jx _ Pi− jy

The existence of these operations is asserted by the explicite construction made
by Steenrod in [Ste62]. Moreover, Serre and Cartan have showed that Steenrod’s
constructions gave all the possible stable cohomology operations over the field Fp.

P 3.17.
(1) The Bockstein homomorphism β : Hq(X;Fp) −→ Hq+1(X;Fp), built from the

short exact sequence of coefficients 0 → Z/pZ
·p
↪→ Z/p2Z � Z/pZ → 0, and

the Steenrod reduced powers satisfy the following relations called the Adem
relations:

P
a
P

b =

[a/p]∑
j=0

(−1)a+ j
(
(p − 1)(b − j) − 1

a − pj

)
P

a+b− j
P

j if a < bp

P
aβPb =

[a/p]∑
j=0

(−1)a+ j
(
(p − 1)(b − j)

a − pj

)
βPa+b− j

P
j

+

[(a−1)/p]∑
j=0

(−1)a+ j−1
(
(p − 1)(b − j) − 1

a − pj − 1

)
P

a+b− jβP j if a ≤ b

(2) ThePi’s commute with the connecting homomorphisms of the long exact sequence
for pairs (X,A): ∂ : Hi(X,Fp) −→ Hi+1(X,A;Fp).

(3) The Pi’s commute with the suspension isomorphism Σ : H̃q(X) −→ H̃q+1(ΣX).
(3) ThePi’s commute with the cohomology suspension homomorphismσ∗ : H̃q(X) −→

H̃q+1(ΩX).
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P. As already said, these lengthy proofs can be found in [Ste62] and
[Hat02]. For the third affirmation, we recall that for a nondegenerately pointed
space the suspension isomorphism is obtained from the characterisation of the
suspension ΣX ' C+X/X. For C+X being contractible, the long exact sequence of
the pair (C+X,X) provides an isomorphism ∂ : H̃q(X) �

−→ Hq+1(C+X,X) (where ∂ is
the connecting homomorphism) and, in addition, Hq+1(C+X,X) � Hq+1(C+X/X, ∗) �
H̃q+1(C+X/X) = H̃q+1(ΣX) . As a result, (3) and (4) follow from (2) and axiom (1). �

D 3.18.
The modulo p Steenrod algebra Ap is defined to be the graded associative algebra
over Fp generated by the reduced powers Pi, i ≥ 0, and the Bockstein homomor-
phism β modulo the Adem relations, β2 = 0 and P0 = 1. The elements of degree k
being those that map Hq(X;Fp) to Hq+k(X;Fp), q, k ≥ 0.

It results from the axioms that for all spaces X, we can consider H∗(X;Fp) as a
module over the Steenrod algebra.

R 3.19.
Using the operation P := P0 +P1 +P2 +P3 + · · · , which acts on H∗(X;Fp) since by
axiom (4) only a finite number of P j are nonzero, we can compute the action of Pi

on H∗(CP∞;Fp) � Fp[α] with |α| = 2. First, axioms (2) and (4) yield P(α) = α + αp =

α(1 + αp−1). Then the Cartan formula yields (by induction) P(αn) = P(α)n for all
n ≥ 1 so that

P(αn) = αn(1 + αp−1)n =
∑

i

(
n
i

)
αn+i(p−1).

Thus comparing degrees we get for all i,n ≥ 0

P
i(αn) =

(
n
i

)
αn+i(p−1)

where the binomial coefficient are taken modulo p.

4. Spectral Sequences

The last tool we introduce is the Serre spectral sequence for cohomology.
We shall only described the basic properties without giving any proof, but only
examples of applications. The references are [McC01] and [Hat04] where all the
proofs can be found.
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D 3.20.
LetK be a commutative ring. A spectral sequence of cohomological type is a collection
of differential bigradedK-modules {E∗,∗r , dr}, r ≥ 1, where the differentials dr are all
of bidegree (r, 1 − r) and for all p, q, r, Ep,q

r+1 is isomorphic to

Hp,q(E∗,∗r , dr) = ker(dr : Ep,q
r → Ep+r,q−r+1

r )/ Im(dr : Ep−r,q+r−1
r → Ep,q

r ) .

Adding multiplicative structure, a spectral sequence of algebras over K is a spectral
sequence {E∗,∗r , dr} together with multiplications ϕr : E∗,∗r ⊗K E∗,∗r −→ E∗,∗r for all r ≥ 1,
which are morphisms of bigradedK-modules such thatϕr+1 can be computed from
ϕr as the composite map:

ϕr+1 : E∗,∗r+1 ⊗ E∗,∗r+1 � H∗,∗(Er) ⊗H∗,∗(Er)
ψ

// H∗,∗(Er ⊗ Er)
H∗,∗(ϕr)

// H∗,∗(Er) � E∗,∗r

where ψ is the homomorphism given by ψ([u] ⊗ [v]) = [u ⊗ v].

Spectral sequences, called the Serre spectral sequences, arise in topology when
working with fibrations. Their existence is described through the next theorem.
All the given hypotheses are not necessary for the existence statement, but they
will provide us with the nice properties listed bellow.

A helpful image to bear in mind is to see the bigraded modules E∗,∗r in a Serre
spectral sequence as the pages of a book, each consisting of K-modules indexed
on Z × Z, but with only the entries in the first quadrant that can be nonzero. So
we shall call E∗,∗r the Er-page of the spectral sequence. The K-modules and the
diffrentials dr on the rth page form chain complexes and the cohomology groups of
these chain complexes are theK-modules appearing in the (r + 1)st page.

In a given page, the K-modules located in the lower left corner of the first
quadrant are such that the differentials leaving them and joining them come from
and go to trivial modules because they are outside the first quadrant. This means
that the modules in these positions remain unchanged in the higher-degree pages.
If one focuses on the module at the (p, q) position, there will eventually be a degree
r for which the differentials entering and leaving it will both be zero, so that
it remains unchanged in the pages of degree higher than r. According to this
observation, there is a well-defined limiting page for the spectral sequence, that
we shall call the E∞-page.

T 3.21.
Let K be a commutative ring. Let F −→ X −→ B be a fibration such that B is
path-connected, F is connected and π1(B) = 0. Then there is a spectral sequence of
algebras {Ep,q

r , dr} with p, q ≥ 0, called the Serre spectral sequence, which satisfies

(1) {Ep,q
r , dr} converges as an algebra to H∗(X;K). More accurately, the stable terms

Ep,q
∞ are isomorphic to the successive quotients Fn

p/Fn
p+1 in a filtration 0 ⊂ Fn

n ⊂

· · · ⊂ Fn
0 of Hp+q(X;K);

(2) Ep,q
2 � Hp(B; Hq(F;K));

(3) each differential dr is a graded derivation: dr(xy) = dr(x)y + (−1)p+qxdr(y) for
x ∈ Ep,q

r ;
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(4) the product structure on E∗,∗2 restricted to E∗,02 and E0,∗
2 coincides with the cup

product structures on H∗(B;K) and H∗(F;K) respectively;
(5) if, for all i, Hi(F;K) and Hi(B;K) are freeK-modules of finite type, then

Ep,q
2 � Hp(B;K) ⊗K Hq(F;K) .

P. See [McC01, Chapter 5] �

R 3.22.
Notice that when the space X is contractible, as for instance when the fibration is
the pathspace fibration ΩB −→ PB −→ B, then the E∞-page is given by

Ep,q
∞ = Hp+q(∗;K) =

K if p = q = 0;
0 otherwise.

In order to make all this theory a little more concrete, we go into two examples,
which should illustrate the basic usage one can make of Serre spectral sequences to
deduces ring structures in cohomology. We first compute the cup product structure
on H∗(CP∞).

E 3.23 (Ring structure of H∗(CP∞)).
Let us use the fact that CP∞ is a K(Z, 2) to compute the multiplicative structure
on its cohomology ring. Since K(Z, 2) is simply connected, we can apply the
Serre spectral sequence to the pathspace fibration K(Z, 1) −→ PK(Z, 2) −→ K(Z, 2),
where K(Z, 1) can be identified with S1, so that we know exactly its cohomology
groups, which are:

Hi(K(Z, 1)) =

Z if i = 0, 1
0 otherwise.

By part (2) of theorem 3.21, the E2-page is given by

Ep,q
2 � Hp(CP∞; Hq(K(Z, 1)) =

Hp(CP∞,Z) if q = 0, 1;
0 otherwise;

i.e. only the two first rows are nonzero.

p

q

Z1 H1(CP∞) H2(CP∞) H3(CP∞) H4(CP∞) · · ·

Z0 H1(CP∞) H2(CP∞) H3(CP∞) H4(CP∞) · · ·

0 1 2 3 4 · · ·

Furthermore, according to remark 3.22 the E∞-page consists only of trivial groups,
except for a Z in the (0,0) position.
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We first determine the additive structure. The differentials d3, d4, . . . go downward
at least two rows, thus they either come from or go to a trivial group and therefore
none of them can be nontrivial, which means that the E3-page must equal the
E∞-page with just a Z is the (0, 0) position. But the E3-page is calculated from
the E2-page, thus the groups in the zero-th row are the kernels of the differentials
d2 leaving them. This forces all the differentials d2 coming from the first row to
be isomorphisms, otherwise they would provide a nonzero entry in the zero-th
row. In addition, the differential d2 going to H1(CP∞) in the (1, 0) position comes
from a trivial group, thus has image zero, which means that 0 = E1,0

3 � H1(CP∞).
Summing up this argument we have

Hi(CP∞) �

Z if i is even;
0 if i is odd.

Let us now look at the multiplicative structure of H∗(CP∞). Let y be a generator
for E0,1

2 � Z and x2i be a generator for E2i,0
2 � H2i(CP∞) � Z, i ≥ 1, as follows:

p

q

Zy1 0 Zyx2 0 Zyx4 0 Zyx6 · · ·

Z10 0 Zx2 0 Zx4 0 Zx6 · · ·

0 1 2 3 4 5 6 · · ·

The product E0,1
2 ⊗ E2i,0

2 −→ Es,q+t
2 is multiplication of the coefficients, thus the

generators for the Z’s in the first row must be y times the generator in the lower
row. The differentials d2 shown in the figure being isomorphisms, d2(y) generates
Zx2 so that d2(y) = ±x2. Since the differentials are derivations, we have

d2(yx2i) = d2(y)x2i ± y d2(x2i)︸︷︷︸
=0

= ±x2x2i

Again because d2 is an isomorphism between Zyx2i and Zx2i+2, d2(yx2i) must be
a generator of Zx2i+2, thus we may assume that x2x2i = x2i+2, changing the sign if
necessary. As a result, since the groups Zx2i in the zero-th row are isomorphic to
H2i(CP∞), the latter relation means that H∗(CP∞) is isomorphic to the polynomial
ring Z[x2] with |x2| = 2.
Finally notice that replacing the coefficient ring Z with the finite field Fp doesn’t
change the general method for computations, which can be carried out exactly the
same way, to find H∗(CP∞;Fp) � Fp[x] with |x| = 2.

The ring structure of H∗(ΩSn) can be computed in much the same way, just the
cup product structure, being a little more complex, illustrates better the power of
the derivation property of the differentials.



4. SPECTRAL SEQUENCES 53

E 3.24 (Ring structure of H∗(ΩSn)).
Let n ≥ 2, so that Sn is simply connected. Then, we have a Serre spectral sequence
for cohomology associated to the the pathspace fibration ΩSn

−→ PSn
−→ Sn.

Again the E∞-page is trivial, except for a Z is the (0,0) position. From the fact that
Hi(Sn) � Z if i = 0,n and is trivial otherwise and from part (2) of theorem 3.21 the
E2-page has the following form:

p

q

.

.

.

.

.

.

.

.

.

H3n−3(ΩSn) H3n−3(ΩSn)3n − 3

H2n−2(ΩSn) H2n−2(ΩSn)2n − 2

Hn−1(ΩSn) Hn−1(ΩSn)n − 1

Z Z0

0 n

Since the differentials d2, d3, . . . dn−1 all come from or go to a trivial group we have
E∗,∗2 � E∗,∗3 � · · · � E∗,∗n . In fact, only the differentials dn can be nontrivial, therefore
the En+1-page must be equal to the E∞-page. Thus, by a similar argument as
in the preceeding example, the dn’s coming from E0,q

n � E0,q
2 with q ≥ n − 1 are

isomorphisms and H1(ΩSn) � · · · � Hn−2(ΩSn) � 0. Which, by induction, leads to

Hi(ΩSn) �

Z if i = kn − k, k ≥ 0
0 otherwise.

The multiplicative structure can then be deduced from the fact that the differentials
are derivations. Let xi be a generator of Hin−i(ΩSn) � E0,in−i

n � Z and let y be a
generator of En,0

n � Z. Analogously to the previous example, the En-page has the
following form

p

q

.

.

.

.

.

.

.

.

.

Zx3 Zx3y3n − 3

Zx2 Zx2y2n − 2

Zx1 Zx1yn − 1

Z1 Zy0

0 n

where the differentials dn shown in the figure are isomorphisms. Thus we may
assume that dn(x1) = y and dn(xi) = xi−1y for i > 1, changing the sign of the xi’s if
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necessary. We have to consider separately the cases that n is odd and n is even.
First, when n is odd, we have

dn(x2
1) = dn(x1)x1 + x1dn(x1) = yx1 + x1y = 2x1y

since yx1 = (−1)|y||x1 |x1y = x1y. Thus, dn being an isomorphism and dn(x2) = x1y
imply that x2

1 = 2x2. In similar fashion, for i > 2, dn(xi
1) = ixi−1

1 y. It follows by
induction that xi

1 = i!xi. Therefore H∗(ΩSn) is a divided polynomial algebra ΓZ[x]
with |x| = n − 1.
When n is even, the situation is a little bit more complicated. Since |x1| is odd, we
have x2

1 = −x2
1, that is x2

1 = 0. Then

dn(x1x2) = yx2 − x1yx1 = yx2 + x2
1y = yx2 = dn(x3)

that is x1x2 = x3 and hence x1x3 = x2
1x2 = 0. Assume by induction on i > 1 that

dn(x1x2i−2) = x2i−1 so that x1x2i−1 = x2
1x2i−2 = 0, then

dn(x1x2i) = dn(x1)x2i − x1dn(x2i) = yx2i − x1x2i−1 = yx2i = dn(x2i+1)

hence x1x2i = x2i+1. Furthermore, we compute for i > 1, dn(xi
2) = x1yxi−1

2 + x2dn(xi−1
2 )

and inductively dn(xi
2) = ix1yxi−1

2 . Thus assuming, by induction on i ≥ 1 that
xi−1

2 = (i − 1)!x2i−2, we get

dn(xi
2) = ix1yxi−1

2 = ix1y(i − 1)!x2i−1 = i!x1x2i−2 = i!x2i−1y = i!dn(x2i) .

Hence xi
2 = i!x2i. In conclusion, the relations x2

1 = 0, x1x2i = x2i+1 and xi
2 = i!x2i

say that when n is even, H∗(ΩSn) is isomorphic to the tensor product of an exterior
algebra with a divided polynomial algebra ΛZ[x1] ⊗ ΓZ[x2] with |x1| = n − 1 and
|x2| = 2n − 2.

We now restrict our attention to mod p cohomology for p a prime. We quickly
introduce the notion of transgression, which will allow us, by means of the Kudo
transgression theorem, to compute pth powers of elements x ∈ H2i(F;Fp) where F
is still the fibre of a fibration F −→ X −→ B.

D 3.25.
Let {E∗,∗r , dr} be a spectral sequence of cohomology type and let u ∈ Es,t

2 . We say
that u is transgressive if d2(u) = d3(u) = . . . = dt(u) = 0 and dt+1(u) , 0 in Es+t+1,0

t+1 .
Moreover, we say that u transgresses to an element v ∈ Es+t+1,0

2 if v survives to
represent dt+1(u).

K T T 3.26.
Let {E∗,∗r , dr} be a Serre spectral sequence. Let x ∈ E0,2k

2 � H2k(F;Fp) be transgressive and
transgresses to the element represented by y in E2k+1,0

2 � H2k+1(B;Fp), then Pkx = xp is
also transgressive with d2pk+1(xp) = Pky.

P. Although details are omitted, most of the ideas of the proof are given
in [McC01]. A complete proof requires a careful description of the action of the
Steenrod algebra at the cochain level. �



CHAPTER 4

The p-local splitting of ΣCP∞

1. A Foreword on the Infinite Complex Projective Space

The nicest way to see the infinite projective space is certainly to see it through
its CW-complex decomposition as CP∞ = e0

∪ e2
∪ e4
∪ · · · with a single cell in each

even dimension. We can then use the fact that for a CW-complex having no two of
its cells in adjacent dimensions, the n-th homology group is free abelian with basis
in one-to-one correspondence with the n-cells (see [Hat02, Chapter 2]). It yields

Hn(CP∞) =

Z if n = 0, 2, 4, . . . ;
0 if n odd

and consequently

H̃n(CP∞) =

Z if n = 2, 4, 6, . . . ;
0 otherwise.

Furthermore the suspension isomorphism H̃n(X) � H̃n+1(ΣX) yields

H̃n(ΣCP∞) =

Z if n = 3, 5, 7, . . . ;
0 otherwise.

We have shown, by means of a Serre spectral sequence, that the cohomology ring
H∗(CP∞;Z) is a polynomial ring Z[x] with x a two-dimensional generator.

Another interesting fact about CP∞ is that it happens to be an Eilenberg-
McLane space K(Z, 2). This comes nicely from the fibration S1

−→ S∞ −→ CP∞.
For its associated long exact sequence in homotopy

· · ·
�
−→ πn(S1) −→ πn(S∞)︸ ︷︷ ︸

0

−→ πn(CP∞) �
−→ πn−1(S1) −→ πn−1(S∞)︸    ︷︷    ︸

0

−→ · · ·

· · ·
�
−→ π1(S1) −→ π1(S∞)︸ ︷︷ ︸

0

−→ π1(CP∞) �
−→ π0(S1) −→ π0(S∞)︸ ︷︷ ︸

0

−→ π0(CP∞)︸    ︷︷    ︸
0

yields for all i ≥ 1

πi(CP∞) � πi−1(S1) =

Z i = 2
0 otherwise.

55
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2. The Actual Splitting

Let p be a fixed odd prime. To begin with we described the p-local splitting
of the infinite projective space obtained by C.A. McGibbon in [McG81]. We shall
then investigate possible co-H-structures on each piece of the splitting.

T 4.1.

There is a homotopy equivalence: ΣCP∞(p) '
p−1∨
j=1

K j such that for each j ∈Np−1 the integral

homology of K j is given by

H̃q(K j,Z) =

Z(p) if q = 2n + 1 and n(≥ 1) ≡ j (mod p − 1)
0 otherwise.

To help bear in mind this result, we note that pictorially the integral homology of
ΣCP∞(p) is divided according to the following pattern:

K1 K2 K3 · · · Kp−2 Kp−1

H1

H3 Z(p)

H5 Z(p)

H7 Z(p)

...
. . .

H2(p−2)+1 Z(p)

H2(p−1)+1 Z(p)

H2p+1 Z(p)

H2p+3 Z(p)

...
. . .

Here blanks obviously mean that the corresponding homology group is trivial.

R 4.2.
As an immediate consequence of theorem 4.1, the universal coefficient theorem
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yields that the cohomology of each K j with coefficients in Fp is

H̃q(K j,Fp) �

Fp if q = 2n + 1 and n(≥ 1) ≡ j (mod p − 1);
0 otherwise.

since Z(p) ⊗Z Fp � Fp. It shall also be useful to notice that, for the same reason,
cohomology with Fp coefficients does not distinguish between the space ΣCP∞

and its p-localization:

H∗(ΣCP∞(p);Fp) � H∗(ΣCP∞;Fp) .

   4.1. ([McG80, proposition 2.2].)
The spaces K j are constructed as mapping telescopes. From the natural bijection
T : [CP∞,K(Z, 2) = CP∞] −→ H2(CP∞;Z) � Z, we see that for each integer k ∈ Z
we can choose a continuous map βk : CP∞ −→ CP∞ with degree1 k in dimension 2.
Let λ be an integer whose equivalence class modulo p is a generator of the group of
unitsF∗p. Now let θ and ν denote the coproduct and the homotopy inverse induced
by the suspension co-H-structure on ΣCP∞. For continuous self-maps of ΣCP∞,
as described in chapter 1, θ gives raise to a sum operation f + g = ∇( f ∨ g)θ and
ν allows to consider opposites fν for this operation +. Therefore, for each integer
k ∈ Z, we can define a map fk : ΣCP∞(p) −→ ΣCP∞(p) as the p-localization of the map

Σβλ − λkΣβ1.
Let us compute its degree in dimension 2n + 1, n ≥ 1. In dimension 2 the map

β1 has degree 1 and the map βλ has degree λ , thus recalling that H∗(CP∞) = Z[x]
with |x| = 2, we see that in all even dimensions 2i, i ≥ 1, β1 has degree 1 and βλ has
degreeλi. The suspension isomorphism raises dimensions by 1, thus in dimensions
2i + 1, i ≥ 1, Σβ1 has degree 1 and Σβλ has degree λi. In dimensions 2n + 1 the
cohomology and homology groups of ΣCP∞ are isomorphic to Z and are dual
to each other, so that if a self-map of ΣCP∞ induces multiplication by an integer
m on H2n+1(ΣCP∞), it induces multiplication by m on H2n+1(ΣCP∞) as well, thus
the homological and the cohomological degree are equal. In addition, since the
induced map in homology by the p-localization f(p) of a continuous map f can be
seen as f∗ ⊗ IdZ(p) , the degree remains unchanged. In consequence, using the result
of remark 1.16 (2) we finally get that the degree of the map fk : ΣCP∞(p) −→ ΣCP∞(p)

is λn
− λk in dimension 2n + 1.

Let F( j, t) := { fk | 1 ≤ k ≤ t(p − 1) and k . j (mod p − 1)}. We set K j to be the
infinite mapping telescope of the sequence of maps {F( j, 1),F( j, 2),F( j, 3), . . .}, say
T j. We first check that its homology is as stated in 4.1.

First, in dimensions 2n + 1 with n(≥ 1) . j (mod p − 1) the degrees of all the
maps in the sequence T j are invertible modulo p. For in these dimensions the
degrees of the maps fk in T j are λn

− λk = λk(λn−k
− 1) where k is never j modulo

(p− 1). Hence n− k is never a multiple of p− 1 so that λn−k . 1 (mod p). Moreover,
by definition, λ is not a multiple of p, thus neither is λk and we finally get that
λn
− λk is not divisible by p and hence is invertible in Fp. Therefore these maps

1Here the terms degree m in dimension n mean that the induced homomorphism is multiplication
by m on the nth cohomology group.
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induce isomorphisms in integral homology and the homology of the mapping
telescope, which is isomorphic to the corresponding algebraic colimit (see theorem
2.9), is isomorphic to the homology of the first space ΣCP∞(p) in the sequence. That
is to say

H2n+1(K j) � H2n+1(ΣCP∞(p)) � Z(p)

for all n(≥ 1) . j (mod p − 1).
In the other dimensions q, an infinite number of fk have degree divisible by

p. Thus every class in H̃q(ΣCP∞(p)) is mapped to zero by an infinite subsequence of
maps in T j so that the colimit becomes trivial and Hq(K j) = 0 . Let us now check
that the required homotopy equivalence holds. Let ı j be the canonical inclusion
of ΣCP∞(p) in the left-hand extremity of the mapping telescope K j. Observe that it
induces an epimorphism in homology:

- If q is odd with q = 2n + 1 and n ≡ j (mod p − 1) then by construction
(ı j)∗ : Hq(ΣCP∞(p)) � Z(p) −→ Hq(K j) � Z(p) is an isomorphism.

- If q is odd with q = 2n + 1 and n . j (mod p − 1) then Hq(K j) = 0 so that
(ı j)∗ : Hq(ΣCP∞(p)) � Z(p) −→ 0 is surjective.

- If q is even, then Hq(K j) = Hq(ΣCP∞(p)) = 0 and (ı j)∗ is the map 0 −→ 0
which is clearly surjective.

We now wish to use Whitehead’s theorem to see that the composition

ΣCP∞(p)

θ(p)
//
∨p−1

i=1 ΣCP∞(p)

∨ı j
//
∨p−1

i=1 Ki

where θ(p) denotes the iterated coproduct, is a homotopy equivalence. Therefore
we have to show that it is an integral homology equivalence. In even dimensions
this is clear since homology is trivial. In odd dimensions q = 2n + 1 with n ≡ j
(mod p − 1) for some j ∈Np−1, consider the diagram

Hq(X)
θ(p)∗

// Hq(
∨p−1

i=1 X)

(ı1∨...∨ıp−1)∗
,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

⊕p−1
i=1 Hq(X)

( j1∗,..., jp−1∗)

�
oo

(ı1∗,...,ıp−1∗)
//
⊕p−1

i=1 Hq(Ki) � Hq(K j)

( j1∗,..., jp−1∗)�

��

Hq(
∨p−1

i=1 Ki)

where X stands for ΣCP∞(p). By remark 1.16 (2), the triangle commutes. By part (1)
of the same remark, the composition ( j1∗, . . . , jp−1∗)−1θ(p)∗ is the (p− 1)-fold diagonal
map on Hq(X). Moreover only one of the maps ı1∗, . . . , ıp−1∗ is non-trivial, so that
the top arrow going from Hq(X) to Hq(K j) is an isomorphism, which in turn forces
(ı1 ∨ . . .∨ ıp−1)∗θ(p)∗ = ((ı1 ∨ . . .∨ ıp−1)θ(p))∗ to be an isomorphism and completes the
proof. �

Furthermore, we can define a linking relation on a cohomology ring with Fp

coefficients as follows. Let u, v ∈ H̃∗(Y;Fp) be two generators. Then we say that
u and v are linked by the Steenrod algebra Ap if there is a sequence of non-trivial
classes u = x0, x1, . . . , xn = v such that for each i = 0, . . . ,n − 1, up to a unit of Fp
eitherPrxi = xi+1 or xi = P

rxi+1 for some reduced powerPr. This clearly defines an
equivalence relation.
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The next result, which is in fact part (b) of theorem 4.1 given in [McG81],
asserts that the splitting of ΣCP∞(p) ' K1 ∨ · · · ∨ Kp−1 is maximal, in the sense that
none of the K j’s could be split in a wedge of two or more terms all with non-trivial
cohomology.

P 4.3.
For all j ∈ Np−1, any two generators u, v ∈ H̃∗(K j;Fp) are linked by the Steenrod algebra
Ap.

P. By definition, Steenrod reduced powers link classes whose degrees
are congruent modulo p − 1, so that the graded isomorphism H̃∗(CP∞;Fp) �⊕p−1

j=1 H̃∗(K j;Fp), provided by the splitting of theorem 4.1, is an isomorphism of
modules over the Steenrod AlgebraAp. This amounts to saying that if two nontriv-
ial classes are linked by a Steenrod reduced power in H∗(CP∞;Fp), they correspond
to classes in the same summand H̃∗(K j;Fp). Furthermore, the reduced powers Pi

commute with the suspension isomorphisms Σq : Hq(CP∞;Fp) −→ Hq(ΣCP∞;Fp).
These observations imply that the linking relation partitions H̃∗(CP∞;Fp) into at
least p − 1 equivalence classes.
Thus to see that any two generators in H̃∗(K j;Fp) are linked, we need to show that
there are exactly p − 1 equivalence classes. But since H∗(CP∞;Fp) � Fp[x] with
|x| = 2, all the generators in H̃∗(K j;Fp) are, up to a unit of Fp, a power of x and in
consequence it suffices to prove that the powers of the generator x lie in at most
p − 1 classes.
It is clear that x, x2, . . . xp−1 do lie in at most p − 1 classes, so assume by induction
on n that the classes x, x2, . . . xn−1 with n ≥ p lie in at most p − 1 classes. Write n
modulo p, n = kp + r with k ≥ 1 and 0 ≤ r < p. By remark 3.19 we have

P
r(xn) =

(
n
r

)
xn+r(p−1) =

(
n
r

)
x(k+p)r

where
(n

r
)
=

(n−r+1)···n
r! =

(kp+1)···(kp+r)
r! which equals 1 when r = 0 and is visibly not

divisible by p when 0 < r < p so that Pr(xn) = µx(k+p)r where µ is a unit in Fp.
Moreover

P
k+r(xk+r) =

(
k + r
k + r

)
xk+r+(k+r)(p−1) = x(k+p)r .

Thus Pr(xn) = µPk+r(xk+r), that is xn and xk+r are linked by the Steenrod algebra
according to the following pattern:

xn
.

P
r

**

x(k+r)p xk+r�
P

k+r

tt

Since k + r < n, the generator un is linked to one of the (p − 1) classes described
above, which proves the induction and completes the proof. �
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3. Co-H-structure on the K j’s

Recall that we assume the prime p to be odd, so thatΣCP∞(p) splits into a wedge of
at least two spaces. Every space K j, j ∈ Np−1 has a co-H-space structure inherited
from the suspension co-H-stucture on ΣCP∞, say θ. Let ι j : K j :−→

∨p−1
i=1 K j '

ΣCP∞(p) be the canonical inclusion of K j in ΣCP∞(p) and q j : ΣCP∞(p) −→ K j be the

retraction on the jth factor. Then we have the following coproduct on K j

K j
� � ι j

// ΣCP∞(p)

θ(p)
// ΣCP∞(p) ∨ ΣCP∞(p)

q j∨q j
// K j ∨ K j .

The space Kp−1 is special in the sense that it can be shown that it has the homotopy
type of a suspension. This follows from an article by D. Sullivan [Sul74], in
which he shows that BS2n−1

(p) is a loop structure on S2n−1
(p) and that there is a map

π : CP∞(p) −→ BS2p−3
(p) which induces an isomorphism in cohomology in degrees

divisible by 2(p − 1) and which is zero otherwise. This result is summed up in
[McG81], where McGibbon also shows that for p an odd prime and n dividing
p−1, thenΣBS2n−1

(p) is a retract ofΣCP∞(p), which he expresses in terms of the splitting
as

ΣBS2n−1
(p) '

(p−1)/n∨
i=1

Kni .

Thus taking n = p − 1 yields the result. Our purpose is to study the possible
co-H-structures on the other spaces K1, . . . ,Kp−2, which are in fact not particularly
nice. A first hint of the type of co-H-structures we cannot expect is given by the
following theorem.

T 4.4.
The spaces K j, j ∈Np−2, do not have the homotopy type of a suspension.

P. Let j ∈ Np−2. Ab absurdo, assume that there is a topological space X j
such that ΣX j ' K j. Therefore the cohomology modulo p of X j, obtained through
the suspension isomorphism, is according to remark 4.2:

H̃q(X j;Fp) � H̃q+1(K j;Fp) =

Fp if q = 2n and n(≥ 1) ≡ j (mod p − 1)
0 otherwise.

Using, twice, the fact that reduced powers commute with the suspension isomor-
phism Σ on cohomology, we get the following commutative diagram:

Fp<x j>� H2 j(CP∞;Fp)

	

�

Σ //

P
j

��

H2 j+1(ΣCP∞;Fp) � H2 j+1(K j;Fp)

	P
j

��

H2 j(X j;Fp)

P
j

��

�

Σoo

Fp<x jp>� H2 jp(CP∞;Fp)
�

Σ
// H2 jp+1(ΣCP∞;Fp) � H2 jp+1(K j;Fp) H2 j(X j;Fp)

�

Σ
oo
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where we assume H∗(CP∞;Fp) � Fp[x] with |x| = 2. Let k j be a generator of
H2 j+1(K j;Fp). Up to a unit in Fp we can assume that k j is the image of x j under
the isomorphism Σ. In addition P j(x j) = x jp , 0. Thus letting k j go round the
left-hand square, we get first that P j(k j) , 0. On the other hand, letting k j go round
the right-hand square we get that P j(Σ−1(k j)) = (Σ−1(k j))p = 0. For the square of
any element in H2 j(X j;Fp) is zero as H4 j(X j;Fp) is trivial, thus so are the pth powers.
But secondly P jΣ−1(k j) = Σ−1

P
j(k j) , 0 since Σ is bijective. Hence we obtain a

contradiction!
Because we shall use this argument again, for the sake of clarity, we summarize it
by drawing the journey of k j through the diagram above:

x j
_

P
j

��

k j
��oo � � //

_

P
j

��

Σ−1(k j)
_

P
j

��

xpj , 0 � � // P
j(k j) , 0 � � // Σ−1

P
j(k j)︸     ︷︷     ︸

,0

= P jΣ−1(k j) = (Σ−1(k j))p = 0  .

�

R 4.5.
At this point, it is interesting to point out why the argument used in the proof
above doesn’t apply to Kp−1. As we easily see the reason happens to be purely
computational. Assuming that Kp−1 ' ΣXp−1, it follows that the non-trivial coho-
mology groups of Xp−1 are the groups H2i(p−1)(Xp−1,Fp) with i ≥ 1. Hence taking
any non trivial element x ∈ H∗(Xp−1,Fp) and elevating it to the power of m (m ∈N)
does not send it to a nontrivial group: |x| = 2i(p− 1) implies |xm

| = 2im(p− 1). Thus
it cannot be concluded that the pth powers, perforce, are trivial because a smaller
one necessarily is.

In consequence, the K j’s, j ∈ Np−2 fail the first test for the title of ”nice” co-H-
space. Though, thus far, this does not prevent them from bearing a co-H-group
structure. In fact, as we now show, for j ∈ Np−2, the K j’s do not even possess one
coassociative coproduct, let alone co-H-group structures.

To achieve this, the idea is to imitate an argument given by Israel Berstein in
[Ber64], where he shows that the space X := S3

∪ f e2p+1, with p is an odd prime
and f belonging to a class α of order p in π2p(S3), does not admit a coassociative
coproduct.

A major argument of this proof uses the Bott-Samelson theorem. For essentially
two reasons, I don’t wish to write an explanation section on this theorem. First,
because I have already studied this theorem (in a somewhat more particular case)
in a previous semester project (see [DKKL06]). Secondly, and mainly, because
Berstein has written a very detailed article, [Ber65], on the subject. Nonetheless,
for the sake of clarity, we give a quick summary of the main results which he needs
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for his proof concerning S3
∪ f e2p+1 and which we shall need as well to copy his

argument.

3.1. A word on the Bott-Samelson Theorem.

In [Ber65, Corollary 3.3], Berstein restates, as follows, the Bott-Samelson theo-
rem, for the case that the space considered is a co-H-space whose base point has
a contractible open neighbourhood and that homology is considered with coeffi-
cients in a field F.

T 4.6 (Bott-Samelson).
Let (X, θ) be a co-H-space satisfying the aforementioned hypothesis. Then H∗(ΩX;F) is
a free Hopf algebra over F. Furthermore, if θ is coassociative, then H∗(ΩX;F) is freely
generated, as an algebra, by the module N := Ker[(Ωθ)∗ − ρ∗] where

ρ = µ(Ω j1 ×Ω j2)∆ : ΩX −→ Ω(X ∨ X) ,

µ is the multiplication of loops in Ω(X ∨ X), ∆ the diagonal map on ΩX and j1, j2 the
inclusions in X ∨ X.

In the original proof of the Bott-Samelson theorem, [BS53, Theorem III.1.A],
it is shown that H∗(ΩX;F) is isomorphic to a tensor algebra T(M) where M is a
submodule of H∗(ΩX;F) mapped isomorphically onto H∗(X;F) by the homology
suspension, which lowers dimensions by one. Berstein shows that we can choose
M = N, which leads him to the next lemma he uses in [Ber64] to prove that the
space S3

∪ f e2p+1 does not admit a coassociative coproduct.

L 4.7 ([Ber65, Lemma 4.2).
Let (X, θ) be a coassociative co-H-space. Then H∗(ΩX;F) is a free Hopf algebra over F,
admitting a free system of generators {ai} satisfying the formula

(Ωθ)∗(ai) = ai + ai +
∑

λlkalak

where H∗(Ω(X∨X);F) is identified with the free product of algebras H∗(ΩX;F)∗H∗(ΩX;F),
λlk ∈ F, 0 < |a j|, |ak|, |alak| = |ai| and a and a denote the same element considered in the two
copies of H∗(ΩX;F). Moreover, the free system of generators {ai} can be chosen to be in
one-to-one correspondence with a system of generators of the graded F-module H∗(X;F).

Let us finally note that Berstein also shows that an element n ∈ N is primitive
precisely when (Ωθ)∗(n) = n + n, so that in the preceding lemma, H∗(ΩX;F) is
primitively generated when the system of generators {ai} satisfies for all i,

(Ωθ)∗(ai) = ai + ai .
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3.2. About coassociative co-H-structures.

The result concerning the non-existence of coassociative co-H-structures on the
spaces K1, . . . ,Kp−2 is stated in the following theorem. As mentioned, the proof is
suggested by the article [Ber64]. The argument presented above makes use of the
Serre spectral sequence and was written by A. Baker, K. Hess Bellwald and Birgit
Richter in their Informal notes on co-H space structures on retracts of CP∞,[BHR06].

T 4.8.
Let j ∈Np−2, then the space K j does not possess any coassociative coproduct.

P. The proof is made by contradiction. Assume that K j does admit a
coassociative coproduct θ j. It follows from the splitting theorem 4.1 and the
universal coefficient theorem that the homology with coefficients in Fp of K j is

Hq(K j,Fp) =

Fp if q = 2n + 1 and n(≥ 1) ≡ j (mod p − 1)
0 otherwise.

Thus, applying the Bott-Samelson theorem, we get that H∗(ΩK j;Fp) is a free Hopf
algebra over Fp with a generator ai ∈ H2 j+2i(p−1)(ΩK j;Fp) for all integers i ≥ 0.
Furthermore, according to Berstein’s lemma 4.7, for all i ∈ N, the generators
satisfy the formula

(1) (Ωθ j)∗(ai) = ai + ai +
∑

λlkallak

where λlk ∈ Fp, 0 < |al|, |ak| and |alak| = |ai| for all l, k. In addition, since

(2) |alak| = |al| + |ak| = (2 j + 2l(p − 1)) + (2 j + 2k(p − 1)) = 2 j + 2(l + k)(p − 1) + 2 j

and j , p − 1 there cannot be any cross term in formula (1) and the generators ai,
i ≥ 1 all satisfy the formula

(Ωθ j)∗(ai) = ai + ai .

Consequently H∗(ΩK j;Fp) is a primitively generated Hopf algebra, whose dual
Hopf algebra is H∗(ΩK j;Fp), which according to corollary 3.9 has only trivial pth

powers.
Thus in order to copy Berstein’s argument and get a contradiction, we need

to find an element in H∗(ΩK j;Fp) whose pth power is nontrivial. In [Ber64] this
was achieved through the study of the geometry of the space and its impact on the
first Steenrod reduced power P1. In our case, the geometry of the K j’s is far too
complicated, thus we need to find a somewhat more algebraic argument.

Since the K j’s are simply connected, there is a Serre spectral sequence associated
to the pathspace fibration ΩK j −→ PK j −→ K j and that satisfies the properties of
theorem 3.21 . The E∞-page has the form

Es,t
∞ � Hs+t(∗;Fp)

with only a Fp in the (0,0)-position. The E2-page is

Es,t
2 � Hs(K j; Ht(ΩK j;Fp)) � Hs(K j;Fp) ⊗Fp Ht(ΩK j;Fp)

with H∗(K j;Fp) on the horizontal axis, H∗(ΩK j;Fp) on the vertical axis, nontrivial
columns only in degree s equal to 2 j + 1 modulo 2(p − 1) and nontrivial lines in
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degree t equal to 2 j modulo 2(p − 1) . The lower left-hand corner of the E2-page
has the following form:

s

t

d2 j+1

H2 j(ΩKj;Fp) H2 j(ΩKj;Fp) ⊗H2 j+1(Kj;Fp)2 j

Fp H2 j+1(Kj;Fp)0

0 2 j + 1

By the same arguments as the ones used in example 3.24 to compute the cohomol-
ogy ring of Sn, we obtain that the pages E3, . . . ,E2 j+1 remain equal to the E2-page
whereas the entries E0,2 j

2 j+2 and E2 j+1,0
2 j+2 of the E2 j+2-page are already equal to the

corresponding ones appearing in the E∞-page, which implies that the differential
d2 j+1 : H2 j(ΩK j;Fp) −→ H2 j+1(K j;Fp) is an isomorphism.

In view of these observations there must be a class ω ∈ H2 j(ΩK j;Fp) trans-
gressing to the generator k j ∈ H2 j+1(K j;Fp) introduced in the proof of theorem 4.4.
Then by the Kudo transgression theorem (3.26), the classP j(ω) ∈ H2 jp(ΩK j;Fp) also
transgresses to the class P j(k j) in H2 jp+1(ΩK j;Fp), which is nontrivial according to
the proof of 4.4. Hence the desired contradiction to the fact that pth powers are
trivial in H∗(ΩK j;Fp):

ωp = P j(ω) , 0  

�

R 4.9.
Notice that once again the proof couldn’t be applied to Kp−1. For if j = p − 1,
formula (2) does not prevent the existence of nonzero cross terms in formula (1).
Therefore, it cannot be concluded that H∗(ΩKp−1;Fp) is primitively generated and
corollary 3.9 can’t be used to say that the pth powers are trivial in H∗(ΩKp−1;Fp).
Hence it can’t lead to the contradiction we have obtained for the other K j’s.
As a matter of fact, knowing that Kp−1 has the homotopy type of a suspension
assures that there must be at least one nontrivial pth power in H∗(ΩKp−1;Fp) and
thus, by corollary 3.9, that H∗(ΩKp−1;Fp) is not primitively generated.

Finally, we suggest to simplify the proof of theorem 4.8, by making it free of
spectral sequences and suppressing the argument linked to the Kudo transgression
theorem, which we have left unproven in this piece of work. The first part of the
proof remains unchanged, but we describe another way to obtain a nontrivial pth

power in H∗(ΩK j;Fp).
Since Steenrod reduced powers commute with the suspension isomorphism and
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cohomology suspension, we have the commutative diagram

Fp<x j>� H2 j(CP∞;Fp)

	

�

Σ //

P
j

��

H2 j+1(ΣCP∞;Fp) � H2 j+1(K j;Fp)

	P
j

��

� � σ∗ // H2 j(ΩK j;Fp)

P
j

��

Fp<x jp>� H2 jp(CP∞;Fp)
�

Σ
// H2 jp+1(ΣCP∞;Fp) � H2 jp+1(K j;Fp) � �

σ∗
// H2 j(ΩK j;Fp) .

Therefore choosing a generator k j ∈ H2 j+1(K j;Fp), letting it go round the diagram
and using the fact that cohomology suspension is injective yields the desired con-
tradiction. By the same arguments as the ones used in the proof of theorem 4.4, k j
goes round the diagram as follows:

x j
_

P
j

��

k j
��oo � //

_

P
j

��

σ∗(k j)
_

P
j

��

xpj , 0 � � // P
j(k j) , 0 � // σ∗P j(k j)︸   ︷︷   ︸

,0

= P jσ∗(k j) = (σ∗(k j))p = 0  

Moreover, note that for the space K1 the linking relation described in propo-
sition 4.3 shows at once that P1(k1) , 0. For by axiom (4) of Steenrod reduced
powers, we see that on H3(K1,Fp) only P1 can be non-zero.

H3(K1,Fp)

P
1

��

P
2=0

{{

P
3=0 ···

ww

H2p+1(K1,Fp)

H4p−1(K1,Fp)

...

In consequence, the only way to link a generator u in H3(K1,Fp) � Fp to a generator
v in H3+2(p−1)(K1,Fp) � Fp is to use P1, which means that P1 has to be a group
isomorphism.
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Conclusion and Further Developments

Now that we have figured out common properties that co-H-structures on the
spaces K j, j = 1, . . . p − 2 do not have, to go further in the study of these spaces as
well as of Kp−1 , one could actually wonder how ”many” different co-H-structures
do exist on these spaces. It could be interesting to know whether the coproduct
described at the beginning of section 4.3 and inherited from the one given by the
suspension stucture onΣCP∞ is the only one existing on K j, up to some equivalence,
or if we could define other ones with other properties. But this would imply to use
or define a good equivalence definition for coproducts.

Besides, the proof we have adapted from the one given by Berstein in [Ber64]
might in fact provide a general method to determine whether a space X can possess
a coassociative coproduct or not. Although, as we have seen, it is crucial that the
homology of the space X is concentrated in ”good” degrees, so that the Hopf
algebra H∗(ΩX;Fp) is primitively generated, otherwise it can’t be deduced that the
pth powers are trivial in the dual Hopf algebra. Then it is also necessary to be
able to work out the behaviour of some well-chosen Steenrod reduced power on
the cohomology ring H∗(X;Fp) in order to obtain a contradiction with the previous
observation on the pth powers in H∗(ΩX;Fp). As well in Berstein’s proof as in the
one we have given, it is only necessary to know that the reduced powerPi, for some
good i is nontrivial. In Berstein’s proof this was deduced from the geometry of the
space and in the case of the spaces K j’s this was deduced from algebraic properties.
In addition we have also seen two different methods to obtain a contradiction to
the initial assumption that the space possesses a coassociative coproduct, the first
one using the fact that cohomology suspension homomorphism is an injection for
spaces of LS-category smaller or equal to one and the second one using a Serre
spectral sequence and the Kudo transgression theorem. Therefore, their are a few
variations at one’s disposal to adapt these proofs again to other spaces.
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mutative. Chapitre 1: Modules plats. Chapitre 2: Localisation. Actualités
Scientifiques et Industrielles, No. 1290. Herman, Paris, 1961.

[Bre97] Glen E. Bredon. Topology and geometry, volume 139 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1997. Corrected third printing
of the 1993 original.

[BS53] R. Bott and H. Samelson. On the Pontryagin product in spaces of paths.
Comment. Math. Helv., 27:320–337 (1954), 1953.

[CLOT03] Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré.
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